Math. Maced.
Vol. 8 (2010)
79-94

PROFESSOR CUPONA AND THE FIRST LECTURE ON
ABSTRACT AUTOMATA IN MACEDONIA

STEVO BOZINOVSKI

Dedicated to Academician Corg’i Cupona

Abstract. This paper was presented as an invited plenary paper at the con-
ference dedicated to Professor Cupona in September 2010. The paper honors
the role of professor Gorgi Cupona in the early development of computer sci-
ence and cybernetics in Macedonia. The period covered in this paper starts
in 1968 when Dr Cupona organized the first seminar related to Cybernetics
as well as the first lecture on abstract automata in Macedonia. The paper
also describes an instance of collaboration of Dr Cupona with the students,
from high school level to graduate level.

1. INTRODUCTION

0

This paper is dedicated to the memory of Professor Gorgi Cupona. The work
addresses the influence and contribution of Professor Cupona to Computer Science
and Cybernetics in Macedonia. It is a view of a high school student influenced by
professor Cupona’s vision, ideas, and acts.

The time period of collaboration between Dr Cupona and the author covered in this
work is between 1968 (presenting first lecture on abstract automata in Macedonia)
and 1982 (defending the PhD thesis). It is a period in which the author as a
student (from high school to graduate level) was in contact with professor Cupona
discussing various topics related to mathematics.

In the sequel we first observe the role of Dr Cupona in mathematics competitions
and nurturing the high school talent. Then we give information about a scientific
event, appearance of a book on cybernetics by Glushkov, which influenced organi-
zation of a seminar on cybernetics and also the first lecture on abstract automata
in Macedonia. Then we give overview on abstract automata and we describe sys-
tems such as agents, abstract computational machines, and neural networks. Then
we point out the engagement of Dr. Cupona in building a scientific infrastructure,
the Mathematics Institute with Numeric Center. In the last chapter we describe

2000 Mathematics Subject Classification. Primary : algebra; Secondary: automata theory.

Key words and phrases. difference equations, automata, Turing machines, pattern recogni-
tion, integer programming, self-evaluating automata, emotional automata.

OPart of the research presented in this paper was funded by the Fulbright program, 1980-1981.

79

80 S. BOZINOVSKI

a result of the motivation and encouragement provided by Dr Cupona to the con-
tribution of the author in the mentioned time period to self-organizing systems in
terms of abstract automata.

2. 1960’s: HiGH SCcHOOL COMPETITIONS IN MATHEMATICS IN MACEDONIA

Many high school students met Dr Cupona for the first time during preparations
for mathematics competitions. Here we will mention a generation of students in-
cluding Smile Markovski, Dimitar Altiparmakov, Tome Mickovski, Risto Ciconkov,
Biljana Arsova, Eli Delidzakova, Gjorgi Josifovski, Stevo Bozinovski, among many
others. Here we will also mention the ”idols” Smilka Zdravkovska and Viktor
Urumov, who achieved to participate at the world mathematics competition in
Moskow. Three of the mentioned same generation students, Dimitar, Smile and
Stevo, participated at the federal competitions in Belgrade. The system of orga-
nized work with high school students included high school mathematics professors
who worked with students preparing them for the competitions. One such exam-
ple was Gorica Ilieva, the wife of Professor Cupona. She had dear personality
and knowledge to attract students to engage in mathematics. The author had a
privilege and a pleasure to be one of those students.

Part of preparation for mathematics competitions were various mathematics schools
organized by Dr. Cupona. During those activities the interested high school stu-
dents were exposed to mathematics lectures beyond standard high school curricu-
lum. For example, at that time the concept of sets was not in regular high school
mathematics curriculum. It was taught in those extracurricular activities, along
with determinants, matrices, etc. The instructors at the mentioned mathematics
schools were university professors, for example Naum Celakovski, Zivko Madevski,
Aleksandar Samardziski, Branko Trpenovski, among others.

3. 1966: EVENT IN SCIENCE: THE BOOK ON CYBERNETICS BY (GLUSHKOV

An important event in science turned out to be influential in the development of
mathematics, computer science, and cybernetics in Macedonia. In 1966 the book
Introduction to Cybernetics by Glushkov appeared offering a rather radical new
view toward Cybernetics. While the previous view was related to control theory,
the new book introduced Cybernetics through theory of algorithms, languages,
and automata. The book was translated in several languages, for example in USA
in the same year [16]. The book appeared at the book fair in Skopje in 1967,
translated by Rajko Tomovic and Momcilo Uscumlic. Several Fair visitors bought
the book among them Dr. Cupona and, independently, the author of this paper.
Since the book is important for this paper we give here the chapter overview:

Chl. The abstract theory of algorithms

Ch2. Boolean functions and propositional calculus
Ch3. Automata theory

Ch4. Self-organizing systems

Chb. Electronic digital computers and programming

PROFESSOR CUPONA AND THE FIRST LECTURE ON ABSTRACT AUTOMATA... 81

Ch6. The predicate calculus and the automation of the processes of scientific
discovery

Glushkov starts with the concept of algorithms in terms of machines by Post,
Turing, and Markov, as well as knowledge on propositional calculus. Basing on
abstract automata the central topic in Cybernetics for Glushkov is the concept of
self-organizing system. The knowledge of computers and programming is neces-
sary, and ALGOL is covered in the book. Finally the book covers the predicate
calculus and automated reasoning; which is a topic of classical Artificial Intel-
ligence, although Glushkov does not use that term. The book gave algebraic
treatment of most of the topics covered. The book brought ideas from other re-
searchers in the field, for example from Rosenblatt and his Perceptron architecture
[24][25] and Selfridge and his Pandemonium architecture [26]. It contained also
the newest research of Glushkov himself on abstract automata and self organizing
systems [16].

4. 1968: THE FIRST SEMINAR ON CYBERNETICS IN MACEDONIA

Having a vision of the development of mathematics, computer science and cyber-
netics, and motivated by the book of Glushkov, in 1968 professor Cupona organized
the First Seminar on Cybernetics in Macedonia.

Nine lectures were presented from university professors, including the professors
mentioned above and Dr Cupona himself. He also invited lecturers related to
cybernetics from standpoint of control theory (Pane Vidincev) as well as from
standpoint of biology (Lav Lozinski). The tenth and final lecture was assigned to
a high school student, the author of this paper. At that time there was no lecturer
who was working on abstract automata, and there was no lecturer in the area of
computer science in Macedonia. Moreover, the chapter on automata theory from
the Glushkov’s book was already assigned to the student as a Matural Thesis.
While the supervisor of the Matural Thesis was professor Gorica Ilieva, many dis-
cussions with Dr Cupona were on the topic. So the author delivered the lecture
for which he prepared the lecture handouts [2] that were edited by Dr. Cupona
(Figure 1).

We would conclude this first part of the paper pointing out the vision of Professor
Cupona toward the development of mathematics, computer science, and cybernet-
ics in Macedonia, that it should include automata theory and related topics.

82 S. BOZINOVSKI

AP S TRAKTN I AV T OMATI

ol Me¥inite'na P o s t , Tjuring i Mar-
ko v“, so koi se sretnuvavme dosega , moZ¥at da se smetaat ‘za.apstrak-
tni , no isto taka niv moZeme da gi prifatime kako konkretni maSini,
bidej¥i imame neposreden uvid vo nadinot na nivnoto funkcioniranje.
Sega , nakratko, Ke se zadr¥imé na takanarelenite a p s-t-ra.k tn i
avtomat i. Kaj ovie avtomati e osnovno toa Sto se davaaf izve-
sni pravila spored k01 raboti avtomatot.Pritoa, rabotata na avtomatot
se gsostoi vo toa. da preslikuva zborovi od dadena v 1 e zna a z -
bu k a X vo zborovi-od.-1 z 1l e znata azbuka Y, a sostOJbl-
te-na avtomatot se karakteriziraat so mnozestvo sostOJbl S . Toa
nagledno se pretstavuva so ,crteZot na sl.l Vo daden moment avto-

’ : T, matot se naoga vo edna sostojba da redeme.

*i : s ‘:'% i - me 8, » 1 ako pri negoviot v 1 ez

I = pe dade informacija X; na izlez ot
g1,1.; o o o Ke: go dobieme signalot od izleznata az-
. . ; _buka yi , a avtomatot Ke ja promeni sos-
stojbata , t.e. ke dojde vo nove sogtojba Sy +-Poprecigna definici-
ja na ovie-avtomatl, kako 1 davarge prlkﬂz na elementlte od teorzaa—~

ta.na ovie avtomati Ke bide predmet na ova predaange.

61 ,MILIEV AVTOMAT

Postojat dva vida apstraktni avtomati: M1 1 1 e—
vi i. Muroyi. Prvo Ke se zapoznajme so Milieviot avtomat,
a potoa:so Muroviot, i pritoa Ke vidime deka postoi ekvivalencija
megu niv, h .

. . l.lLDefinicija na Milieviot avtomat. Neka se dadeni
tri mno¥estva X,S,Y . Prvoto od niv Ke velime deka e v le=
zna -azbuka (X), a tretoto (¥) V§?~nar§€}va izlezna
azbuka.. MnoZestvoto S e mno¥estvo ~e 0 5 £ 0 j b i . Osven-
toa, neka se opredeleni dve funkcii F(s,x) i G(g,x); takvi gto za
sekoe sS 1 x&eX , F(s,x) e nekoj element od S , G(s,x) éle-
ment od Y .Znadi, ako 8y © dadena sostojba,a x. vlezna bukva,
togasd P(si,x.)z Sy ke bide nova sostojbz, a G(s X.) = yy iz~
lezna bukva. Zatoa TF(s,x) velime deka e Funkclgu ne premi-
,not. ; a, .G(s,x) funkcija.na iz 1 e z o t. Dadenite tri mnoZestva
i dve funkcii g@ ¢inat apstraektniot avtoma 4(X,8,Y; F,G).(Za na-
tamu, namesto vlezna bukva ¥e velime vlezen signal, a Vo ista smisla
Eese“upotrebuva i izrazot izlezen signalj

FIGURE 1. Beginning of the first lecture on abstract automata in
Macedonia [2]. It contains a handwritten editing note by professor
Cupona.

PROFESSOR CUPONA AND THE FIRST LECTURE ON ABSTRACT AUTOMATA... 83

5. INTRODUCTION TO AUTOMATA THEORY

What follows in this chapter is description of the concept of abstract automaton
and some important applications of modeling in mathematics, computer science,
and cybernetics.

5.1. Definition. Abstract automaton is a pair of difference equations

s(t4+1) =6(s(t), z(t)) (5.1)
y(t) = As(t), z(t)) (5.2)
involving three sets X, S, and Y, and two mappings.
6: X x85—=8
A X xXS—>Y

A distinct terminology (which we call abstract automata ontology) is associated
with the concept of automaton:

X - set of inputs {z1,22,...,2p}
Y - set of outputs {y1,y2,...,Yq}
S - set of (internal) states {so, S1,S2,...,8n—1}

0 - state-change function
A - output computation function

We would like to stress that the concept of abstract automaton inherently con-
tains the concept of state, a crucial concept in many theoretical constructs and
applications. It is also important that the number of states is finite. The state
from the previous time step should be remembered, as required by the difference
equation (1), and requires an initial condition, such a s(0) = so. Also, a difference
equation assumes discrete time. Discrete time can be defined in several ways and
we propose a definition that the automaton works in discrete time if between time
steps t and t 4 1 the system is not observed (or is not observable).

5.2. Block diagram of an abstract automaton.
The pair of difference equations (1) can be visualized as a system represented with
its block diagram, as shown in Figure 2.

L— uk

»

A A 4

FI1GURE 2. Block diagram of an abstract automaton

The state change function ¢ and the output computation function A are in general
nonlinear and are often given in tabular form. The automata are very often rep-
resented as graphs, where nodes of the graph represent states of an automaton,

84 S. BOZINOVSKI

and graph transitions describe the state changing function §; the output function
is assigned to the graph transitions.

There are two types of automata, Mealy type and Moore type. The Mealy type
automaton is described above, with functions § and A, and shown in Figure 2.
The function A is computed taking into account the input of the automaton and
the state. In Moore type automaton the output computation function depends
solely on the state of the automaton, so the second equation (5.2) has a form
y(t) = p(s(t)). Often a Moore automaton is named a state machine.

6. MODELING WITH ABSTRACT AUTOMATA

Abstract automata are convenient for modeling various types of systems. The
concept of a system here is left undefined, intuitively it is an entity with inputs and
outputs; states are often considered part of a system. Here we will be interested
in modeling systems which are denoted as agents. They are related to the concept
of environment. After presenting definition of an agent we will describe two types
of agents: abstract computational machines and abstract neurons.

6.1. Agents.
The following system of equations describes an agent interacting with an environ-
ment.

agent:
s(t+1) =4(s(t),z(t), s(0)=s0 (6.1)
y(t) = A(s(t), (t)) (6.2)
environment:
a(t+1) = p(z(t),y(t)) (6.3)
with the following ontology (agent ontology)
X - set of situations {z1,xa,...,2Zm}
Y - set of actions {y1,y2,...,Yq}
S - set of (internal) states {so, s1,S2,...,8n—1}-

0 - state-change function
A - agent action computation function
w1 environment state change and new situation computing function

Note that the environment is described as a state machine and its states in form
of situations, are presented to the agent.

Block diagram of an agent is given in Figure 3.

PROFESSOR CUPONA AND THE FIRST LECTURE ON ABSTRACT AUTOMATA... 85

environment
€ <
| S N
b »)
X)
L y
situation .
action

FI1GURE 3. The concept of an agent

So the agent can be viewed as abstract automaton interacting with its environ-

ment.

6.2. Abstract Computational Machines.

An Abstract Computational Machine (also named Turing Machine or Post ma-
chine) consists of an abstract automaton and an environment represented by a
(potentially infinite) tape with symbols. The following system of equations de-
scribes this type of agent

Agent: finite state automaton
s(t+1) =6(s(t), z(t)), s(0)=sg
y(t) = A(s(), z(t))

environment: potentially infinite tape:
i(t+1)) =7(),y(), i(0)=0 (6.6)
z(t) = p(i(t)) = i(t)

with the following Abstract Computational Machine ontology

X - tape symbols {z}

Y - output actions {read(z),write(x), incr(i), decr(i), halt}

S - set of (internal) states {so, s1,82,...,80—1}

0 - state-change function

A - action computation function: position change function (next i)

7 - function computing position of the automaton relative to the tape

u - function presenting new situation (tape symbol) to the agent

I infinite set of integers, tape positions; z; is symbol at position i;

x(0) = (..., 2_1; [®0S0)x1, 22, . ..), string, initial position of the computational
machine

x(t) = (..., xi—1; [xi8]Tig1, Tiga, ...)(t), string, current state of computational
machine
The block diagram of an abstract computational machine is given in Figure 4.

86 S. BOZINOVSKI

environment

g e
S
E < A
») 1 y
X action

situation
FIGURE 4. An abstract computational machine

The machine starts its computation with a tape situation described by a string
xo= (..., 3,%_2,%_1;[To, S0]; T1, T2, T3, - . .) (t = 0) where ¢ is the tape symbol
at initial position ¢ = 0 of the automaton and sq is the initial state of the automa-
ton. The automaton moves either to the right with its action incr(i), or to the
left with its action decr(i). Here we introduce increment and decrement instead of
move-right and move-left actions, since we suggest a program counter as a part of a
computational machine. The computation ends when the computational machine
executes its halt action.

6.3. Abstract Neurons.

Abstract Neuron (or Formal Neuron, or Artificial Neuron) is an abstract automa-
ton with many inputs and one output. States are usually represented with the
symbol w.

agent: abstract neuron

w(t +1) = (w(t), 2(t),), w(0) = wo (6.8)
y(t) = Muw(t), 2(t))

environment:
x(t+1) =e(y(t)) (6.10)
X - set of input (synaptic) vectors , usually binary vectors x = [z1, 22, ..., Zp]
Y - axon output, a binary variable
W - set of (internal) states, vector of synaptic weights w = [0 = wg, w1, wa, . .., wy].

J - state-change (learning) function, w(t) = §(w(t — 1), z(t))
A - action computation function,
€ environment presenting new synaptic input function

Figure 5 shows the block diagram of an abstract neuron. The thick line shows a
vector.

PROFESSOR CUPONA AND THE FIRST LECTURE ON ABSTRACT AUTOMATA... 87

environment P
| Y L
A
8 N
L y
X. . action
situation

FIGURE 5. Abstract neuron

The state changing function is here known as learning function or synaptic plas-
ticity function. The output function is usually computed as A : y = sgn(wx — 6)
where wx is vector inner product, 6 is known as neural threshold, and sgn(0) com-
putes 1 for a nonnegative argument, otherwise gives 0. The environment contains
two parts, internal and external. The internal environment consists of other neu-
rons whose outputs are inputs to the considered neuron. The external environment
gives own inputs to the neuron.

7. CUPONA AND THE MATHEMATICS INSTITUTE WITH NUMERIC CENTER

In this chapter we will mention the work of professor Cupona in forming the
Mathematics Institute with Numeric Center, and the work related to abstract au-
tomata and self-organizing systems carried out at the Institute.

Professor Cupona invested his energy in building mathematics in Macedonia, es-
pecially algebra; however he was also building computer science. In addition of
being active in nurturing high school talent through mathematical competitions
and mathematical schools, he was engaged in building a research infrastructure.
He invested energy and time in building the Mathematics Institute with Numeric
Center. The Center started in 1967 with seminars like the above mentioned
Cybernetics seminar, and eventually it became a research institution employing
various types of researchers such as mathematicians, engineers, computer scien-
tists, and economists. Here we will mention some of the researchers employed by
the Institute: Simeon Ivanovski, Smilka Zdravkovska, Risto Sokarovski, Tatjana
Surlezanovska, Smile Markovski, Vanco Kusaktov, Margita Kon-Popovska, Dra-
gan Mihajlov, Dragan Nikolic, Donco Dimovski, Stevo Bozinovski, among others.

Among various directions of research, here we will mention the research influenced
by Dr Cupona in directions toward automata and self-organizing systems. As
result of this research the first papers on the subject were: a journal paper on
psychocybernetics in 1975 [3], a technical report on formal neurons in 1976 [4],
and a proceedings paper on perceptrons in 1976 [5].

88 S. BOZINOVSKI

In 1976 Dr Cupona published his book ” Algebraic structures and real numbers”
[13] which influenced his students in algebraic reasoning.

8. 1968-1982: CONTRIBUTION TO AUTOMATA THEORY AND THEORY OF SELF
ORGANIZING SYTEMS

This chapter covers the results in area of automata and self-organizing systems
of the author obtained in contact with Dr Cupona in the period from 1968 till 1982.
Here we will describe the research in two types of automata: teachable automata
(perceptrons) and state self-evaluation automata (crossbar adaptive arrays).

8.1. Teachable automata: Perceptrons.

The neural networks research started 1943 with the first mathematical model of
a neuron [21]. Variations of the original model were proposed [e.g. 22]. The
model includes synapses, internal potential, activation (firing) threshold, and sin-
gle output, axon. Potential learning mechanism was proposed in 1950 [18] that the
learning takes place in modification of synapses (synaptic weights). The neural
network named perceptron proposed by Rosenblatt [24][25] includes the synaptic
weights in learning for pattern classification. The perceptron studied by Glushkov
contained maximum selector mechanism for choosing actions, proposed by Self-
ridge [26]. Learning became a focus of several researchers at that time, and we
will mention only two, Stenbuch with his learning matrix [27] and Nilsson with
his learning machines [23]. Most of the effort was given on the learning process,
with concepts such a patterns, synaptic weights, synaptic plasticity, and weight
space [e.g. 14]. Our work followed the Glushkov’s direction toward the teach-
ing aspects of the perceptrons. We will first describe the perceptron in terms of
abstract automaton.

perceptron: pattern classifier, learner

w(t + 1) = d(w(t), (z(t), u(t),7(t))), w(0) = wo (8.1)
y(t) = K(C)) = Aw(t), 2(1),0) (8:2)

environment: teacher (or instructor, or trainer, or advisor, or supervisor)

(r(®), ui(t)) = e(x(t),y(t)) (8.3)

x(t+1) =7(x(t),y(t)) (8.4)

Perceptron ontology:

X - pattern (situation) set, {x1,...,X;,... X} usually m binary d-dimensional
row vectors

C classset {C1,Cs,...,Cph}, n classes (n < m) to which patterns are classified

Y - action set, {y1,y2,...,Yn, Y0} , actions corresponding to classes, yo is "un-
known” class

W - set of states, a matrix of n row vectors W = [wy, wa, ..., w,]T,dim(w) = d

r teacher’s evaluation of the learner, r = 0 if learner classified correctly, else
r=1
U teacher’s advice, u; if the shown pattern x belongs to the class C;

PROFESSOR CUPONA AND THE FIRST LECTURE ON ABSTRACT AUTOMATA... 89

J - state-change function, w;(t + 1) = w;(¢t) + r(t + Du; ()x(t)), r(t+1) =1 if
X belongs to y;

A - behavior computation function, y = y; if w;x —60; > wix — 0y, for all k # i,
else yo

0 is neural threshold

¢ teacher’s evaluation-of-the-learner function

o teaching strategy function, which next lecture (pattern) to present

The block diagram is shown in Figure 6.

¢ teacher, advisor, trainer, supervisor

advice u evaluation r

learner
| = L

[A

>

>
»
L

action y

pattern x

FIGURE 6. Perceptron, a trainable pattern classification automaton

Let us define behavior as sequence of actions. If a sequence repeats itself, let us
call it behavioral routine. The behavioral routine of the teacher in case of training
the perceptron to classify patterns into classes is
repeat
perform examination trial (r = 0):
chose pattern z, show to learner, receive learner’s response y;
if the response is incorrect,
perform teaching trial (r = 1) : give correct advice u;
else continue
until stopcondition

The objective of the teaching process is: Given a learner L (perceptron). Given

set X = {z1,...,2;,...Tm} of m patterns (or lectures, or situations). The learner
performs classification K of the given set of patterns into set of n +1 (n < m)
behaviors {y1,...,%i,...Yn, Yo} where yo is the "don’t know” behavior. Given

correct classification (partition) K. of the set X into n classes, represented by
the learner’s behaviors. Design an iterative procedure T (teacher) which will
implement an evaluation function e of the behavior of L and a teaching strategy
o, such that the procedure T assures convergence of K toward K.

The following is our paradigm shift statement, a generalization of [5]: Given a
perceptron with n neurons represented by weight vectors wi,ws,..., w, (real
weight space). Given m patterns xi,Xa,..., Xy, n < m. The learning process
for the perceptron can be represented in an integer space P (teaching space), as
integer programming problem:

90 S. BOZINOVSKI

find min(1p) (8.5)
satisfying : Ap > q (8.6)

where vector 1 has all components ”1”, 1p is inner product (= p1+pa+...pm,), A
is matrix containing inner products (similarities) between patters, p is the cur-
riculum vector showing how many times p; each pattern x; appears in a teaching
trial, and q is vector of initial conditions, transfer of a previous training.

Let us note that in the system of inequalities (8) there are no weights, vectors
w. The initial values of the weights wq, are part of the transfer of training effect,
vector ¢q. If there is no previous transfer of training, the relation (8.6) becomes
Ap > 0. In such a case what matters are inter-pattern similarities rather than pat-
terns themselves. So, while the classical learning problem [14] searches for vectors
wi,wi, ..., w; for which the learning process converges, the teaching approach
searches teaching curriculum p of minimal length. Let us also note that vector
p and matrix A are observable in a teaching process, while vectors w (learner’s
memory) is not observable in biological learners. Transfer of training concept [15]
is also part of the paradigm shift statement.

Part of the research in teaching systems theory was submitted in 1981 to an IEEE
Transactions journal and later published [10]. It was an example of Dr Cupona’s
contribution to motivation of researchers from Macedonia in the area of computer
science and cybernetics to publish in high level journals.

8.2. Self-evaluation automata: Crossbar Adaptive Array.

Here we will describe our contribution to automata theory with designing an au-
tomaton with ability to self-evaluate its internal state. The automaton here is
described with an additional, third equation. However, note that the equations
(8.7) and (8.8) can be written as a composite function, such that the automaton is
described by two equations. The following automaton named Crossbar Adaptive
Array (CAA) was proposed in 1981 [6][7]:

self-evaluation automaton

w(t+1) =d(w(t),v(t+1)), w(0)=uwp (8.7)
v(t) = v(w(t), z(t)) (8.8)
y(t) = Aw(t), =(t)) (8.9)
environment: a graph, provider of the next situation
z(t+1) =e(z(t),y(t)) (8.10)
self-evaluation automaton ontology:
X - situation set, usually m nodes of a graph, x1,...,2;,...2m
Y - action set, y1,v2,...,Yn, , n transitions from a graph node.
W - set of (internal) states, m column vectors of the matrix W= [w1,...,w;j,...

W] = [Wigli=1,....ni5=1,...m

PROFESSOR CUPONA AND THE FIRST LECTURE ON ABSTRACT AUTOMATA... 91

v state evaluation function, v(t) = sign(max;—1, . m(w;(t)), where sign() is
a function that gives 1 for positive argument, —1 for negative, and 0 for zero
argument.

J - state-change function, w;;(t + 1) = w;;(t) + vk (¢t + 1), if action ¢ in node j
gives node k.

A - action computation function, given x;, ¥y = y; wi;jx; = maxbzly___m(wbj),
else random

€ environment responding function, agent’s action y; in node x; gives node xy.

Figure 7 shows the block diagram of a state evaluation automaton. It is named
Crossbar Adaptive Array (CAA) because the memory array computes, in a cross-
bar fashion, both the actions and the state evaluations. The overall state evalua-
tion is named feeling (emotion) of being in the current state. As Figure 7 suggests
emotion can also be used as action if it is displayed to the environment. However
here we only consider automaton that computes its state evaluation and uses it in
the learning (memory update) process.

Important feature of the CAA architecture is that the only input it receives from
the environment is current situation. No advice and no reinforcement is received.
The CAA architecture has feature of a initial (genetic) vector that corresponds to
the environment and gives inherited evaluation of some environment situations it
encounters [8][9].

£ environment: no advice, no reinforcement

C Ny

X > >

situation 1 acti}(,)n

v

—] v state evaluation

FIGURE 7. The state self-evaluation automaton

For the automaton in Figure 7 the behavioral routine is defined as:

A : produce random action y

repeat :
0: receive situation x;
A: produce action y;
€ : provide new situation xy
v : evaluate xy, obtain vy = v(zy)
d0: learn, update memory, w;; + vi

until stop condition

92 S. BOZINOVSKI

By introducing states self-evaluation, a need appeared of representation of state
evaluation in an automaton graph. It was chosen that emoticons should be used as
representation of a state value. Automaton with state evaluations using emoticons
is named emotional automaton. Figure 8 shows examples of problems represented
using graphs of emotional automata. Emotional automata are also convenient in
representing language acceptors.

The CAA architecture was used in solving some of challenging problems for neural
networks and learning theory. A general challenging problem was the problem of
learning with delayed reinforcement (or learning with delayed reward) [20]. Here
we give a short description of the problem: How to perform learning if after series
of actions by the agent there is no response from the environment neither in form
of evaluation (reward) nor in form of advice? An instance of this general problem
is the maze learning problem: Given a graph that gives evaluation (reward) only
at the goal state; an agent at start state should learn a path toward the goal
state. Another instance is the pole balancing learning problem: Given inverted
pendulum system (cart and pole) with known dynamics [e.g. 12]; the angle and
angular velocity of the inverted pendulum is known in each step; the evaluation
(actually punishment) only comes if the pendulum falls down. Learn a control
policy that will keep the pendulum upwards. Figure 8 shows both the instances
of the general delayed reinforcement learning problem, using emotional graphs.

\/

Fig. 8a. Fig. 8b.

FIGURE 8. Emotional automata graphs representing instances of
delayed reinforcement learning problem Fig 8a. Maze learning
problem. Fig. 8b Inverted pendulum balancing learning problem

The delayed reinforcement learning was considered and solved while the author
was working with the Adaptive Networks (ANW) Group of the University of Mas-
sachusetts at Amherst, during 1980-1981. At that time members of the group were
Nico Spinelli (Principal Investigator), Michael Arbib, Andy Barto, Rich Sutton,
Charles Anderson, Jack Portefield, and Stevo Bozinovski. The ANW group was
funded by a grant from Wright Patterson Air Force Base in Dayton, Ohio. Project
officer was Harry Klopf, with his leading ideas that we should design goal seeking
systems from goal seeking components. The challenge of solving the delayed rein-
forcement learning problem, and the maze running instance, was stated by Rich

PROFESSOR CUPONA AND THE FIRST LECTURE ON ABSTRACT AUTOMATA... 93

Sutton. The pole balancing instance of the problem was stated by Charles Ander-
son. Solution of both instances of the problem was achieved in 1981 [6][7]. First
paper was published in 1982 [8][9] and a more comprehensive one was published
later [11]. The crucial innovation was the state self-evaluation (feeling, emotion)
concept. The state evaluation and state value turned out to be known concepts
in Dynamic Programming research [1][19]. However the state self-evaluation and
feeling were new concepts added to the neural networks and learning systems re-
search.

As conclusion to this chapter, the directions provided by Dr Cupona, and knowl-
edge gained from the Glushkov’s book, enabled a graduate student from Macedonia
to solve a challenging problem considered by the ANW group that in 1981 carried
out a leading research in neural networks and self-organizing systems.

9. CONCLUSION

This work is a report of an example of influence of professor Cupona on generation
of students, from high school level to PhD level. In the example described here,
professor Cupona selected a high school student who was active in mathematics
competitions and gave him a task to read a chapter on automata theory from
a relevant, just published book containing up to date research on a subject of
abstract automata and self-organizing systems. He further encouraged the student
to give a lecture on automata theory on a seminar on which all other lectures were
delivered by university professors. The student continued in the same direction
and did both his master’s and doctoral theses on the subject. In the process
he published a paper in a journal from the series IEEE Transactions. Having
acquired the needed knowledge the student was able to solve a difficult problem
in neural networks, the delayed reinforcement learning problem, which was stated
as challenge in front of the ANW group from the University of Massachusetts at
Ambherst in 1981. This is just one of examples of influence of professor Cupona
upon younger generation and development of mathematics, computer science, and
cybernetics in Macedonia and worldwide.

In retrospective, we can say that the first seminar on Cybernetics that professor
Cupona organized in 1968 was the single event that started the computer science
development in Macedonia. In contemporary computer science, automata theory
provides fundamentals for digital hardware (flip-flops and logic gates) as well as for
software (programs). Back in 1968 Dr Cupona had a vision toward right direction.

REFERENCES

[1] R. Bellman, Dynamic Programming, Princeton University Press, 1957.

[2] S. Bozinovski, Abstract automata (edited by G. Cupona) Topic 10. First Seminar on Cyber-
netics, Mathematical Institute with Computing Center, Skopje, 1968.

[3] S. Bozinovski, Introduction to psychocybernetics (in Croatian), Psychological Review 5(1-2):
115-128, Zagreb, 1975.

[4] S. Bozinovski, An approach toward threshold elements and formal neurons, (In Macedonian),
Mathematics Institute with Numeric Center, Skopje, 1976.

94 S. BOZINOVSKI

[5] S. Bozinovski, A. Fulgosi, Influence of pattern similarity and transfer of training on training
the base perceptron B2 (in Croatian) Proc Symp. Informatika, 3-12-1-5, Bled, 1976.

[6] S. Bozinovski, A self learning system using secondary reinforcement. First report on CAA
architecture, Computer and Information Science (COINS) Department, University of Mas-
sachusetts at Amherst, November 25, 1981.

[7] S Bozinovski, Inverted pendulum learning control, Adaptive Networks Group (ANW) Memo,
COINS Department, University of Massachusetts at Amherst, December 10, 1981.

[8] S. Bozinovski, A self-learning system using secondary reinforcement. Abstract 87, Published
Abstracts of the Sixth European Meeting on Cybernetics and Systems, Vienna, April 1982.

[9] S. Bozinovski, A self-learning system using secondary reinforcement, in E. Trappl (ed.) Cy-
bernetics and Systems Research, North Holland, 1982, p. 397-402.

[10] S. Bozinovski, A representation theorem of linear pattern classifier training, IEEE Trans-
actions on Systems, Man, and Cybernetics 15: 159-161, 1985.

[11] S. Bozinovski, Crossbar Adaptive Array: The First Connectionist Network that Solved the
Delayed Reinforcement Learning Problem. In: A. Dobnikar, N. Steele, D. Pearson, R. Alberts
(eds.) Artificial Neural Networks and Genetic Algorithms, Springer Verlag 1999, p. 320-325.

[12] R. Cannon, Dynamics of Physical Systems, McGraw Hill, 1967.

[13] G. Cupona, Algebraic Structures and Real Numbers (In Macedonian), Prosvetno Delo Pub-
lisher, 1976.

[14] R. Duda, P. Hart, Pattern Recognition and Scene Analysis, Willey Interscience, 1973.

[15] R. Gagne, K. Baker, H. Foster, On the relation between similarity and transfer of training
in the training of discriminative motor tasks, The Psychological Review 57:67-79, 1950.

[16] V. Glushkov, Self organizing systems and abstract theory of automata. (In Russian) Zhurnal
Vychislitelnoi Matematiki i Matematicheskoi Fiziki 3: 459-466, 1962.

[17] V Glushkov, Introduction to Cybernetics, Academic Press, 1966.

[18] D. Hebb, The Organization of Behavior, Wiley, 1949.

[19] R. Howard, Dynamic Programming and Markov Processes, MIT Press, 1960.

[20] F. Keller, R. Schoenfeld, Principles of Psychology, Appleton-Century-Croffts, 1950.

[21] W. McCulloch, Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin
of Mathematical Biophysics 5: 115-133, 1943.

[22] M. Minsky, Finite and Infinite Machines, Prentice Hall, 1967.

[23] N. Nilsson, Learning Machines, McGraw-Hill, 1965.

[24] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organiza-
tion in the brain, Psychological Review 65: 386-408, 1958.

[25] F. Rosenblatt, Principles of Neurodynamics, Spartan Book, 1962.

[26] O. Selfridge, Pandemonium: A paradigm for learning, Proc Symposium on Mechanization
of Thought Process, London, Her Majesty Stationary Office, p. 523-526, 1958.

[27] W. Steinbuck, The learning matriz (in German) Kybernetik 1:36-46, 1961.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE,
UNIVERSITY OF SOUTH CAROLINA, ORANGEBURG, SC, USA
E-mail address: sbozinovski@scsu.edu

