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SOME INEQUALITIES FOR TWO CSISZAR
DIVERGENCES AND APPLICATIONS

S. S. Dragomir

Abstract

Some inequalities for the Csiszar divergences of two mappings
with applications to the variational distance, Kullback-Leibler dis-
tance, Hellinger discrimination, Chi-Square distance, Bhattacharyya
distance, Jeffreys divergence, etc... are given.

1. Introduction
Given a convex function f : [0,00) — R, the f-divergence functional
n
Bed=Y af (5—) ER)
i=1 *

was introduced by Csiszar [1]-[2] as a generalized measure of information, a
?distance function” on the set of probability distribution R". The restric-
tion here to discrete distributions is only for convenience, similar results
hold for general distributions. As in Csiszar [1]-[2] , we interpret undefined
expressions by

. 0
1O = Jim 1@, 07 (g)=0

AR ay .. f(t)
01 (5) = dig,es () = e fim == o>

The following results (Theorems 1 and 2, and Corollary 1) were essen-
tially given by Csiszar and Korner [3].
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Theorem 1. (Joint Conve:mty) If f : [0,00) — R is convez, then
It (p, q) is jointly convez in p ‘and q.

Theorem 2. (Jensens mequalzty) Let f : [0,00) — R be conver.

n
Then for any p,q € R% with Pn = Zpi >0, Qn:= Y g >0, we have
the inequality

It(p.q) 2 Qnf (Q ) (1.2)
If f is strictly convez, equality holds in (1.2) iff
PL_P2_  _Pn 1.3)
a1 92 an

It is natural to consider the following corollary.

Corollary 1. (Nonnegativity) Let f : [0,00) — R be conver and
normalised, i.e.,
F(1)=0. (1.4)

Then for any p,q € R with P, = Qn, we have the inequality

If(p,q) 2 0. (1.5)
If f is strictly convez, equality holds in (1.5) iff
pi=g; forall i€ {l,...,n}. (1.6)

In particular, if p,q are probability vectors, then Corollary 1 shows
that, for strictly convex and normalized f : [0,00) — R that

If(p,q) >0 '""énd If(p,q)=0iff p=gq. (1.7)

We now give some more examples of divergence measures in Informa-
tion Theory which are particular cases of Csiszar f-divergences.
1. Kullback-Leibler distance ({12b]). The Kullback-Leibler distance
D(.,-) is defined by

D(p.q):= Zn:Pi log <P—> : | (1.8)

If we choose f (t) = tlnt t > 0, then obviously

If (P 9) =D (p,q). (1.9)

2. Variational distance (ll-distance). The variational distance V (-,-)
is defined by
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V(p,q) lez_‘h (1.10)
If we choose f (t) = |t — 1|, t € Ry, then we have
It (p,q) =V (p,q). (1.11)

Hellinger discrimination ([13]). The Hellinger discrimination

- h?(-,-) is defined by
M2 (p0)i= 3 3 (V- Va). (L.12)
i=1 '

I\D

(\/;— 1)2, then

If (p.q) = h% (p,q). (L13)

Triangular discrimination ([24]). We define triangular discrimi-

nation between p and ¢ by

A(p,q) = Z""“' . (1.14)

)2

NO|

It is obvious that if f (¢) =

(t—

It is obvious that if f (t) = o
It (p,q) = A(p,q).

2. distance. We define the y2- distance (chi-square distance) by

, t € (0,00), then

(1.15)

5.
n 2
Dy (pg) =y BEm 8] (1.16)
= ¥
It is clear that if £ (t) = (t — 1)2, t € [0, 00), then
I7 (p,q) = Dyz (p, q) (L.17)
6. Rényi a-order entropy ([14]). The a- order entropy (o > 1) is de-

fined by
Rq (P q sz q; e (118)
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It is obvious that if f (t) = t* (¢t € (0,00)), then

I (p,q) = Ra (p,9q) - (1.19)

For other examples of divergence measures, see the paper [22] by J. N.
Kapur, where further references are given.

2. The Results

In the recent paper [28], the author proved the following inequality for
Csiszar f-divergence:

Theorem 3. Let ® : R, — R be differentiable convez. Then for all
p,q € RT we have the inequality:

2
' (1) (Pn — Qn) < JTs (p,q) — Qn® (1) < Ip (p?,p) — Iy (p,q), (2.1)

where P, == Y .p; > 0, Qn = >, q > 0 and & : (0,00) — R is the
i=1 i=1

derivative of ®.
If ® is strictly conver and p;, ¢; > 0 (i = 1,...,n), then the equality holds
in (2.9) iff p = q.
If we assume that P, = @, and @ is normalised, then we obtain the
simpler inequality
2

0< I (p,q) < o (%p> —Ie (prq). 2.2)

Applications for particular divergences which are instances of Csiszar f-
divergence were also given.

A similar result of the above theorem has been presented in another
paper by the author [29)].

Theorem 4. Let ¢, p,q be as in Theorem 3. Then we have the
inequality

P, 2 P,
0< In (p.q) — Qnd (_) < Iar (?L,p) e ). (23)
Qn q Qn

If ® is strictly convez and p;, ¢; > 0 (i = 1,...,n), then the equality holds
in(23) if L =... =1
q1 dn

Obviously, if P,, = @, and ® is normalised, then (2.3) becomes (2.2).

The following result concerning an upper and a lower bound for the

Csiszar f-divergence in terms of the Kullback-Leibler distance D (p,q)
holds. - ’
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As in [30], we will say that the mapping f:C C R — R, where C is an
interval (in [30], the definition was considered in general normed spaces), is

(i) a- lower convez on C if f — g-- |-|? is convex on C;

. B2 .
(ii) 8- upper convez on C if 5 |-|* = f is convex on C;

(iii) (m,M)- convez on C (with m < M) if it is both m-lower convex and
M-upper convex.
In [30], amongst others, the author has proved the following result for
Csiszar f-divergence.

Theorem 5. Let ®: R, — R and p,q € R} with P, = Q.
(i) If @ is a-lower convezx on R, then we have the inequality

= Dya (,0) < Ta (p,0) — Q@ (1). 2.4

ii) If ® is B-upper conver on R, , then we have the inequality
_I_

B
Iz (p,q) = Qu® (1) < 5 - Dy (p, ) - (2.5)
(i) If ® is (m, M)-convezx on R, then we have the following sandwich
inequality
M
iy Dx"’ (P,‘I) <lIp (p,Q)“an)(l) < _2_'Dx2 (P7Q), (26)

where D,z (-,-) is the x2-divergence.
Of course, if ® is normalised, i.e., ® (1) = 0 and p, g are probability
distributions, then we get the simpler inequalities:

2 P a) <1 (p,q), I@(p,q)<é D.2(p,q) (2.7)

and
2 Dyt (p.0) < Ta (,0) < 3 Dye (5, 0). 28)

In [30], some applications for particular instances of Csiszar f-divergences
were also given.
We start with the following result.

Theorem 6. Let f,g:[0,00) — R be two mappings such that
f(1) = g(1) = 0. If there ezxists the real constants m, M such that

m|f (@) - f@I<lglx)—g@WI<MIf(=)-f W)

2.9)
forall =z,y € [r,R] C (0,00),
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then we have the inequality:

mljs| (p,q) < Iig (P, q) < MIj5) (p, q) (2.10)

for all p,q probability distributions with 0 < r < ;L‘f < R < o for all
ie{l,..,n}.
Proof. By (2.9) it follows that

"l (%)
q9i

=m}f(’§)—f(1)|s ‘g(%)—g(l)lz ]
b4} 2

foralli € {1,...,n}.
If we multiply (2.11) by ¢; > 0 and sum the obtained inequalities, we
may deduce (2.10). O

Corollary 2. Assume that the mappings f, g: [0,00) — R are as above
and f,g are differentiable on (r,R) with f'(t) # 0 fort € (r,R) and

7 !
g (t)l g (¢)
—00 < = n -, su —_— :M<OO, 2.12
S =y N O} K 2 ) (212)

then we have the inequality (2.10) for all p,q as above.

Proof. We use the following Cauchy’s theorem:
If 4, ¢: [a, b] — R are continuous and differentiable on (a, b) and ¢’ (t) #
0 for allt € (a,b), then there exists a c € [a, b] such that

v(6) =7(a) _ 7 (c)
o) —¢(a) ¢'(c)

Now, suppose that z,y € [r, R] and z < y. Then, by Cauchy’s theorem, we

have
9(@)—g @) |_|d(2)
fl@)=f@ ()

and then we can conclude that for any z,y € [r, R] we have

<M

m|f(z) = fWI<lg(z) —g W < M|f(z) - f W

Applying Theorem 6, we deduce (2.10). O
The following corollary for the variational distance holds.
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Corollary 3. Let g:[0,00) — R be a mapping such that g(1) = 0. If
there exists the real constants n, N such that

nlz—yl<lgl@)—g@WI<Nlz—y| forall =z,ye€[R], (2.13)
then we have the inequality

nV (p,q) < Iig) (p,q) < NV (p,q) (2.14)

for any probability distribution p,q with 0 < r < g:— < R < oo for all
i€{l,..,n}. '
The proof is obvious by Theorem 6, choosing f (z) =z — 1.

Corollary 4. Assume that the mapping g is continuous on [a,b] and
differentiable on (a,b) and

—oo<n= inf |¢'(t)], sup |¢(t)]=N < oo.
te(r,R)l te(r,R)l @)

Then we have the inequality (2.14) for all p, q .as above.

3. Some Particular Cases in Terms
of the Variational Distance

We start with the following result.

Proposition 1. Let 0 < r < B <R< o (i=1,..,n). Then we
qi
have the inequality

lnR+1]V (p,q) if r>e’l,

3.1
max{InR + 1;]mR+ 1}V (p,q) if r<e 3.1

OSKL(p,q)S{

Proof. Consider the mapping g: (0,00) — R, g(¢) = tlnt. Then
g’ (t) = Int + 1 and obviously,

M:= sup ‘|¢' (t)] =

mR+1 if r>el
te(r,R)

max{lmR+ 1;|mnR+ 1|} if r<el.

Applying Corollary 4, we can state

Pi (Pi )
—— n —
8 g

n

S

i=1

<NV (p,q) .
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By the generalised triangle inequality, we have

KL(p,g)= szln(”') () <> pi ( ) <NV (p,q)
i=1
and the inequality (3.1) is proved. 0O
Let us introduce the modified Kullback-Leibler distance
- Dp;
IKL|(p,q) =Y pi|ln (;) :
i=1 *
Then obviously,
K (p,q) < |KL|(p,q) forall p,g € R™. (3.2)

For this modified distance, we may prove the following as well.

Proposition 2. Let 0 < r < % <R <> (i=1,..,n). Then we have
the inequality

(Inr+1)V (p,q) < |KL{(p,¢) S (InR+ 1)V (p,q), (3.3)

provided that r > e™!

Proof. The second inequality in (2.11) has been proven above.
For the first inequality, we can apply Corollary 4 by observing that for
g(t) =tlnt, and r > e},

f ) =Ilnr+ 1.
tel[rrlR]lg()l nr

We omit the details. O
The following proposition also holds.

Proposition 3. Let 0 < r < ’;—: <R <> (i=1,..,n). Then we have
the inequality:

KL(g.p) S 2V (p,a) 3.4

Proof. Consider the mapping g:(0,00) — R, ¢g(¢) = In¢. Then
1
g (t) = " and obviously,

M:= sup |¢'(¢)|=

1
t€[r,R) r
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Applying Corollary 3, we can state:

n »
>ufn ()
Y q;

By the generalised triangle inequality, we have

K (q,p) Z‘h ( ) 1n< ) Z‘h

2oaf=(3)
and the proposition is proved. 0O
The following result for the modified Kullback-Leibler distance also
holds.

Proposition 4. Let p,q be as above in Proposition 3. Then we have
the inequality

1
S —V(P"I) .
r

1
S -V (p’ Q)
T

=V (0,0) SIKl (0,) S 2V (,0) (.5)

Proof. The second inequality in (3.5) has been proven above. The
first inequality follows by the first inequality in Corollary 4 by taking into
account that

= f t .
m tel(gR)Ig()I 7

Now, the following result for Hellinger discrimination holds.
Pi

Proposition 5. Let0 < r < — < R < o0 (i=1,..,n). Then we
Py
have the inequality: !
VR - /7 VR++r 1
v vr 1 V (p,q) <h?(p,q)
4V/rR 4VTR 2 3.6)
VR_ VT | |VR+VT 1 V (p,q) |
= 4vrR 4/rR 2 '
Proof. Consider the mapping g:(0,00) — R, g(t) = %(\/Z— 1)2.

Then obviously,

t € (0, 00)
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and
n= dnt 19/ (O] = min{lg’ ()], 19’ (R}
_ g ()l +1g (R) = llg’ ()| — |g’ (R)]]
2
_VR-F VR 1
4R &WrR 2
and
N = sup |g'(t)] = max{|¢' (r)|, lg' (R)|}
t€(r,R)
_ g @ +1g" @)+ lg’ () — 1g" (R
2
_VR-vr |VEHVr L
 4/rR 4/rR 2
respectively.

As g (t) > 0, then obviously
Iig) (P, 9) = I; (P, q) = h* (p. q) -

Using (2.14), we obtain (3.6). O
Remark 1. The inequality (3.6) is equivalent to

hz(P,Q)"[f“\/:—R_\/;V(P,Q) < —\/f—\/}%—% V{(p,q) (3.7)

Now, we point out some inequalities for the chi-square distance.

Proposition 6. Let 0 <r < B: <R < oo (i=1,...,n). Then we have
the inequality

[R—r—|R+7r=2]]V (p,q) < Dy2 (p,q) S[R—r+|R+r=2]|V (p,q). (3.8)
Proof. Consider the mapping g: (0,00) — R, g(¢) = (t — 1)2. Then

obviously ¢’ (t) =2 (¢ — 1) and

n=dnf o' ()] =min{lg' ()], I’ (R)I} = B—r =R+ r=2|
teir,

and
N=R-r+|R+r-2|.
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Using the inequality (2.14), and taking into account that g (¢) > 0, t € R,

and " )
o)=Y 2 b6,
i=1 i ’

we deduce (3.8). O
Remark 2. The inequality (3.8) is equivalent with

|Dy2 (p,9) = (R—7)V (p,9)| S |R+7=2|V (p,q). (3.9)

We point out now some inequalities for the Bhattacharyya distance.

Proposition 7. Let 0 < r < B <R < 00 (i = 1,...,n). Then we have
the inequality:

0<1- < —=V 3.10
B(p,q) 2\/- (p.q). (3.10)
Proof. Consider the mapping g(t) = 1 — v, t € (0,00). Then
1
1)=0, ¢’ (t) = ———= and
g( ) g () 2\/{ an
1

N = sup |¢ (t)]= sup —== .
tE[r,R]| ( t€[r,R) 2\/_ 2¢/r

Applying Corollary 4, we may state

n
/P:
ZQi 1- 2\/— =V (p q)
i=1
which is equivalent to
ZI% Vpiti] < 2\/—V(p :q) - (3.11)

i=1

Using the generalised triangle inequality, we obtain

) lai— VRl 2 =|1-B(pgl=1-B(pg. O
i=1 )

n
> (e — vFig)
=1

i we define the following distance B (p, q) : Z V@& I\/E N/ | then

we may state the following proposition as well.
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Proposition 8. Assume that p;, q;, 7, R are as ahove. Then

B(p,a) < 5=V (pg. (3.12)

2\/—V(p,) _2\/—

The proof is obvious by Corollary 3 applied for the mapping
g(t)=1- vt

Now, let us consider the harmonic distance

= 2
M (pg)= 30 20
=1

—prita

The following proposition holds.

Proposition 9. Assume that p;,qi, 7, R are as above. Then we have

the inequality:
2

0<1-M(p,q) <——=Vpq). (3.13)
(r+1) «
2t
Proof. Consider the mapping g (t) = 1 — T Then ¢(1) =
2
!
g () = — and
(t+ 1)
2
N:= sup |¢ (t)] = ——.
tejr,R] (r+ 1)2
Applying Corollary 4, we can state that
n pxal 0
qi
q - — (P, Q) H
; ’ pi 11 (r+ 1)2
qi

which is clearly equivalent to:

n

% lpi — i 2
kil 2 vpg. (3.14)

— pPita (r+1)

Using the generalised triangle inequality, we get (3.13). D
 If we introduce the divergence measure:

n

- lp: — gl
M(pg)i=) ¢ ——==1L(p.q),

pit+
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-1 '
where I (t) = I: m ll , t > 0, then we have the following proposition.
Proposition 10. With the above assumptions, we have
Ve <HG)S V(g (315)
b q — ? — ? q . .
(R+1) (r+1)

Finally, let us consider the Jeffreys distance

J(p,q) = g(p,-—qg)ln(%).

The following proposition holds.

Proposition '11. Assume that 0 < r < — Pi < R < . Then we have
qi

the inequality:
R—-r 41 /R _|BR—r
2rR r 2rR
R-r R
< In
[ n
Proof. Consider the mapping g(t) = (t—1)Int, t > 0. Then, obvi-
ously ¢’ (t) =Int — %+ 1, 4" (t) = t21’ which shows that ¢’ (-) is strictly
increasing on (0,00) and ¢’ (1) = 0. Then
. 7 . ’ 7 R r R
— — = Iny/—
= dat_lg' (Ofmin (lg ()], o' (R)}= G +1ny/
and

N= /R R+r
_tqr,R] 2 R 21‘R
( )H ( )l IPi—qil |np; — Ing;

= Z(zo.- - @) (Inp; —Ing;) = 1 (p, q),
i=1

_hn/m_lﬂ V@ra) < (ra)
(3.16)

’;r — ViR - 1” Vi, q).

2rR

Rir —-anrR—-l'

In addition, as

Ty (P q) = Zq.
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then by (2.14), we deduce (3.16).
Remark 3. The above inequality (3.16) is eqm’valent to

/2] v

4. Other Particular Cases

J(p,q)—

R-;r -—anrR—ll Vip,q). (3.17)

Let us consider the modified Kullback-Leibler divergence

n
i
|KL|(g,p):= gfln (—’) ,
i=1 i
where p,q € R".

We point out some estimates in terms of |K L|.
‘ “ pi

Proposition 12. Assume that 0 < r < == < R < oo (i=1,..,n).
‘ a;
Then we have the inequality '
(r- RR [r+R o
0<KL(pq)< {—2—’"+1n\/—r+ = +1n~/RRrr] KL|(g,p). (4.1)
T

Proof Consider the mappings g (t) = tint, f (t) Int, > 0. Then

9 _
h(t):= 70 =tlnt+t.

We observe that

M= sup |h (t)| = max {|h (r)], |r (R)|}
te[r,R)

R - RR
= —+
'f‘

r

r—I;R +In VREy7|.
Applying Corollary 2, we may write

Xn; g <qz> <M2q11n(1;:>5:

i=1
and as, by the generahsed triangle inequality, we have

S (2)

M |KL|(q,p)

> KL (p,a) = KL (p,0) 2 0,
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the inequality (4.1) is proved. O
We now compare the Hellinger discrimination with |K L.

Proposition 13. Let p;, q;,r, R be as in Proposition 12. Then we have
the inequality:

Sr . (4.2)
1{R—7r R—+r r+

(\/Z— 1)2, F(t)=1nt,t> 0.

NO| =

Proof. Consider the mappings g (t) =
Then

g 1 Vi-1 L
h(t)'__f’(t)_§( )=

We observe that

%(\/Z—l)ﬁ, t>0.

m = Inf Ih(t)l*‘mm{lh(r)l | (R)1}

t€[r,R]
1 R—r_\/E—ﬁ_ R _r+R
T2 2 2 2 2

and, analogously,

- M= sup [h(t)] = max{|a(r)|,|n(R)]}

t€([r,R} »
1 R—r_\/ﬁ—ﬁ+ R _r+R
T2 2 2 2 2 ||

Now, as g (t) > 0, we have

Iig) (P, q) = I, (p,q) = K® (p,q) .-
and then, by Corollary 2, we deduce (4.2). O

Remark 4. The above inequalily is equivalent with

[R=1 \/_\/' I\/'+\/" r+R)|
21‘ ] | 2 ) ||KL|(Q1P)-

(4.3)

W (,0)- 5 IKL(g,p
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We now compare the Chi-square distance with |K L|. The following
proposition holds.

Proposition 14. Let p;, q;, 7, R be as above. Then

[(R—7) (R+r—1)=|R+r—(R*+r?)|] IKL| (g,p) < Dy2 (p, q)

<[(R-r)(®+r=1)+|R+r— (R +*)[]IKL|(g,p) (4

Proof. Consider the mappings ¢(t) = (t—1)%, f(t) = Int, t > 0.
/
g (t)
Then h (1) = =—% =2t (¢t — 1).
(1) = S = 24(= 1)
We observe that

m= Jnf Ih (8)] = [QT(I—T)JFQR(R—U—“[2r(1—r)—ZR(R—1)”‘
Z[r—r +'R2—R—lr—7~2-—R2+Rl]
=R —1* = (R—7) = |[R+r— (R®++7)]
:(R_r)(R+T*1)—|R+r—(R2+r2)'

and

M= sup (h(t))=(R-r)(B+r-1)+|R+r— (R*+7%)|.
te[r,R)

Now, as g (t) > 0, we have

Iigl (P, q) = Iy (p, q) = Dy2 (p, q)

and then, by Corollary 2, we deduce (4.4). O

Remark 5. The above inequality is equivalent with

|Dy2 (p,q)—(R—vT) (R+r—1) |KL|‘(q,p)| < |R+r—(R*+r%)||K L| (q,(i) )
5
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HEKOW HEPABEHCTBA 3A IBE YE3APOBU
JUABEPTEHIINA U ITPUMEHA

Peszuwme

Ilaenu ce HeKOM HepaBeHCTBa 3a Ue3apoBM AMBEepPreHIMM O] IBE
npeciuKyBamba CO OpUMMeHa Ha BapHjanquoHO pacrojanme, Kullback-
Leibler-oo pactojanue, Hellingen-oBo pacrtojanune, Chi-Square-oso
pactrojanue, Bhattacharyya-oso pactojanue, Jeffreys-oBo pacrojanue
UTH.
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