THE NULL SPACES CODIMENSION AND THE EXISTENCE OF THE INTERPOLATING SPLINE-FUNCTION IN BANACH SPACE

Ramadan Xh. Zejnullahu

Abstract

Using the results in papers [2] and [3] in this paper we prove the existence of the interpolating spline-function by the null space codimension of operators A and T.

Introduction

Let X, Y, Z be Bannach spaces. Suppose A is a bounded linear operator of X into Z and T is bounded linear operator of X into Y. The null space and the rang of operator A will be denoted by N(A) and R(A).

Let R(A) = Z. For fixed element $z \in Z$ we write by

$$I_z = \{x \in X : A_x = z\} = A^{-1}(z)$$
.

Definition 1. The element $s \in I_z$ for wich

$$||T_s|| = \inf\{||T_x|| : x \in I_z\}$$

is called the interpolating spline-function for z in connection with the operators A and T and is denoted by s = s(z, A, T).

The following theorem have been proved in the case that X, Y and Z are Hilbert spaces (see [1]).

Theorem 1. Suppose:

- (i) N(A) + N(T) is a closed set in X
- (ii) $N(A) \cap N(T) = \{0\}$. Then for each $z \in Z$ there exists a unique interpolating spline-function s = s(z, A, T).
- If X, Z be Banach spaces and Y is a reflexiv Banach space is proved the following theorem (see [2]).

Theorem 2. Suppose:

- (i) $TA^{-1}(z)$ is a closed and bounded set in Y
- (ii) $N(A) \cap N(T) = \{0\}$, then there exists a unique interpolating spline-function s = s(z, A, T).

The main result

If X is a reflexive Banech space, it is proved the following

Theorem 3. Suppose:

- (i) N(T) is a finite codimensional subspace in X
- (ii) $N(A) \cap N(T) = \{0\}$, then for each $z \in Z$ exists a unique interpolating spline-function s = s(z, A, T).

Proof. According to Theorem 2 it is enough to show that the set $TA^{-1}(z)$ $(z \in Z)$ is closed in Y. Since $TA^{-1}(z)$ is a translation of the set TN(A) it is enough to show that the set TN(A) is closed in Y. Let $y_0 \in \operatorname{cl} TN(A)$, then there exists a sequence $(y_n) \subseteq TN(A)$, $||y_n - y_0|| \to 0$ $(n \to \infty)$. Hence there exists $(x_n) \subseteq N(A)$ such that $Tx_n = y_n$ $(n \in \mathbb{N})$. Since N(T) is a finite codimensional subspace in X then exists finite dimensional subspace F in X such that X = N(T) + F. The subspace F is Banach space because it is finite dimensional subspace in Banach spaces X. We denote by T_1 the restriction of operator T in F. Operator T_1 is biection. According to Theorem of continuity of inverse, the inverse T_1^{-1} exists and is bounded. Since $x_n = t_n + f_n(t_n \in N(T), f_n \in F)$ $(n \in N)$, $Tx_n = T_1f_n \Rightarrow f_n = T_1^{-1}Tx_n \ (n \to \infty)$. Consequently the sequence (f_n) is bounded in F. Further, we denote by A_1 the restriction of the operator A in N(T). Operator A is a biection. Let us prove that A_1 is 1-1. Let $x,y \in N(T) \Rightarrow x-y \in N(T)$, then Ax = Ay implicies that $x-y\in N(A)$. Since $N(A)\cap N(T)=\{0\}$, then x=y. According to Theorem of continuity of inverse, the invers A_1^{-1} exists and is bounded. Since $x_n = t_n + f_n(t_n \in N(T), \ f_n \in F) \ (n \in \mathbb{N}), A_1 t_n = -A f_n \Rightarrow t_n = -A_1^{-1} f_n.$ Consequently the sequence (t_n) is bounded in N(T). Hence $(x_n) \subseteq N(T)$ is a bounded sequence in reflexive Banach space X. Therefore, the sequence (x_n) contains a subsequence $(x_{1,n})$ which converges weakly to $x_0 \in X$.

The first of the state of the s

0 1 1 11

Since $f \circ T \in X^*(f \in Y^*)$, $(Tx_{1,n})$ converges weakly to $Tx_0 \in Y$ and $Tx_0 = y_0$. Also, the sequence $(Ax_{1,n})$ is weakly convergent to Ax_0 . Since $Ax_{1,n} = 0$ $(n \in \mathbb{N})$, $Ax_0 = 0 \Rightarrow x_0 \in N(A) \Rightarrow y_0 = Tx_0 \in TN(A)$.

This completes the proof.

Corollary 1. Suppose:

- (i) N(T) is a finite dimensional subspace in X
- (ii) $N(A) \cap N(T) = \{0\}$, then for each $z \in Z$ exists a unique interpolating spline-function s = s(z, A, T).

Proof. Since N(T) is a finite dimensional subspace in X, then exist a closed subspace F in X such that X = N(T) + F.

The subspace F is Banach space, because it is closed subspace in Banach space X.

Analogues results stay for the case of null-space N(A).

References

And the second s

- [1] Laurent P. J.: Approximation et optimasation, Paris 1972.
- [2] Zejnullahu R.: On a problem of minimisation in Banach spaces, Radovi matematički, Vol. 4, 113-119 (1988).
- [3] Zejnullahu R.: Some properties of the interpolating spline-functions space, Matematički vesnik, 41 269-271 (1989).

ПРОСТОРИ СО НУЛА КОДИМЕНЗИЈА И ПОСТОЕЊЕ НА ИНТЕРПОЛАЦИОНА СПЛАЈН ФУНКЦИЈА ВО БАНАХОВ ПРОСТОР

Рамадан Шх. Зејнуллаху

Резиме

Тргнувајќи од резултатите во трудовите [2] и [3], во оваа работа докажана е егзистенција на интерполиорачка сплајн функција со помош на нула просторната кодимензија на операторите A и T.

University of Prishtina

Department of Mathematics

Prishtina