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Abstract. In this paper we consider the notion of
an (n,m)-group as a generalization of the notion of a
group, and give a combinatorial description of a free
(n,m)—-group with a given basis.

Let n>m>0., An (n,m)-semigroup (A;f) is obtained
by giving an associative vector-valued operation f£f:A"— A"
on the underlying carrier set A. The concept of an (n,m)-
group 1s defined similarly using associative (n,m)-
operation and demanding the solvability of equations (i.e.
an associative quasigroup is a group in this new context
as well). In this parlance an ordinary group is simply a
(2,1)-group, 2 being the arilty of the basic group
1

')Supported in part by a grant from the Research Council
of Makedonija

965

Copyright © 1991 by Marcel Dekker, Inc.

1437



1438

966 DIMOVSKI, JANEVA, AND ILIC
'

operation, say a-b, and 1 being the unary arity correspan-—
ding to the actual value c¢ (if a*b=c). An (n,l)~group is
just an n—group.

The class of all (n,m)-groups form variety and hen-
ce [ree objects do exist. Upto now decent examples of
{(n,m)-groups are not always available. The main result of
this paper 1s an explicit combinatorial construction of
the free (n,m)-group with a given basis using groups
freely generated by given basis. This result is used to
derive two consequences:

(1) Let k devide m. Then every (m+k,m)-group can be
embedded in an (m+l,.m)-group.

(2) If A and B are two equicardinal sets then the
free (m+k,m)-groups generated by A and B are isomorphic.

0.Preliminaries

The notion of vector valued groups is introduced in
[1}]. A partial answer to the problem of satisfactory des-
cription of free vector valued groups is given in (4]. In
the last two years we have completely solved this problem.
The solution is a combinatorial description of free vector
valued groups and is given in this paper. We are grateful
to Profesor Cupona for the helpful conversations and su-
gestions throughout this project.

Now we introduce Lhe basic notions and state the
basic results. Let Q be a nonemty set. For a positive in-
feger p. Q° denotes the p-th cartesian power of Q. Instead
of writing (a,,...,a) for an element of Q°, we will use
the notation a? and/or a‘...ap. With this notation we can

identify Q” with the subset {a!..AaplaiEQ} of the free se-
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migroup Q' generated by Q. (Here, a ...a denotes the pro-
duct of @@ in Q%.)

Let m and n be positive integers with n-m=kzl. An
(n,m)-operation on Q is a map £:Q"—Q". The pair (Q;f) is
called an (n,m)-groupcid. An (n.m)-groupoid is called

(n,m)-semigroup ([(1]), if for every 1<igk, and every

xfl\*kEQh*'k

F

U E ANV LT I TE5 Py
1 n+y

i
f{xif“xt+| i+n+t

¥ ) (0:1)

An (n,m)-semigroup is called an (n,m)-group ([1]1), if for

m

each acQ® beQ™, the equations

f(ax)=b=f(ay) (0.2)
have solutions x,yeQ".

Since the notion of (n,l)=-groups is the same as the
notion of n-groups. and specially for n=2, 1s the same as
the notions of groups, from now on we consider (n,m)-
groups, only for n-m=k21, m22, and call them vecLor valued
(shortly v.v.) groups.

As the general associative law is wvalid for v.wv,

semigroups ([2]), we use the notation []:Q"—Q" instead of

=

s ), where (1% is

£:0"—0" and (d] 8 Bl =

] instead of :

the (m+sk.m)-operation induced by [].

An (mik,m)-—operation [] on Q is equivalent to m n-

ary operations (1 ....,[] on Q defined by
(VieN ) (a™F] =b = (a™%)=1", (0.3)
m 1 . L 1 1
where Nm-il.z.....mr.

Let 1 be a nonempty subset of a given group

G=(G:*). We denote by n the canonical mapping from Q° into

1439



1440

968 DIMOVSKI, JANEVA, AND ILIC

G defined by n(a:)*a’~az~...-at, for teN. Its restriction

on Q' is denoted by n and the image n{Ql)-nt(Q{) by Qt.
It is obvious that Qj*Q, and Qt+1-Ql-Q, where
A-B={a-b|aeh, beB}, for A, BSG.

We say that Q is t-free in G if the map ﬂl:Qt—*G is
injection. Note that if Q is t -free in G, then ( 1is
r —free in G for each r<t. It is obvious that QCG is
l-free in G.

The subset () of G is said to be (m+k,m)-subgroup of
G if Q is m—free in G, and for each ueQK. {u}'Qm=UQm=Qm-

Let Q be an (m+k,m)-subgroup of G.

Let H= U Q . i.e. H=n(Q"), and Osp<k be a positi-
azi
ve integer such that m+p=0(mod k). Denote by Q" the set

of inverses of Q in G, i.e. Q '={a '|aeQ}. Then

Proposition 0.1.(see [3,6])(a) H 1s a subgroup of

(b) Q u=uQ =Q , for each ueQQ , s2z21;
m m m sk

(b) Q€Q

m*p*i;

-1
(c) If p>0, then Q CQm*p-:'

1f p=0, then Q 'cQ

m+k-1"

(@ Hg U  U...UQ

m+k-1"

(e) Qm+p is a normal subgroup of H.m

If Q generates G, i.e. if

6=g UgQ,, U...UQ (0.4)

mek-1"
then we say that G is a covering group for the (mtk,m)-
subgroup Q. (The subgroup H of G, above, 1s a covering

group for Q.) If, moreover, G satisfies the condition
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Qir]Qj=0. i, 3e{mm+l; o ., mtk=1}.1=3, (0.5)
then G 1s called the universal covering group for the
(m+k,m)-subgroup Q ([6]). The universal covering group of
Q will be denoted by QY

The following proposition characterizes universal
covering groups of an (m+k,m)-subgroup.

Proposition 0.2.([6]) G 1is a wuniversal covering
group of an (m+k.,m)-subgroup Q iff G is a covering group
of  and k is the least positive integer such that Q is an
(m+k,m)-subgroup of G.®

Let Q be an (m+k,m)-subgroup of a given dgroup
G=(G;). If we define an (m+k,m)-operation [1 on Q by

laT'k]-bT@»n(aT*k

)=r (&]) (0.6)

then the pair (Q,03) is an (m+k,m)—group. We say that
Q=(Q;03) is induced by the (m+k.m)-subgroup Q of G. Con-
versely, [or each (mtk,m)-group Q=(Q;[]) we can construct

a group Q'.such that Q is its (m+k,m)-subgroup, and Q¥ s

the universal covering group for Q (see [2]).

1. A combinatorial construction
of vector valued groups
Let G=(G;o) be a given group generated by a nonemp-
ty set B and let B be m-free in G.

The norm ,||. of the elements of the group G is de-
fined to be the zero homomerphism from G into N, 1i.e.
IXI-O, for each xeG.
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We will define, by induction on a, a chain of sets

FD,F’.....FQ,... and a chain of groups G1. G B

2" T Ta
such that Fa 1s a subset of Ga' Fa is m—free in Ga and Ga
1s generated by Fa'

Let FO-B and GO=G. Assume that we have already con-
struclted the set Fa and the group Ga'

Denote by Rq the set

m+sk m+sk m+sk m
R =(xeG \G_ _ |(Is21) (Fu]"*  e(F ) ) x=m(uy ST IN(F)
Then put F_ =F U (N xR ). and S“+1=GGIJ(meRa) Li.e.
Sd+l is the free product in the class of monoids. The ele-
ment u of Sd+=, u#l, has a unique representation in a ca-
nonical form u ...u where u,#1, and u, and u, are not
i s 1 T i+

in the same component.

Using the canonical form of the elements of the
free product sa+1‘ we can extend the norm on the elements
of SOIH in the following way:

lal is defined already in G, for each acG,.

i l=1+1x1;

=
bu .o l= 3 Hu .
=1

We choose a special subset E of Su’l, whose ele-
ments are called elementary reductions, by defining u to
be an element of E iff it has one of +the two following
forms:

{el) us{l,Xx)...\m,x}, or

(€2) u=(i,%) ...m.x)x ‘(1.2 ...(1-1.x), 1N \{(1}.
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We say that an element VESa*l 18 reducible iff

vV=v'uv", where u is an elementary reduction. Otherwise we
say that v is reduced. The set of all reduced elements of
Sa+1 12 denoted by ba*r

We shall define a reduction, 1.e. a mapping
W=Sa+1*6a+1' by induction on norm as follows:

(0) ¢(x)=x, xeG__ .

LLet @(y) be defined for each ¥ such that Iyﬂ(lx!,
and y satisfies the following condition

oy =y=lon lclyl. (*)

If x has the f[orm x=x'ux", where u 1s an elementary
reduction of the form (el)., i.e. wu=(1,2z)...(m.2) and x' 1is
of the least possible norm, then

(1) e(x)=0(x"2x").

If x=x'ux", x does not contain an elementary reduc-
tion of the form (el). u is an elementary reduction of the
form (e2), and X' 1s of the least possible norm, then

(2) o(xX)=@(x'x").

We will give, next, some properties of the mapping
o.

1.1 (a) © 18 a well defined mapping. and the con

dition (*) is satisfied for each xesa*f

(b) leww i<lul, uesafi, B

(ec) If uan(ur), u er , then there exists an s2l
1 v a+1

=

and UTE[FG+I) such that w(u)-ﬂ(vT} and r=s(modk).

(d) e(x(1l.y)...(m,y)z)=0(xyz), x,2ze5 . yeR .
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(e) ¢(xuyl=¢(xy), where u i1s an elementary reduc-

tion of the form (e2), and x.yESd*“
() o(uvw)=@(ue(v)w), u.v.wesa*r
Proof: The proof of these properties is by induc-

tion on the norm of the elements of S Concidering the

a+t’
fact that on the right hand side of the equations (1) and
(2) of the definition of ¢, ¢ is applied on elements of
SqH with norm less then the norm of x, ¢ 15 a well defi-
ned mapping.

Let x5 . . ¢(x)#x, and ¢(x)=¢(y). where |yl<|x|.
Then, by the inductive hypothesis, we have

lecol=le I<lyl<lxl.

Using the definition of ¢. and Ra, the property (c¢)
can be easily proved.

To prove (d) we need only to concider the case when
x 1is reducible element of the form (el). Let
x=x'(1.¢)...(m, t)x", where x' has the least possible norm.
Then using the inductive hypothesis, and the definition of
¢, we obtain

eix(l,y)...m y)a)=e(x' (1. ¢)...m )x" (1, ¥)...(m, y)z)=

=p(x'tx"(1,y)...(m, y)z)=¢(x'tx"yz)=¢(xyz).

Concidering the following cases:

1. x is reduced, and y does not contain an elementa-
ry reduction of the form (el);

2. x is reduced, but y is reducible of the form
(el);

3. x 18 reducible of the form (el):
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4. x contains an elementary reduction of the form
(e2).
9 se=xtldzt)aslrat)s
Yy, the o (m 8067 (10800 s (-1, E) .
6: xmx"(4,8). <o (m, 87 (1. 8) . @ 1),
(B i BN L 8 e (B B
where r<i,
the definition of ¢ and induction on the norm, we can
easily obtain the proof of (e).
(f) is a consequence of (d) and (e).®

Using the reduction ¢, we define an operation * on

Ga+1 by

x*y=@(xy) .
Then:

1.2° (a) Ga*’-(Gd+’;*J is a group generated Dby
Fdﬂ ;

(b) Fa“ is m—free in Ga+ﬂ

(c¢) Ga is a subgroup of Ga+r
Proof: From the construction it follows that Ga+:
is a monoid generated by Fa+i'

Let (i.x)el"dﬂ. Then

(i,%) '=(i+1,%) ... m,x)x '(1,%x)...(i-1,x).

Thus Ga+1 is a group generated by Fu*f

By the construction of Ga*i. it follows that Gasea+1‘

It remains to prove the property (b}, 1i.e. that

Fa+: is m—free in Gc“.
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Let wu ,v €F ;o and let uX, . fu=yvr ,  *y in
v v a+i 1 m i m
Ga+1‘ Then ¢{ul...um)=¢{vl...vk]. If both u ..eug and
v ...v are reducible elements of ©5 , 1.e. u =(v,x),
1 m a+i v
vv=(v,y}, ven . x.yERa, then we have w(ui...um)=x and

@(vl...v%}=y. i.e. x=y, hence (v.X)=(v.y), vsﬂm.

If u oeuo is reduced and VeV is not. then
vh-lx,y]. and m{v’...vh)-yERa. Thus ”;"‘”mERa' which con-

tradicts the definition of Ra'
If u, v €F , then the claim is true, as F is m—
v v a a
free in GaSGa+u' It remains to concider the case when at
least one u, is an element of Fa*:\Fa' Then there is a

keﬂm, such that wv_€eF \F Let

Aa+t T al
Loa=u oL, i X R T 15 5 SRR | 8 i L.Lu,
u, U =u, uj {1| I)uj o j(lz xé] u (1s xs) uJ
o] o] 1 s-1 S
and
vl...v'm=v’...vl {11,x1}vlw...vl(lz.xz}...vl (Js.x’}...vl
o] o] i s-1 =

where s<m, 0<3j ,1 sm-1, j =1 =m.
o] (s ] s =

As U ..., vo...v are elements of the free pro—

duct of monoids, it follows that

ui...uj Ll'j *2...uj...uj u e T

L e W e v e W
Vl vl Vl +2 1 ¥ L +2 1
o 0 1 s-1 s-1 <

in Ga‘ The products on both, the left and right hand sides
of the equation have m-s elements. Thus, as F is m-free
in Ga' it is m—s—free in Ga’ as well, and we obtain that

U, =Vv.

N AT
m—-free in G .

for every AeN . Hence we have proved that F_ . is



FREE (n,m)-GROUPS 975

a

Let 6= U Ga and F= | F,.
a2o azo

As G i1s a union of a chain of groups it is a group.
Using i1nduction on a, and 1.29, we obtain the following
proposition:

1.3% (a) G=(G:*) is a group generated by F:

(b) F is m—free in G.m

Using the 1.3%°(b) and the operation * defined in G,

we can define an (m+k,m)-operation [] on F by
(U™ )=V"=u *u *. . ru =y kx| Ny (1.1)
1 1 1 2 m+k 1 z2 m
Then

1.4% (a) F=(F:[)) is an (m+k.m)-group.

(b) F is an (m+k,m)-subgroup of G, and G is its co-
vering group.

Proof: (a) follows from (b). Concidering 1.3°, it
remains to prove that
(Vu“,vheF)(Hx.yiﬁ)ui*...*uk*x-v’*...*%f WEHN.
such that X‘Wi*...*h%, y-ti*...*tm, for some wT,tTEF.

1 -1

Let uu,thF be given, and take W&-{T'ux ceeU VL

-1

=1
t = Vivasa S . WX o IR are
s (T, . VoY, u, ). Then x= : A o5 =

elements of G with the required property.m

2. Free (m+k,m)-groups
The construction given in the previous part will be
used to construct a free (mtk,m)-group with a given basis
A. Two cases arise. Namely, if k is a divisor of m, and if

k 18 not a divisor of m. The construction differs only 1in
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¥

the choice of the starting group GD. We will first give a
lemma .

Let F=(F;[]1) be the (mtk,m)-group obtained by the
construction, such that F'=G.

Theorem 2.1°. Let Q=(Q;f1) be an (m+k,m)-—-group,
A:B—0Q a mapping and let there exist a unigque homomorphism
éO:GO—»Qv which is an extension of A. Then there exists a
unique (m+k,m)— homomorphism &:F-—{ which 15 an extension
of .

Proof: By induction on a, we construct a sequence
¢, of mappings from G into Q.

a

Assume that a wunigue homomorphism d;a_l:Ga_l---vQv

*
has already been constructed. As SG=Gq_1LJ(meRa_!) ;

there exists a unique homomorphism {é from Sa into QY

which is an extension of both aa- and the homomorphism My

1
from the free monoid [meRa_t]* into Q", where M, 18 the
unique homomorphique extension of the mapping
{a_l:ﬂmea_{—+Qv, defined by:

Ly 2=, (N,

Define ca to be the restriction of q& on Ga'

Then, by induction on the norm, C&{xlﬂﬁa(m(x)].
which implies that {a is a homomorphism from Ga inte QY,
and by the inductive definipion of qa’ that it is a unique
one with the required properties. If we denote by &' the
homomorphism induced by {a' @20, then the restriction & of

&' over F is the unique homomorphique extension of the

mapping ».R
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As a consequence of this theorem and the construc-—
tion, we obtain a construction of a free (mtk,m)-group
with a basis A,

Theorem 2.2°%(a) If k 18 not divisor of m, and we
choose Go to be the free group with the basis A, then the
(m+k,m)-group F obtained by the given construction is a
free (m+k,m)-group with a basis A ((8]).

(b) If k is a divisor of m, and we choose Go to Dbe
the free product HlJCm, where H is the free group with a
basis A, and Cm is a cyclic group of order m generated by
efA, then the (m+k,m)—-group F obtained by the given con-
struction 1s a free (m+k,m)-group with a basis A ([7]).m

Note that in 2.2°(b) A could be an empty set as
well.

The difference between the case (a) and (b) in the
previous theorem arise from the fact that in (b) the unity
e of the covering group could be written in the form
e ...e. where eteF.

Let Q=(Q;01) be an (m+k,m)-group such that k is a
divisor of m, choose G  to be QY, and using the procedure
given in 1, construct an (m+l,m)-group. Then the (m+1,m)-

group F=(F;[]) thus obtained 1s such that QC€F, and

luT' ln[aT'k], for each a €Q. Thus, we have the following:
Theorem 2.3° (Post theorem for v.v. groups when K
is divisor of m (7)) Let Q=(Q;[]) Dbe an (m+k,m)-group,

such that k 1s divisor of m. Then there exists an (m+l,m)-—
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T 'l s

group P=(P;[3) such that QCFP, and for any G%EQ,
xe(l,2,...,m+sk}, sz21

(a7 )=t 1.m

Finally, let us give some remarks on the cardinali-
ty of the basis of a free v.v. group.

From the construction of the free (m+k.m)--group F
with a basis A, it follows that:

2.4° If the cardinality of A is infinite, then F
and A have the same cardinality.®

2.5° If A and B are equivalent sets, then the free
(m+k,m)—-groups Fﬁ and FB with basis A and B respectively,
are 1somorphic.®

Using the known Fudzivara theorem (({9])) for free
algebras, we obtain the following

2.6° Let F‘ and FB are 1somorphic free (m+K,m)-
groups with basis A and B repectively. If one of the Dbasis
is infinite, then A and B are equivalent.®

The open gquestion is for the case when the basis
are finite. We do not Kknow whether isomorphic free
(m+k ,m) —groups Fa and FB with finite basis A and B have

the property that A and B are equivalent, i.e. have the

same number of elements.
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