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Abstract. A variety of n-groupoids (i.e. algebras with one n-ary operation f) is said to
be a primitive n-variety if it is defined by a system of identities of the following form:
(@i Tigse e 1 ®in) = (503 %igs - Z5a) (=)

Here we give a convenient description of [ree objects in primitive n-varictics, and several propertics
of free objects are also established.

1. Introduction. Identities of the form () are called primitive n-identities,
where we take n to be a fixed positive integer, and iy, j, are positive integers.
We do not make any distinction between two equivalent identities, and that is the
reason why we assume 1 < i,, j, < 2n. A set I of primitive n-identities is said
to be complete if it contains every primitive n-identity which is a consequence of
Y. Everywhere in this paper we suppose that T is a complete system of primitive
n-identities, and we also take n > 2, since for n = 1 the only nontrivial primitive
1-identity is f(z) = f(y), which gives rise to constant unars.

The main results obtained here are the construction of free X-objects with
given basis B and the following theorems, which are corollaries of the obtained
construction.

THEOREM A. A free I-object has a unique basis. O

THEOREM B. Every subobject of a free Z-object is a free E-object as well. [
For any identity () we put I = {i1,...,in}, J = {J1,---,Jn}-

THEOREM C. Assume that there is an identily (*) in X such that INJ = 0.
Ifke{1,2,...,n—1} is the largest integer such that (x) is in & for I = {1} and
Jor every J with |J| < k, then any free L-object with rank k has a subobject with
infintte rank. O

AMS Subject Classification (1991): Primary 11 M 06

1719



1720

148 G. Cupona and S. Markovski

THEOREM D. For every identily (+) in X let INJ # 0 and assume that if ()
isin L for I = {1,2,...,n}, then |J| > 2. Then every free E-object has a subobject
with infinite rank. O

THEOREM E. The word problem is solvable in any primitive n-variety. O

2. Complete sets of primitive n-identities. As we already mentioned in
section 1, we assume that in (*) we have 1 < i), j, < 2n = m for each v. In such
a way the primitive n-identities can be considered as transformations of the set
M ={1,2,... ,m}, i.e. as elements of the set T = M™(= {¢|o: M — M}). Next,
in this paper we will not make any distinction between the sets M™ and M™ x M",
where M™ = {¢|¢: {1,2,... ,n} — M}. Namely, if ¢ € M™ and ¢, pr € M™ are
defined by

er(i) = (i),  ¢r(i) =¢(n +1i)
for each i € {1,2,...,n}, then (pr,¢r) will be considered as another notation
of .

We stress again that we suppose here and further on that X denotes a complete
set of primitive n-identities, where n > 2 is a given integer. By the above agreement,
we also have that EC 7.

Every subset A of T induces a relation ~5, on M" defined by
p~a Y& (p¥) €A
The following completeness theorem is a consequence of a result from [2]:

PROPOSITION 2.1. A subsel A of T is complete iff il satisfies the following
conditions:
(i) ~a s an equivalence relation on M™;
(i1) A is a left ideal in T, i.e. T o A C A, where : denoles the usual superposition
of transformations. O
The following property (shown in [2]) will be used in the next section:

PROPOSITION 2.2. Let &, 7 € & be such thal ker g = kerny, and denote by
T'(&,7n) the set of all elements ( € T which satisfy the following conditions: (¢ = &L
and

£(i) = §(k+n), n(k) =n( +n)=(() =¢(G +n)
for every i k,j € {1,2,...,n}. Then T(£,n) # 0 and T(€,n) C ¥ (and, further-
more, T o T(£,7) CX). O

Given any complete set £ of primitive n-identities, by L[M] we denote the
quotient set M™/~y, and if ¢ € M™, then by [@] € £[M] we denote the corre-
sponding class of equivalent elements. (Further on, we will write simply ~ instead
of ~z.)

For any i € M, let i € M" be defined by i(v) = i for each v € {1,2,...n}.
We say that T is with constant if [1] = [2].
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If ¢ € M™, then the set {¢(1),...,p(n)} is called the content of ¢, and will
be denoted by cnt(y).

ProprosITION 2.3. The following conditions are equivalent:
(i) £ is with constant;
(ii) [i) = [j] for any i,j € M;
(iii) there ezist ¢, n € M™ such that [¢] = [n] and the conlents of ¢ and n are
disjoinl. O
If ¥ is with constant, then any element of [i] is called a E-constant; ¥ is said

to be with absolute constant if £[M] is a singleton. Denote by ¢ the element of
M™ defined by €(v) = v for each v € {1,2,...,n}.

ProprosITION 2.4. The following condilions are equivalent:
(i) £ is with absolute constant;
(ii) ¢ ~ n for any p, n€ M";
(iii) there is a @ € M™ such that € ~ ¢ and € and ¢ have disjoinl contents. O

PROPOSITION 2.5. If € M™ is not a E-conslanl, then there is an 1) € [p]
such that cnt(n) is a subset of ent(¥) for any ¥ € [¢).

(Then we say that 7 is a minimal member of [¢].)

Proof. Since A = {cnt(€)|€ € [¢]} is a finite set, there is an 7 € [¢] such that
cnt(n) is a minimal member in A. Assume that cnt(n) and cnt(n’) are different
minimal members in A. Then cnt(n) N cnt(n’) # B, since ¢ is not a E-constant.
Let i € cnt(n) Nent(n’) and let j € ent(n’)\cent(n). Define ¢ € T by ((j) = ¢ and
C(k) = k for any k # j. Then (o (n,7') = (n,7") € E for some n"” € M™ such that
ent(n”) = ent(n’)\{j}. O

Now we define the notion of the X-content of an element ¢ € M™, denoted by
cntg(yp), as follows. We put cnty(¢) = 0 if ¢ is a X-constant, and cntx(p) = cnt(n)
is ¢ is not a X-constant and 7 is a minimal member of [p]. Note that £ ~ ¢ implies

cnt(€) = cnts(p).

PROPOSITION 2.6. There ezisls a ¢ € M™ such that cntx(yp) is a singleton
iff £ is without constant. O

¥ is said to be essentially k-ary iff |entg(e)| = k.

If ¥ is with constant, then the order of the constant of I is said to be k iff
entg(p) = 0 for each ¢ € M™ such that [ent(p)| < k, and k is the largest such
integer. Therefore we have:

PRrROPOSITION 2.7. The following stalemcnis are equivalent:
(1) T is with absolute constani;
(ii) X is with constant of order n. O
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3. X-objects. Let A be a nonempty set and let £ be a complete set of
primitive n-identities. Define a relation ~5 4 (shortly denoted by ~4) on the set
A" (= {ala: {1,...,n} — A}) as follows:

a~b < (3¢ € X)kerf = ker(a,b)

where a,b € A" and (a,b) € A™ is defined as in the preceding section, i.e.
(a,b)(i) = a(i), (a,b)(i + n) = b(i), for each i € {1,2,...,n}.

The following statement is a corollary from Proposition 1.1 (and its general-
ization as well):

ProprosITION 3.1. (i) ~4 s an equivalence relation. (ii) Ifa~4 b, c5a
transformation of A and co (a,b) = (a’,b’), then a’ ~4 b'. O

Proof. We will give only a sketch of the proof, and we will use the fact that
¥ is a complete set of identities. Let a,b,c € A™.

(i) Then for suitably chosen ¢ € 7 we have kerp(e, ) = ker(a,a), and also if
keré = ker(a,b), then ker(ég,€r) = ker(b,a). The transitivity follows by
using Proposition 2.2.

(ii) If keré = ker (a,b) and c o (a,b) = (a’,b’), then there is a ¢ € 7 such that
ker p€ = ker (a’,b’), and £ € £ implies ¢ € T by Proposition 2.1. O
We denote by £[A] the quotient set A"/ ~,4 and by [a] the class of equivalent

elements of a € A™. (So, [a] = [b]iffa~s b.) TA=M = {1,2,...,m}, then ~4
and ~ have the same meaning as in section 2.

Proposition 2.2-2.6 have obvious generalizations, and we make a summary
below.

(1) |Z[A]| = 1 iff one of the following cases appears: 1.1) [A] = 1; 1.2) X is
with absolute constant; 1.3) |A| < k and X is with constant of order k.

(2) If a € A", then the set cnt(a) = {a(1),...,a(n)} is called the content of
a. If £ is with constant and [cnt(a)| = 1, then the class of equivalent elements [a]
will be denoted by o(¢ A) and called the zero of £[A]. Then we also say that the
T-content of o is empty, and we denote it by cntg(0) = @; moreover, for each ¢ € o
we put entg(c) = 0. Let b € A". If either X is without constant or [b] # o, then in
the family of sets {cnt(c)|c € [b]} there is the least member which will be denoted
by cntx[b] and called the X-content of [b]; in this case we also let entx(c) = cnty[b]
for each ¢ € [b]. And, if d € [b] is such that ent(d) = cntg(d), then we say that
d is a minimal member of [b]. (We note that [b] can contain distinct minimal
members.)

(3) If £ is with constant then |cntg[a]| > 2 for each [a] # o, but if T is
without constant then |cnty:(a)] = 1 for every a € A™ such that [ent(a)] = 1. If Z
is essentially unary then |cntg(a)| = 1 for every a € A™.

(4) If A C B then the canonical mapping from E[A] into X[B] is injective,
and then we can assume that £[A] C I[B], in the following sence: if [a] € X[B]
and cntgfa] C A, then we take [a] € E[A] as well.
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An algebra (A, f) with n-ary operation f (i.e. an n-groupoid) is called a
Z-object if it satisfies all the identities belonging to I.

PROPOSITION 3.2. An n-groupoid (A, f) is a X-object iff
a~s b= f(a) = f(b)

for everya,be A". O
Denote by nat(~4) the natural mapping a — [a] from A" into X[A]. Then
by Proposition 3.2 we have:

PROPOSITION 3.3. An n-groupoid (A, f) 15 a L-object iff there is a uniquie
mapping f:X[A] — A such that f onat(~,) = f. (Certainly, the ezistence of such
a mapping [ implies ils umqueness} O

Now we have a more convenient alternative definition of a -object. Namely,
if f is a mapping from E[4] into A, then the pair (4, f) is called a X-object with
carrier A and operation f. Futher on, by a E-object we > will understand the kind of
structure we have just defined. Thus, for subobjects and homomorphisms we have
the following characterizations:

PROPOSITION 3.4. If A = (A, [) is a X-object and C C A, then C is a
subobject of A iff f(E[C]) C C. O
Thus, any subobject of a X-object is a L-object too.

ProPOSITION 3.5. Lel A = (A, f) and B = (B, g) be T-objects, and lei
h: A — B be a mapping. Then h induces a unique mapping h: £[A] — X[B] such
that h o nat(~4) = nat(~g) o h, and h is a homomorphism from A into B iff
hof=goh O

(We note that h: A — B induces a mapping h(®): A" — B" such that [a] = [b]
in £[A] implies [A®)(a)] = [A(®)(b)] in £[B], and then h([a]) = [a(*)(a)] for each
ag A")

The notion of a partial E-object can be defined as follows. Let A be a nonemp-
ty set, D a subset of £[A] and f a mapping from D into A. Then we say that the
triple (A, D, f) is a partial - object. It can be easily seen that this definition is
compatible with Evans’ definition of partial algebras in a variety of algebras (see
(3], where the words “incomplete” and “a class of algebras V" are used instead of
“partial” and “a variety V”). Furthermore, if (4, D, f) is a given partial T-object
and q a fixed element of A, then if we define g: Z[A] — A by

[ (), e
9(la)) = { . if [a] € T[A)\D'

then (A, g) is a Z-object which is an extension of (A,D, f). Now we can apply the
well known Evans’ result [3, p. 68] “if V is a class of algebras having the property
that any incomplete V-algebra can be embedded in a V-algebra, then the word
problem can be solved for this class” to obtain the proof of Theorem E of section 1.

1723



1724

152 G. Cupona and S. Markovski

4. A construction of free I-objects. Here we will give a construction of
free L-objects with basis B, where B is a given nonempty set. Let (B,|p > 0) be
a sequence of sets defined inductively as follows:

Bu — B, BP'H- = Bp U E[Bp],

and let
F(Z,B) = J(ByIp > 0).
(We will write simply F instead of F(Z, B), when £ and B are known.) By induc-
tion on p one can easily prove that L[F] = F\B.
If u € F and if p is the least number such that u € By, then we say that p is
the hierarchy of u and write x(u) = p. It is clear that if ¥ is with constant, then

x(o) =1

PRrROPOSITION 4.1. Letu € F and let u not be a constanl. Then y(u) =p+1
iff entg(u) = {vy,va,..., v} 1s such that x(vi) < p for each i and x(vj) = p for
some j (i,j € {1,2,...,k}). O

Define an operation f:EZ[F] — F by f(u) = u for each u € I[F]. Then we
have:

PROPOSITION 4.2. (F,[) ts a X-object generaled by the sel B. O

Let (C,g) be an arbitrary I-object and let h: B — C be a mapping. Put
ho = h and suppose that h,: B, — C is a well defined mapping for each r < p
in such a way that h, is an extension of h._;, and if r > 0, x(u) = r, then
he(u) = g o h._y(u), where h,_,: Z[B,_;] — E[C] is defined as in Proposition 3.5.
Now define hp41: Bpy1 — C to be the extension of Ay, such that hpyq(u) = goh,(u)
for each u with x(u) = p+ 1. (Note that if x(u) = p+ 1, then u € Z[B,], and thus
h,(u) € Z[C] is well defined by Proposition 3.5.) In such a way we have defined a
chain of mappings (hy|p > 0), and its union h = [J(hy|p > 0) is an extension of h
and a homomorphism from (F, f) into (C, g) as well. Thus we have the following

THEOREM 4.3. If B is a nonemply sel, then (F, [) is a free object with basis
B. O B

The preceding construction of free T-objects is somewhat obscure, but in
some cases it can be considerably simplified.

Ezrample 4.4. 1If T is with constant and a,b € B, then we have [a"] =
[0"] = o, where o is the zero of F. (Ilere, and later on, a":i + a for each a € A,
i € {1,...,n}.) Clearly, o € B;\B and if ¥ is with absolute constant, then
F = BU{o} and f(u) = o for cach u € £[BU{o0}]. Thercfore, if X is with absolute
constant, then every constant n-groupoid is freely generated by the set of elements
distinct from the constant (i.e. o). We have the same result if £ is with constant,
of order k and |B| < k. (Moreover, if ¥ is with constant, then any one-element
groupoid can be considered as free E-object with empty basis.) O

Ezample 4.5. Assume that ¥ is essentially unar, i.e. for each ¢ € M™ there
isani€ {1,2,...,n} such that (¢,j) € L for j = ¢(i). Then the class of E-objects
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can be viewed as the class of unars. Namely, if (G, h) is a unar and if we define a
mapping g: E[G] — G by g(a) = h(a(i)), then we get a X-object (G,g), and any
Y-object can be obtained in such a manner. Moreover, (G,g) is a free Z-object
with basis B ifl (G, h) is a free unar with basis B. O

We note that a subunar of a finitely generated free unar is finitely generated
too, and thus Example 4.5 shows that the assumptions of Theorem D are essential.

Ezample 4.6. Let n = 3 and let V be a variety defined by the identities

f(z,z,2) = f(z,z,9) = f(y,0,9), f(z,4,2) = f(y,2,2) = f(z,2,9).

If B = {b}, 0 # b and if we put G = {o,b} and g(u,v,w) = o for each u,v,w € G,
then (G, g) is a free object in V with basis B of rank 1. Now, take B = {b,c},b # ¢
and o ¢ B, and define the sets B, inductively by

Bo=BU{o}, Bpy1 =BU{{u,v,w}lu#v#w#u, uv,we By}
Let H = J(Bplp > p) and let
{u,v,w}, fu#v#w#u

o, otherwise

h(u,v,w) = {

Then H = (H, h) is a free object in V with basis B. The subset D of H, where D =
{d;]i > 0} and the elements d; are defined inductively by  do = {o,b,c}, dpy1 =
{o,b,dy} is a basis of infinite rank of the subobject L of H generated by D. O

Ezample 4.7. There exist exactly 6 nonequivalent primitive 2-identities:
Ty = zy, Y = YT, TY = zz, TY = yy, 2z = yy, zy = zw. (Here a usual notation
of identities is used.) One can form 7 primitive 2-varieties, 6 of them being defined
by a single identity of the above ones, and V = Var({zy = yz,zz = yy}). In the
variety V we can describe a free object with nonempty basis B by F = |J(B,|p >
0), where By = B, By = BU {0} U {{u,v}{u,v € B,u # v}, o ¢ B, and
Bpy1 = By U{{u,v}{u,v € By,u# v} whenp>1. 0

5. Some properties of free X-objects. Here we will give proofs of Theo-
rems A, B, C and D of section 1. Although one can prove these theorems by using
an induction on hierarchy, we will rather use the ideas involved in [1].

Assume that G = (G, g) is a Z-object. An element a € G is said to be prime
in G if a # g([b]) for any [b] € £[G]. If £ is with constant, then each element of
G is said to be an improper divisor of the zero o € E[G]. If ¢ € G is nonzero and
nonprime element, then there is a [b] € £[G] such that ¢ = g([b]), and let a be a
minimal member of [b]. Then each element d € cnt(a) = cntg[a] is called a proper
divisor of ¢. A sequence (finite or infinite) of elements ay,az,... of G is said to be
a divisor chain in G ifl for every 7 > 1 a; is a proper divisor of a;_;.
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Now we have another characterization of free -objects:

THEOREM 5.1. A Z-object H = (H,h) is a free E-objecl with a nonemply

basis B C H iff the following condilions hold:

(i) B is the set of prime elements in H.

(ii) If c € H is nonprime, then there is a unique [b] € X[B] such that c = h([b]).
(iii) Every divisor chain in H is finite.

Proof. 1t is clear that (F, f) satisfies (i), (ii) and (iit).

Conversely, if H satisfies (i), (ii) and (iii), then it is easy to show by induction
on hierarchy that there is an isomorphism g: (F, f) — (H, k) such that g(b) = b for
each b€ B. O

Now, Theorem A is a direct consequence of Theorem 5.1, for the set of prime
elements of a free £-object is its unique basis. (We should emphasize here that we
do not need Theorem 5.1 to prove Theorem A, since it follows directly from the
definition of primitive n-identities.)

Assume that G is a subobject of (F,f). The set of prime elements in G
(considered as a T-object) is empty only if ¥ is with zero and G = {0}, and then
G is free with an empty basis. If the set C of prime elements in G is nonempty,
then C is a basis of G, since conditions (ii) and (iii) of Theorem 5.1 are hereditary.
This completes the proof of Theorem B.

Now, let ¥ be with constant of order k¥ < n, and let B = {ay,aa,...,a;}.
Then By = B U {o} and cntg(alag...ago“"‘) = {ay,ay,...,ar,0}. Consid-
er the subset C = {c1,¢2,...,¢p,...} of F, where ¢; = [a1...az0" %], cpy1 =
[a...axch~*]. Let Q be the subobject of (F, f) generated by C. Clearly, C is the
set of prime elements in Q. (Namely, ¢, is a divisor of ¢p41 in F7, but this does
not hold in @.) This completes the proof of Theorem C, since the conditions for X
stated in Theorem C show that I is with constant of order k.

It remains to show Theorem D. First we note that the assumption in this
Theorem can be expressed by |entg(g)| = k > 2. Take ¢ to be a minimal member
in [¢], and i € cntg(p). Let B be a nonempty set, b € B and define a sequence
ay,Q,...,8, by a3 = b, a;4y = [a7] for 0 < i < n, and an infinite sequence
1,62, ,Cpy... by €1 = @p, cpy1 = [@102...ai-1€pGi41 .. .an]. Then a; # a; for
i# j and ¢, # ¢, for r # 5. This implies that C = {c,|r > 1} is an infinite basis of
the subobject @ of (F, f) generated by C.
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