4. Some properties of the functors (k) in V

The proofs of the following three statements are obvious.

Proposition 4.1.
$$G \in V \Rightarrow G^{(k)} \in V$$
. \square

Proposition 4.2. If $G = (G, \cdot)$, $S = (S, \cdot) \in \mathcal{V}$ and $\varphi: G \to S$ is a homomorphism from G into S, then $\varphi: G^{(k)} \to S^{(k)}$ is a homomorphism from $G^{(k)}$ into $S^{(k)}$ as well. \square

Thus for every, $k \geq 0$, (k) is a functor in \mathcal{V} .

Proposition 4.3. If
$$k, n > 0$$
 and $G \in \mathcal{V}$, then $(G^{(k)})^{(n)} = G^{(kn+n)}$. \square

Below we assume that **H** is a V-free groupoid, with the basis B, and that k is a positive integer. The subgroupoid of $\mathbf{H}^{(k)}$ generated by B will be denoted by \mathbf{Q} . Also (i), (ii), (iii) and (iv) are the conditions stated in Th. 2.

The following statements 4.4-4.6 are obvious or they can be easily shown.

Proposition 4.4. If $x, y, u, v \in H$, then:

$$x(k)y = u(k)v \Leftrightarrow xy = uv$$
. \square

Proposition 4.5. If $k \geq 1$, then B is a proper subset of the set P of primes in $\mathbf{H}^{(k)}$.

(Each element $b \in B$ is prime in $\mathbf{H}^{(k)}$, and for every $u \in H$, $b \in B$, we have $ub \in P$, $ub \notin B$.) \square

Proposition 4.6. $\mathbf{H}^{(k)}$ satisfies (i), (ii) and (iii) of Th. 2, but for $k \geq 1$, $\mathbf{H}^{(k)}$ is not V-free.

(Namely, if $b \in B$, then: $b^2b(k)b^2b = (b^2)^2(k)b^2$, $(b^2)^2 \neq b^2$, but b^2 is a prime in $\mathbf{H}^{(k)}$, for k > 1. Thus $\mathbf{H}^{(k)}$ does not satisfy (iv).) \square

In order to complete the proof of Th. 4, first we will show the following

Lemma 4.7. If $x, y, z \in Q$, $y \neq z$ and $x^2 = yz$, then there exist $\gamma, \delta \in Q$ such that $\gamma \neq \delta$ and $x = (\gamma \delta)^{(k)}$.

Proof. The equality $x^2 = yz$ implies that $[yz] \ge 1$, and (by (2.5)) we have $[y], [z] \ge 1$ and $x = (yz)^{(-1)} = y^{(-1)}z^{(-1)}$. Thus: $x \in Q \setminus B$, and so there exist $\gamma, \delta \in Q$ such that $x = \gamma(k)\delta = (\gamma\delta)^{(k)}$. It remains to show that there exist different γ, δ with the above property.

Contributions, Sec. Math. Tech. Sci., XVII 1-2, 1996 5-17