Define $x^{(k)}$, for $k \geq 0$, by:

$$x^{(0)} = x$$
, $x^{(k+1)} = (x^{(k)})^n$. (5.3)

Note that (5.3), for n=2, coincides with (0.1).

As before, $\mathbf{F} = (F, \cdot)$ denotes a free groupoid with the basis B. Since the implication $x^k = y^m \implies x = y, \quad k = m$ (5.4)

is true in \mathbf{F} , the mapping $x \mapsto x^{(m)}$ is an injective transformation of F. Thus we can define $x^{(-k)}$ and [x], as in the special case n=2.

It is easy to show that (1.2)-(1.6), L. 1.1 and L. 1.2 are true for any $n \ge 2$.

Now we will define F_n as the least subset of F such that $B \subseteq F_n$ and: $vw \in F_n \Leftrightarrow$

$$[(w \in F_n, v = \overline{w}^{n-1}) \text{ or } (v, w \in F_n \text{ and } \min\{[v], [w]\} = 0)].$$
 (5.5)

Therefore, $F_2 = R$ where R is defined by (0.3). Note that the implication $vw \in F_n \Rightarrow v$, $w \in F_n$, for $n \geq 3$, is not true. (For example, if $b \in B$ and n = 3, then $b^{(2)} = (b^3)^2 \cdot b^3 \in F_3$, but $(b^3)^2 \notin F_3$.)

The following statement is a generalization of Th. 1.

Theorem 1'. $\mathbf{F}_n = (F_n, *)$ is a \mathcal{V}_n -free groupoid with the unique basis B. Here:

$$u * v = \left(u^{(-m)} v^{(-m)}\right)^{(m)},$$

where $u, v \in F_n$ and $m = \min\{[u], [v]\}$. \square .

This generalization is obtained by substituing R by F_n . The situation with the other theorems is similar, except with Th. 4. Namely, the definition of the operation (k), given by (0.6), does make sense for $n \geq 3$ also, but it is easy to show that $\mathbf{F}_n^{(k)} \notin \mathcal{V}_n$, for $n \geq 3$.

The statements (ii), (iii) and (iv) of Th. 2, in the formulation of Th. 2' (besides the substitution of V by V_n), obtain the following forms:

(ii')
$$x^n = y^n \Rightarrow x = y$$
.

(iii')
$$xy = uv$$
, $x \neq y^{n-1}$, $u \neq v^{n-1} \Rightarrow x = u$, $y = v$.

(iv')
$$x^n = yz$$
, $y \neq z^{n-1} \Rightarrow (\exists u, v)x = uv$, $y = u^n$, $z = v^n$.

According to Th. 3', note that if **H** is a \mathcal{V}_n -free groupoid and if **Q** is the subgroupoid of **H** generated by $A = \{a_p | p \ge 1\}$, where $a_p = b^{n+p}$ (b is an element of the basis B), then A is the basis of **Q**. Therefore, **Q** has an infinite rank. If \mathbf{S}_p

Contributions, Sec. Math. Tech. Sci., XVII 1-2, 1996 5-17