SPHERICAL ISING MODEL WITH TEMPERATURE-DEPENDENT
COUPLING

Viktor Urumov

Fakultet za Fizika, Univerzitet Kiril i Metodij,
Gazi Baba, Skopje 91000, Yugoslavia

The problem of the evaluation of the critical-point exponents is cer-
tainly one of the most interesting problems of statistical mechanics. The
theoretical effort is mainly concentrated on the series expansion method
and the sio-called e-expansion.

Recently Krizan (1973) suggested to consider the problem of the
critical-point exponents of an Ising model within the framework of mole-
cular field theory. On a phenomenological basis a temperature-dependent
term is added to the usual Ising Hamiltonian. An example of temperature-
dependent interaction is the Debye-Hiickel potential in the theory of electro-
lyte solutions.

The Hamiltonian introduced by Krizan is given by
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where s, is the spin on the lattice site i, J is the exchange integral (J > 0)
between the nearest neighbours on the lattice and ¢’ is the temperature-depen-
dent coupling. It is defined by
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where ¢ is a constant, kj is the Boltzmann constant, 7, is the critical tempe-
rature, p is a parameter and ¢ = 1 — T/T,. Krizan finds the critical-point
exponents from the molecular field theory as functions of p, which is then
selected in such a way that the Rushbrooke relation (Stanley, 1971) holds
as an equality, namely
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In this manner the following critical-point exponents are obtained
«’ =1/3, = 1/3 and y'=1 while the parameter p is set equal to 1. These
critical-point exponents differ from the results of the classical theories, Ho-
wever, although they satisfy (3), they are not in agreement with another re-
sult of the scaling hypothesis, namely y'#B (8 — 1), where 8§ = 3 in the
mean field theory.

In the fo]lowmg we introduce a temperature-dependent coupling
of the form (2) in the sphencal model of a ferromagnet (Berlin and Kac,
1952). The constraint on the spin variables is given by
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where N is the number of lattice sites. If an external field B is applied, we
should add a term
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to the Hamiltonian (1).

The spherical model has been solved exactly by Berlin and Kac and
it shows a phase transition in three dimensions, in the absence of an external
field. The temperature- dependent interaction &' will not destroy the phase
transition because it is identically equal to zero above the critical temperature.

The Helmholtz free energy found by Berlin and Kac is given by
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The parameter z, is the saddle pomt of the steepest descent evalua-
tion of the partition function. It is given by the solution of
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Knowing the Helmholtz free energy we can obtain the magnetization
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the isothermal susceptibility
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and the specific heat
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The results (9—11) are obtained using the definitions of M, y, cp
and the equation (8) which is satisfied by z,.

To obtain the critical-point exponents we need to know the -behaviour
of z, as a function of ¢ when the critical point is approached. It is easy to see,
graphically analyzing (8) that when 7—0, the solution z,—3. Because we are
interested in the region close to the critical point, we shall solve (8) approxi-
mately in the limit #—0. Hence, we represent the solution of (8) in the form

zg =3+ A7 1+ 0 )] (12)

where A4, x, y are constants to be determined.
In the region close to the critical point (z,—3) the following expansion
of f3(2) derived by Berlin and Kac (1952) is applicable
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Using this expansion and substituting (12) and (2) in (8) we obtain
the following equation (B == 0)
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The type of the solution of (14) is a function of the parameter p. A
quite straightforward analysis leads to the following result
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and A, is the solution of
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Inserting the solution (15) and the assumption (2) in (9), (10) and
(11) we find that the critical-point exponents are given by

o= max(0,1 —x, 1 — % 2 3% 2+x—2p) (16)
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with x to be taken from (12) and (15).
The examination of «' leads to
_ o 0<p< s
“r — 5 3 (19)
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In the case when p << 5/3, the dominant term in the specific heat is
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and because cj; is a positive quantity, we find that p must be greater than

25/26. When p > 5/3, ¢ tends to—%"i— when ¢ > 0.

Using the solution of (12) we can obtain also the critical exponent
describing the behaviour of the correlation length. The correlation function
for the simple cubic lattice was derived by Berlin and Kac (1952) and it reads
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which asymptotically, as r-»oc, behaves as (Joyce, 1972)
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where k, is the inverse correlation length
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Thus the critical exponent v’ is equal to x/2 and finally we can make
the following table of the critical indices

Table I
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For completeness we quote the remaining critical exponents (Stanley,
1971)
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We can easily check that the critical-point indices as given by the
first row of table I satisfy a set of relations which are given below
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However, at the same time y % v'. If p>5/3 not all the relations (21)
are satisfied. Hence, we conclude that,the temperature-dependent coupling
in the spherical Ising model leads to critical-point exponents which automa-
tically satisfy some of the relations which follow from the scaling hypothesis
or other assumptions.

A symmetrical to &' term which is nonzero above the critical tempe-
rature will give rise to critical exponents for « and y which satisfy o = o
and y = ¥', but at the same time would give nonvanishing magnetization
above T,.

It is interesting to note that for p = 25/16 from table I one obtains
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which are the best, estimated values from seris expansions for the critical-
point exponents of the three-dimensional Ising model (Domb, 1974). When
= 5/3 one gets
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and the exponent 8 = 1/3 allows to make the same fit to the experiments
as reported by Krizan (1973).
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For further work one can attempt to analyze the critical behaviour
of an antiferromagnet (Mazo, 1963) or the surface effects (Watson, 1972)
when a temperature-dependent coupling is assumed. Above all it would be
desirable to find a mechanism for such an interaction. '
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ABSTRACT

In the spherical Ising model a temperature-dependent term of the
form — ¢’ Zsi is introduced, where ¢'= ckg T, (1 —T/T,)? when T < T,

and ¢’= 0 when T > T,, while p is a parameter. The critical-point exponents
«', B, ¥ and v’ are calculated exactly using the solution of Berlin and Kac
(1952). It is found that when 25/26 < p < 5/3, from the expressions for the
critical exponents follow many of the relations which are otherwise deri-
ved from the scaling hypothesis.




