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GROUPOID POWERS
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Abstract

The following statement is the main result of the paper.

If V is the variety of groupoids (commutative groupoids), or V
is the variety of n-idempotent groupoids (commutative n-idempotent
groupoids), i.e. groupoids (commutative groupoids) with an axiom
z™t1 = 2, n > 2, then the monoid of powers is free with a countable
infinite basis.

0. .Preliminariés

A pair G =G, "), where G is a nonempty set, and -: (z,y) — zy a
mapping from G2 into G, is called a groupoid. A groupoid G = (G,-) is
said to be injective iff

(w0 € Q) =w= @) = (W),  (01)

An element a € G is prime in G ! iff

(Vz,y € G) a # zy. | (0.2)

! The notions as subgroupoid, semigroup, monoid, generating set, homomorphism,
variety of groupoids, ... have usual meanings.
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We note that by a ”free groupoid” we mean "free groupoid in the
variety of groupoids” (i.e. an ”absolutely free groupoid’). Recall that the
following Theorem of Bruck characterizes free groupoids ([1; L.1.5]).

Theorem 0.1. A groupoid F' = (F,-) is free iff it satisfies the following
conditions: .
(i) F 1is injective,
(1) The set B~ of primes in F is nonempty and generates F'.
(In that case B is the unique free basis of F'.)

Throughout the paper we denote by F' a free groupoid with the basis
B, and t,u,v,...,a,(,... elements of F.

For any v e Fwe define the length |v| of v and the set P(li) of parts of
v in the followmg way:

bl =1, feul =+ |ul, 03)
P®) = {b}, P(tu)={tu} UP(t)UP(u), (0.4)

for any b € B, t,u € F.

1. Groupoid powers

From now on. we will denote by E = (E,-) a free groupoid with a
one-clement basi- {€]. The clements of E will be denoted by f, g, h
and called groupui(l powers. Note that E is a countable infinite set.

If G = (G,-) is a groupoid, then each f € E induces a transformation
f€ of € (called the interpretation of f in G) defined by:

L — e g g

fG(z) i (Pa:(f) ,

where ,: E — G is the homomorphism from E into G such that ¢ (e) = z.
In other words

PRI

C@) =z (1)%e) =r%@)r@), (1.1)

for any f,h € E, z € G. (We will usually write f(z) instead of fG(:I.‘)
when we work with a fixed groupoid G.)

By induction on lenght, for any f,g € E, t,u € F, the following
statements can be shown. (Most of these results are stated in [4], as well.)

Proposition 1.1. |f(t)| = |f||t|]. O

Proposition 1.2. t € P(f(t)). O
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Proposition 1.3. (Vn € N)(f(t))" = f*(t). O
Proposition 1.4. f(t) =g(u) & |t|=|u| & (f=g & t=u). O

Proposition 1.5. f(t) = g(u) & |t| > |u] & (3!h € E)(t = h(u) &
g="()). 0

Corresponding translations (0.3), (0.4') and Prop.1.1’~Prop.1.5" (for
I) of (0.3), (0.4) and Prop.1.1-Prop.1.5 are obvious and we will not state
them explicitely.

We define an other operation "o” in E by:

fog=17(g). | . (1.2)

So, we obtain an algebra (E,o,-) with two operations, o and -, such
that -
eog=goe=g, (fif2)og=(fiog)(f209),

for any g, f1, fo € E.
Using (1.1), (1.2) and Prop.1.4, one can show the following proposition.

Proposition 1.6. (E,o, e) is a cancellative monoid. O
A power f € E is said to be irreducible iff
f#e& (f=goh=g=ce orh=c¢). (1.3)
The proofs of the following propositions are obvious.
Proposition 1.7. If the length |f| of f is a prime integer, then f is
irreducible. 0 R o e e

Proposition 1.8. Ifp,q € E are irreducible and fop=hogq, then
=handp=gq. 0O
f and p = q (OT‘A )

Proposition 1.9\ For every f € E \ {e} there is a unique
sequence py,pa,...,pn of irreducible elements in E such  that
J=propgo...op,. o -

By Prop.1.6, 1.7 and Prop.1.9 it follows:

'; hpl‘opOSltlon 1.10. The monoid (E,o,e) is free with a countable infi- ?
\nite basis. (The set of irreducible powers is the basis of the monoid.) O /

T HVisa variety of groupoids, then we denote by@v = (Ev,-\);a free
groupoid in V, with a one-element basis {e}. The elementsof Ey can be
considered as powers in groupoids of V. Namely, for every G € V, and
f € Ey, we can define a transforma{ion f G, as an interpretation of f; we

say that f& is a%z“in c. [ Yacq) (Q>:§ $,§(qj \ #GE 3]
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In the case of the variety of commutative groupoids, we can use the cor-
responding Bruck Theorem, modifying the notion of an injective groupoid.
Namely, if G is a commutative groupoid such that

_ (Vm,y, u,v € G) (:zy =uwy < {z,y} = {u,v}) - (1.4)

we say that G is injective in the variety of commutative groupoids. We
will not formulate Bruck Theorem for commutative groupoids, because it
is formally the same as Th.0.1.

Further on, in the paper, we denote by F, = (F,, -) a free commutative
groupoid with the basis B; also, E. = (E,, ) is a free commutative groupoid
with a one-element basis {e}.

We assume the definitions (0.3), (0.4), (1.1)-(1.3), replacing F, E by

F., E. respectively, as definitions (0.3.), (0.4¢), (1.1.)—(1.3.) for the cor-

' responding notions in commutative groupoids. Then, the Pr.1.1-1.10, re-

placing F, E by F., E. respectively, become Pr.1.1.~1.10. , which hold

for commutative groupoids. (We will not formulate explicitly the Pr.1.1.~

1.10., because they are formally the same as Pr.1.1-1.10.) By Pr.1.10 and
Pr.1.10, it follows:

Proposition 1.11. The monoids (E,o,e) and (E,,o0,e) are isomor-
phic. O

We will end this part with a short discussion about the number £(n)
of elements in the set

{f e B:\fl=n}, (15)
and the number ¢.(n) of elements in the set
{f € Ec:|f|=n}. (1.6)

Since the groupoid E is injective and e is a prime, we obtain that
(1) = 1, and that for any n > 2, the following relation holds

n

)= eW)n-k). | (1.7)

k=1

By a result of P.Hall (see for example: [2], III 2, Ex.2, p.125), one
obtains the following result:

e(n) = (2n —2)!/((n — 1)In!). ? (1.8)

2 Consider the power series 0(z) = €12 + €222 + - -+, where en = £(n). One can
show that o(z)? — aSa:! + z = 0, which implies 20(z) = /T — 4z. Then, using the

binomial series for /1 — 4z, one obtains (1.8).
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Because of the commutativity of E., one obtains that e.(1) = e.(2) =
ec(3) = 1, and that for each n > 1, the following relations hold

ec(2n) =Y ec(k)ec(2n — k), (1.9)

k=1

n

ec(n+1) = Zs((k,)gc@n +1-k). (1.10)

k=1

But we do not know any ”elementary function” which expresses e.(n)
as (1.8) expresses g(n).

2. Powers in n-idempotent groupoids

Let V(™) be the variety of groupoids with the a\.lomL,"Jrl TJ where
n > 1. Y is the variety of idempotent groupoids, and thus E(V) = {e}
is a one-element set; this implies that the monoid (E(l),o,e) is free with
empty basis.

Below, we assume that {n > Q[and we will write E() instead of Evn).

By the main result of [3] it follows that the monoid E™ is defined as
follows: ST IR NPT . e
| B < (s em|(oe g ¢ P @)

S

B (

(Vg€ EM)[(foeg=fg if fge _E(”) & (feg=g il f= g’")]-f/ (2.2)

The main result of this section is the following statement.

1

\ " Proposition 2.1. For eachn > 2, (E™ o, e) is a free monoid with an
\infinite basis, and the basis consisls of the 77veduuble elements of E which
belong to I"(“ e : : -

In order to prove Prop.2.1, we will use some lemmas.
Lemma 2.2. (Vf € E)f € E™ = P(f) C EM.

Proof. This is an obvious corollary from (2.1) and the definition
of P(f). O

3 For k € N, z* have the usual meamng, ie. a:l =z, m’”+1 = zky.
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Lemma 2.3. (Vf,g€ E)(fog€ E™ = {f g} C EM™,

Proof. Assume fog € E™). Clearly, if e € {f, g}, then {f,g} C EM,
Thus we can assume that |f| > 2, |g| > 2. Moreover, by L.2.2, g € P(fog)
implies g € E(™). We have to show that f € E(™), as well. If f = f1fo, then
(f109)(f209) = fog € EM), and by L.2.2, this implies { fy0g, fo09} C E™;
by induction on length we obtain {f1, fo} € E(™. Then f ¢ E(™ implies
f1 = f7, and then we would have

fog=(fif2)og= (3t og=(fa09)"" ¢ E™,
a contradiction. O

Lemma 2.4. E™ is a submonoid of (E,o,e).

Proof. From (2.1) it follows that e € E(™. Let f,g € EM™. If f = ¢,
then fog = g € E(™), and thus we can assume that f = f;fs, where
f1, fo € E™). Assume fy0g, fo0g € E™, but

fog=(fiog)(f209) ¢ E™.

Then f; 09 = (foo0g)" = f3 og, and this (because of the cancellative
law) implies f; = f7', which is impossible, for then we would have

f=ftteEm™. 0O
As a corollary of L.2.3, we have:

Lemma 2.5. If f € E™ and f = f10 fa0...0 fp, then
flvf?v"-,fn EE(n). O g

Lemma 2.6. If p € E™ is irreducible in E, then p is irreducible in
E™ aswell. 0O

Lemma 2.7. The set of irreducible elements in E™ s infinite.

Proof. If ¢ = €2, gx41 = eqk, then {q1,92,-.-, 9k, qk+1,---} = Q is
an infinite set of irreducible elements in E™. Namely, from |gx| = &k + 1,

it follows that @ is infinite. A
Also, from (2.1) and n > 2, we have ¢; € EM.  Assume that

gk € E(™). Then e? # gy, which implies that g1 € E™). Thus Q C E™).

It remains to show that the elements of Q are irreducible. Namely,
by Prop.1.7, q; is irreducible. Let ¢1,g2,...,qp, for any integer p < k, be
irreducible. Assume that gx4+1 = f o g, where f,g € EM fde g#e
Then, eqx = fog = (f109)(f209), i.e. e = fi0g, which is impossible. O

Fiixally, Prop.2.1 is a corollary of L.2.3-L.2.7. O
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As usual, by Vé"') we denote the variety of commutative groupoids in
V() The corresponding groupoid Egn) € Vc(n) can be defined by (2.1,)
and (2.2.), replacing £(™ in (2.1) and (2.2) by ES and E by E..

In the same maner we obtain Lemmas 2.2,~2.7.. We only need a
modification in the proof that the set of irreducible elements in (Eﬁ"’, 0,e)

k+1

is infinite. Namely, in Eg"') we have g, = e"7", and therefore (for example)

qn ¢ Ec"). But we can obtain an infinite set of irreducible elements in EE,"‘).
as follows:
95
p1=¢e(e?)?, pry1=ep.
Thus we would obtain the following, analogy of Prop.2.1.-
Proposition 2.1.. For each n > 2, (E((;n),o,c) 1 a free monoid with
an infinite basis, and the basis consists of the irreducible elements of I,

which belong to Eﬁ"). 0
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I'PYIIOMNIHM CTEIIEHU

I'oprn YUynona*, Haym llenakockn™*, Crexana Wamk ***

Peszume

CunensoTo TBpAeme € rJlaBeH pe3yJTaT Ha paborasa.

Axo V e mHOryo6pasuero rpynouiu (KOMyTaTMBHM TpPyNOWIM),
miau V e MEOryoGpa3neTo o n-MAeMIOTeHTHN rpynonau (KOMyTaTUBHM
n-MAEMIOTEHTHU T'PYNOMIM), T.e. TIpynouau (KOMyTaTMBHM T'PYNOM-
mm) co akcuomara z"t! =z, n > 2, Toram MOHOMIOT OJ CTeneHu e
cnobonaen co Geckoneuna npedbpojauBa Gaza.

* Macedonian Academy of Sciences and Arts
P.O. Box 428, 1000 Skopje,
Republic of Macedonia

** Faculty of Mechanical Engineering
P.O. Box 464, 1000 Skopje,
Republic of Macedonia

*** Faculty of Sciences, University of Nis
SR Yugoslavia '

2019



