Математички Билтен

ISSN 0351-336X

25 (LI)

2001 (5-12)

Скопје, Македонија

GROUPOID POWERS

Gorgi Čupona*, Naum Celakoski**, Snežana Ilić***

Abstract

The following statement is the main result of the paper. If $\mathcal V$ is the variety of groupoids (commutative groupoids), or $\mathcal V$ is the variety of n-idempotent groupoids (commutative n-idempotent groupoids), i.e. groupoids (commutative groupoids) with an axiom $x^{n+1}=x,\,n\geq 2$, then the monoid of powers is free with a countable infinite basis.

0. Preliminaries

A pair $G = (G, \cdot)$, where G is a nonempty set, and $(x, y) \mapsto xy$ a mapping from G^2 into G, is called a *groupoid*. A groupoid $G = (G, \cdot)$ is said to be *injective* iff

$$(\forall x, y, u, v \in G) (xy = uv \Rightarrow (x, y) = (u, v)). \tag{0.1}$$

An element $a \in G$ is prime in G^{-1} iff

$$(\forall x, y \in G) \ a \neq xy. \tag{0.2}$$

¹ The notions as subgroupoid, semigroup, monoid, generating set, homomorphism, variety of groupoids, . . . have usual meanings.

We note that by a "free groupoid" we mean "free groupoid in the variety of groupoids" (i.e. an "absolutely free groupoid"). Recall that the following *Theorem of Bruck* characterizes free groupoids ([1; L.1.5]).

Theorem 0.1. A groupoid $F = (F, \cdot)$ is free iff it satisfies the following conditions:

- (i) F is injective,
- (ii) The set B of primes in F is nonempty and generates F. (In that case B is the unique free basis of F.)

Throughout the paper we denote by F a free groupoid with the basis B, and $t, u, v, \ldots, \alpha, \beta, \ldots$ elements of F.

For any $v \in F$ we define the <u>length</u> |v| of v and the <u>set</u> P(v) of parts of v in the following way:

$$|b| = 1, \quad |tu| = |t| + |u|,$$
 (0.3)

$$P(b) = \{b\}, \quad P(tu) = \{tu\} \cup P(t) \cup P(u), \tag{0.4}$$

for any $b \in B$, $t, u \in F$.

1. Groupoid powers

From now on, we will denote by $E = (E, \cdot)$ a free groupoid with a one-element basis $\{e\}$. The elements of E will be denoted by f, g, h, \ldots and called *groupoid powers*. Note that E is a countable infinite set.

If $G = (G, \cdot)$ is a groupoid, then each $f \in E$ induces a transformation f^G of G (called the *interpretation* of f in G) defined by:

$$f^{\mathbf{G}}(x) = \varphi_x(f) \,,$$

where φ_x : $E \to G$ is the homomorphism from E into G such that $\varphi_x(e) = x$. In other words

$$e^{\mathbf{G}}(x) = x, \quad (fh)^{\mathbf{G}}(x) = f^{\mathbf{G}}(x)h^{\mathbf{G}}(x),$$
 (1.1)

for any $f, h \in E$, $x \in G$. (We will usually write f(x) instead of $f^{G}(x)$ when we work with a fixed groupoid G.)

By induction on length, for any $f, g \in E$, $t, u \in F$, the following statements can be shown. (Most of these results are stated in [4], as well.)

Proposition 1.1. |f(t)| = |f||t|. \Box

Proposition 1.2. $t \in P(f(t))$.

Proposition 1.3. $(\forall n \in N)(f(t))^n = f^n(t)$.

Proposition 1.4. $f(t) = g(u) \& |t| = |u| \Leftrightarrow (f = g \& t = u)$.

Proposition 1.5. $f(t) = g(u) \& |t| \ge |u| \Leftrightarrow (\exists! h \in E)(t = h(u) \& g = f(x))$. \Box

Corresponding translations (0.3'), (0.4') and Prop.1.1'-Prop.1.5' (for E) of (0.3), (0.4) and Prop.1.1-Prop.1.5 are obvious and we will not state them explicitely.

We define an other operation " \circ " in E by:

$$f \circ g = f(g). \tag{1.2}$$

So, we obtain an algebra (E, \circ, \cdot) with two operations, \circ and \cdot , such that

$$e \circ g = g \circ e = g$$
, $(f_1 f_2) \circ g = (f_1 \circ g)(f_2 \circ g)$,

for any $g, f_1, f_2 \in E$.

Using (1.1), (1.2) and Prop.1.4, one can show the following proposition.

Proposition 1.6. (E, \circ, e) is a cancellative monoid. \square

A power $f \in E$ is said to be *irreducible* iff

$$f \neq e \& (f = g \circ h \Rightarrow g = e \text{ or } h = e).$$
 (1.3)

The proofs of the following propositions are obvious.

Proposition 1.7. If the length |f| of f is a prime integer, then f is irreducible. \Box

Proposition 1.8. If $p, q \in E$ are irreducible and $f \circ p = h \circ q$, then f = h and p = q. \Box

Proposition 1.9. For every $f \in E \setminus \{e\}$ there is a unique sequence p_1, p_2, \ldots, p_n of irreducible elements in E, such that $f = p_1 \circ p_2 \circ \ldots \circ p_n$.

By Prop.1.6, 1.7 and Prop.1.9 it follows:

Proposition 1.10. The monoid (E, \circ, e) is free with a countable infinite basis. (The set of irreducible powers is the basis of the monoid.)

If \mathcal{V} is a variety of groupoids, then we denote by $E_{\mathcal{V}} = (E_{\mathcal{V}}, \cdot)$ a free groupoid in \mathcal{V} , with a one-element basis $\{e\}$. The elements of $E_{\mathcal{V}}$ can be considered as powers in groupoids of \mathcal{V} . Namely, for every $G \in \mathcal{V}$, and $f \in E_{\mathcal{V}}$, we can define a transformation f^{G} , as an interpretation of f; we say that f^{G} is a \mathcal{V} -power in G. $A = \{f^{G}(a) \mid f \in E\}$.

In the case of the variety of commutative groupoids, we can use the corresponding Bruck Theorem, modifying the notion of an injective groupoid. Namely, if G is a commutative groupoid such that

$$(\forall x, y, u, v \in G)(xy = uv \iff \{x, y\} = \{u, v\}), \tag{1.4}$$

we say that G is *injective* in the variety of commutative groupoids. We will not formulate Bruck Theorem for commutative groupoids, because it is formally the same as Th.0.1.

Further on, in the paper, we denote by $F_c = (F_c, \cdot)$ a free commutative groupoid with the basis B; also, $E_c = (E_c, \cdot)$ is a free commutative groupoid with a one-element basis $\{e\}$.

We assume the definitions (0.3), (0.4), (1.1)–(1.3), replacing F, E by F_c , E_c respectively, as definitions (0.3_c) , (0.4_c) , (1.1_c) – (1.3_c) for the corresponding notions in commutative groupoids. Then, the $\Pr.1.1$ –1.10, replacing F, E by F_c , E_c respectively, become $\Pr.1.1_c$ – 1.10_c , which hold for commutative groupoids. (We will not formulate explicitly the $\Pr.1.1_c$ – 1.10_c , because they are formally the same as $\Pr.1.1$ –1.10.) By $\Pr.1.10$ and $\Pr.1.10_c$ it follows:

Proposition 1.11. The monoids (E, \circ, e) and (E_c, \circ, e) are isomorphic. \Box

We will end this part with a short discussion about the number $\varepsilon(n)$ of elements in the set

$$\{f \in E: |f| = n\},$$
 (1.5)

and the number $\varepsilon_c(n)$ of elements in the set

$$\{f \in E_c: |f| = n\}.$$
 (1.6)

Since the groupoid E is injective and e is a prime, we obtain that $\varepsilon(1) = 1$, and that for any $n \geq 2$, the following relation holds

$$\varepsilon(n) = \sum_{k=1}^{n} \varepsilon(k)(n-k). \tag{1.7}$$

By a result of P.Hall (see for example: [2], III 2, Ex.2, p.125), one obtains the following result:

$$\varepsilon(n) = (2n-2)!/((n-1)! n!).^2$$
 (1.8)

Consider the power series $\sigma(x) = \varepsilon_1 x + \varepsilon_2 x^2 + \cdots$, where $\varepsilon_n = \varepsilon(n)$. One can show that $\sigma(x)^2 - \sigma(x) + x = 0$, which implies $2\sigma(x) = \sqrt{1 - 4x}$. Then, using the binomial series for $\sqrt{1 - 4x}$, one obtains (1.8).

Because of the commutativity of E_c , one obtains that $\varepsilon_c(1) = \varepsilon_c(2) = \varepsilon_c(3) = 1$, and that for each $n \ge 1$, the following relations hold

$$\varepsilon_c(2n) = \sum_{k=1}^n \varepsilon_c(k) \varepsilon_c(2n-k) , \qquad (1.9)$$

$$\varepsilon_c(2n+1) = \sum_{k=1}^n \varepsilon_c(k)\varepsilon_c(2n+1-k). \tag{1.10}$$

But we do not know any "elementary function" which expresses $\varepsilon_c(n)$ as (1.8) expresses $\varepsilon(n)$.

2. Powers in n-idempotent groupoids

Let $\mathcal{V}^{(n)}$ be the variety of groupoids with the axiom $x^{n+1} = x^{-3}$ where $n \geq 1$. $\mathcal{V}^{(1)}$ is the variety of idempotent groupoids, and thus $E^{(1)} = \{e\}$ is a one-element set; this implies that the monoid $(E^{(1)}, \circ, e)$ is free with empty basis.

Below, we assume that $n \geq 2$ and we will write $E^{(n)}$ instead of $E_{\mathcal{V}^{(n)}}$. By the main result of [3] it follows that the monoid $E^{(n)}$ is defined as follows:

$$E^{(n)} = \{ f \in E \mid (\forall g \in E) g^{n+1} \notin P(f) \},$$
 (2.1)

$$(\forall f, g \in E^{(n)})[(f \bullet g = fg \text{ if } fg \in E^{(n)} \& (f \bullet g = g \text{ if } f = g^n)].$$
 (2.2)

The main result of this section is the following statement.

Proposition 2.1. For each $n \ge 2$, $(E^{(n)}, \circ, e)$ is a free monoid with an infinite basis, and the basis consists of the irreducible elements of E which belong to $E^{(n)}$.

In order to prove Prop.2.1, we will use some lemmas.

Lemma 2.2.
$$(\forall f \in E) f \in E^{(n)} \Rightarrow P(f) \subseteq E^{(n)}$$
.

Proof. This is an obvious corollary from (2.1) and the definition of P(f). \square

³ For $k \in \mathbb{N}$, x^k have the usual meaning, i.e. $x^1 = x$, $x^{k+1} = x^k x$.

Lemma 2.3. $(\forall f, g \in E)(f \circ g \in E^{(n)} \Rightarrow \{f, g\} \subseteq E^{(n)})$

Proof. Assume $f \circ g \in E^{(n)}$. Clearly, if $e \in \{f, g\}$, then $\{f, g\} \subseteq E^{(n)}$. Thus we can assume that $|f| \geq 2$, $|g| \geq 2$. Moreover, by L.2.2, $g \in P(f \circ g)$ implies $g \in E^{(n)}$. We have to show that $f \in E^{(n)}$, as well. If $f = f_1 f_2$, then $(f_1 \circ g)(f_2 \circ g) = f \circ g \in E^{(n)}$, and by L.2.2, this implies $\{f_1 \circ g, f_2 \circ g\} \subseteq E^{(n)}$; by induction on length we obtain $\{f_1, f_2\} \subseteq E^{(n)}$. Then $f \notin E^{(n)}$ implies $f_1 = f_2^n$, and then we would have

$$f \circ g = (f_1 f_2) \circ g = (f_2^{n+1}) \circ g = (f_2 \circ g)^{n+1} \notin E^{(n)},$$

a contradiction.

Lemma 2.4. $E^{(n)}$ is a submonoid of (E, \circ, e) .

Proof. From (2.1) it follows that $e \in E^{(n)}$. Let $f, g \in E^{(n)}$. If f = e, then $f \circ g = g \in E^{(n)}$, and thus we can assume that $f = f_1 f_2$, where $f_1, f_2 \in E^{(n)}$. Assume $f_1 \circ g, f_2 \circ g \in E^{(n)}$, but

$$f \circ g = (f_1 \circ g)(f_2 \circ g) \notin E^{(n)}$$
.

Then $f_1 \circ g = (f_2 \circ g)^n = f_2^n \circ g$, and this (because of the cancellative law) implies $f_1 = f_2^n$, which is impossible, for then we would have $f = f_2^{n+1} \in E^{(n)}$. \square

As a corollary of L.2.3, we have:

Lemma 2.5. If $f \in E^{(n)}$ and $f = f_1 \circ f_2 \circ \ldots \circ f_n$, then $f_1, f_2, \ldots, f_n \in E^{(n)}$. \square

Lemma 2.6. If $p \in E^{(n)}$ is irreducible in E, then p is irreducible in $E^{(n)}$, as well. \square

Lemma 2.7. The set of irreducible elements in $E^{(n)}$ is infinite.

Proof. If $q_1 = e^2$, $q_{k+1} = eq_k$, then $\{q_1, q_2, \ldots, q_k, q_{k+1}, \ldots\} = Q$ is an infinite set of irreducible elements in $E^{(n)}$. Namely, from $|q_k| = k + 1$, it follows that Q is infinite.

Also, from (2.1) and $n \geq 2$, we have $q_1 \in E^{(n)}$. Assume that $q_k \in E^{(n)}$. Then $e^2 \neq q_k^n$, which implies that $q_{k+1} \in E^{(n)}$. Thus $Q \subseteq E^{(n)}$.

It remains to show that the elements of Q are irreducible. Namely, by Prop.1.7, q_1 is irreducible. Let q_1, q_2, \ldots, q_p , for any integer $p \leq k$, be irreducible. Assume that $q_{k+1} = f \circ g$, where $f, g \in E^{(n)}$, $f \neq e$, $g \neq e$. Then, $eq_k = f \circ g = (f_1 \circ g)(f_2 \circ g)$, i.e. $e = f_1 \circ g$, which is impossible. \square

Finally, Prop.2.1 is a corollary of L.2.3-L.2.7. □

As usual, by $\mathcal{V}_c^{(n)}$ we denote the variety of commutative groupoids in $\mathcal{V}^{(n)}$. The corresponding groupoid $E_c^{(n)} \in \mathcal{V}_c^{(n)}$ can be defined by (2.1_c) and (2.2_c) , replacing $E^{(n)}$ in (2.1) and (2.2) by $E_c^{(n)}$ and E by E_c .

In the same maner we obtain Lemmas $2.2_c-2.7_c$. We only need a modification in the proof that the set of irreducible elements in $(E_c^{(n)}, \circ, e)$ is infinite. Namely, in $E_c^{(n)}$ we have $q_k = e^{k+1}$, and therefore (for example) $q_n \notin E_c^{(n)}$. But we can obtain an infinite set of irreducible elements in $E_c^{(n)}$, as follows:

$$p_1 = e(e^2)^2$$
, $p_{k+1} = ep_k$.

Thus we would obtain the following, analogy of Prop.2.1.

Proposition 2.1_c. For each $n \geq 2$, $(E_c^{(n)}, \circ, e)$ is a free monoid with an infinite basis, and the basis consists of the irreducible elements of E_c which belong to $E_c^{(n)}$. \square

References

- [1] R. H. Bruck: A Survey of Binary Systems, Springer-Verlag, 1958.
- [2] P. M. Cohn: Universal Algebra, Harper & Row, 1965.
- [3] G. Čupona, N. Celakoski, Free groupoids with $x^n = x$, Proceed. of the First Congress of Math. and Informat. of Rep. of Macedonia, Ohrid 1996, p. 19-25.
- [4] G. Čupona, S. Ilic, Free groupoids with $x^n = x$, II, Novi Sad, J. Math., Vol. 29, No.1, 1999, 147-154.

ГРУПОИДНИ СТЕПЕНИ

Ѓорѓи Чупона*, Наум Целакоски**, Снежана Илиќ***

Резиме

Следното тврдење е главен резултат на работава. Ако $\mathcal V$ е многуобразието групоиди (комутативни групоиди), или $\mathcal V$ е многуобразието од n-идемпотентни групоиди (комутативни n-идемпотентни групоиди), т.е. групоиди (комутативни групоиди) со аксиомата $x^{n+1}=x,\ n\geq 2$, тогаш моноидот од степени е слободен со бесконечна пребројлива база.

- * Macedonian Academy of Sciences and Arts P.O. Box 428, 1000 Skopje, Republic of Macedonia
- ** Faculty of Mechanical Engineering P.O. Box 464, 1000 Skopje, Republic of Macedonia
- *** Faculty of Sciences, University of Nis SR Yugoslavia