we say, respectively, that "," is left commutative (1. c.) — left associative (1. a), commutative (c.), simmetric (s.) — respect to ",+".

It is evident that "l. c.", "c." and "s". are simmetric binary relations; the relations "l. c." and "c." are reflexive, but "s" is not reflexive one; "l. a." is not reflexive either simmetric.

At first, we shall give some prelimminary definitions. The element $a \in S$ is left associative in the groupoid (S, \cdot) if

(5)
$$(yx, y) a \cdot xy = ax \cdot y$$
.

 (S, \cdot) is a left reducible groupoid if there exists a subset S' of left associative elements such that the mapping ,," defined by

(6)
$$(\forall x) x' \in S' \stackrel{?}{\leftarrow} x' x = x$$
,

is a single-valued function of the set S upon S'; we say that S' is a left reduced set. The unary operation (on the set S) φ is a left translation of the groupoid (S, \cdot) if

(7)
$$(\forall x, y) \varphi(xy) = \varphi(x) y$$
.

 (S, \cdot^*) is dual groupoid of (S, \cdot) if (vx, y) $x^*y = yx$. We say that (S, \cdot) has some *right* property, if (S, \cdot^*) has the corresponding *right* one.

2. The main results

A. Let a be a right associative element in (S, \cdot) . If

(8)
$$(\forall x, y) x \cdot_a y = xy \cdot a$$
,

then "·" 1. c. "·". Converselly, if (S, \cdot) has an identity e (i. e. (vx) ex = xe = x), and "·" 1. c. "+", then "+"="·", where a = e + e is a right associative element of (S, \cdot) ; "·" = "b" $\rightarrow a = b$.

More generally, if φ is a right translation of (S, \cdot) and

(9)
$$(yx, y) x \dot{\varphi} y = \varphi(xy)$$
,

then ,, "1. c. ,, $\dot{\phi}$ ". Converselly ,let (S, \cdot) be left reducible, or idempotent with some left cancelable element (i. e. (vx) xx=x and $(\exists a)$ (vx) y $ax=ay \rightarrow x=y$); from ,." 1. c. ,,+" it follows ,,+"=,, $\dot{\phi}$ ", where (vx) ϕ (x)=x'+x in the first case, and (vx) ϕ (x)=x+x in the second one; in these cases we have ,, $\dot{\phi}$ "=,, $\dot{\psi}$ " \Rightarrow ϕ = ψ .

Let (S, \cdot) be a group. We have:

$$\{,, "1. c , +" \neq , "a" 1. c. , +"\} \neq (yx) xa = ax;$$

then (S, \cdot) and (S, \cdot_a) are isomorphic.

B. If φ is an endomorphism of (S, \cdot) then \dots c. \dots c. \dots Converselly, if (S, \cdot) is a semigroup with a left (or right) identity e, from \dots l. c. \dots it follows \dots + "= \dots φ ", where $(\not v x) \varphi(x) = e + x$ (or $(\not v x) \varphi(x) = x + e$); then φ is an endomorphism of (S, \cdot) and \dots φ " = \dots φ " $\Rightarrow \varphi = \psi$.