If ,, ·" 1. c. ,, +" or ,, ·" c. ,, +" then
$$\{(y \ x)(g \ y, z) \ x = y \ z = y + z\} \rightarrow ,, \cdot " = ,, + ".$$

C. Let $(V \times X) \varphi(X)$ is a right associative element in (S, \cdot) . From

(10)
$$(y x, y) x \cdot \varphi y = x \varphi(y),$$

it follows ,... '' 1. a. ,... φ ''. Converselly, if (S, \cdot) has an identity e, from ,... 1. a. ,... + '' it follows ,... + '' = ,... φ '', where $(v \mid x) \varphi(x) = e + x$ is a right associative element in (S, \cdot) .

More generally, let ,, o" be a binary operation on S such that

(11)
$$(y u, x, y) ux \circ y = x \circ y$$
.

If

(12)
$$(y x, y) x + y = x (x \circ y),$$

then "." 1. a. "." Converselly, if (S, \cdot) is a right reducible groupoid and "." 1. a. "." then there exists a binary operation "." such that (11) and (12) are satisfied.

D. Let (S, \cdot) be a semigroup.

If the binary operation ,, o" satisfies the relation

(13)
$$(y u, v, x, y) u x \circ y = x \circ yv = xy$$
,

and "+" is defined by

(14)
$$(y x, y) x + y = x (x \circ y) y$$
,

then \dots 1. a. \dots 4", \dots 4" 1. a. \dots 4", and (S, +) is a semigroup. If both \dots 0" and \dots 0" satisfy (13) and \dots 4", \dots 4" are theirs corresponding operations by (14), then \dots 4" 1. a. \dots 4" 1. a. \dots 4". Converselly, if the semigroup (S, \cdot) is reducible both left and right, from \dots 1. a. \dots 4". \dots 1. a. \dots 1" 1. a. \dots 1" it follows that there exists an operation \dots 0" such that (13) and (14) are satisfied.

If ,, o" is a constant a, i. e. $(v x, y) x \circ y = a$, (13) is satisfied; hence it follows ,..." 1. a. ,, \dot{a} " and ,, \dot{a} " 1. a. ,, ...", where

(15)
$$(y x, y) x \dot{a} y = x a y$$
.

Converselly, let the semigroup (S, \cdot) has an identity e. From ,, '' l. a. ,, +'', and ,, +'' l. a. ,, \text{''} it follows ,, +'' = ,, \(\bar{a}\)'', where e + e = a. In this case we have $\{[,, \cdot'' \ l. \ a. \ ,, +'', \ ,, +'' \ l. \ a. \ ,, \(\bar{a}'' \ l. \ a. \ ,, +'', \ ,, +'' \ l. \ a. \ ,, \(\bar{a}'' \ l. \ a. \ ,, +'', \ ,, +'' \ l. \ a. \ ,, \(\bar{a}'' \ l. \ a. \ ,, +'', \ ,, +'' \ l. \ a. \ ,, \(\bar{a}'' \ l. \ a. \ ,, +''' \ l. \ a. \ ,, \(\bar{a}'' \ l. \ a. \ ,, +'' \ l. \ a. \ ,, \(\bar{a}'' \ l. \ a. \ ,, +'' \ l. \ a. \ ,, +'' \ l. \ a. \ ,, \(\bar{a}'' \ l. \ a. \ ,, +'' \ l.$