## ON A CLASS OF n-SEMIGROUPS

## B. Trpenovski

1. Introduction. In this article we generalize the notion of  $\lambda$ -semi-groups from binary to (n+1) -ary case, establishing some properties for the generalized algebraic systems obtained in that way.

An *n-semigoup* S([...]) is a non-empty set S with an (n+1) -ary operation [...] such that for every  $x_j \in S$ , j = 0,1,...,2n and every i = 1,2,...,n the following holds:

$$[[x_0 \ x_1 \dots x_n] \ x_{n+1} \dots x_{2n}] = [x_0 \dots x_{i-1} \ [x_i \dots x_{i+n}] \ x_{i+n+1} \dots x_{2n}]$$

A non-empty subset Q of an n-semigroup S is said to be n-subsemigroup (left ideal) of S if  $[Q \ldots Q] \subseteq Q$  ( $[S \ldots SQ] \subseteq Q$ ). An n-semigroup S is said to be  $\lambda$ -n-semigroup if and only if each n-subsemigroup of S is a left ideal in S.

2. Cyclic n-semigroups. We shall start with some remarks about the cyclic n-semigroups. Let S be an n-semigroup and, for  $a \in S$ , let us put:

$$< a > = \{a, a^{n+1}, \ldots, a^{k^n+1}, \ldots\},\$$

where:  $a^{n+1} = [a \dots a]$ ,  $a^{(k+1)^{n+1}} = [a \dots a \ (a^{k^{n+1}})]$ , k > 0. Obviously, < a > is an *n*-subsemigroup of S; < a > is called a *cyclic n-subsemigroup* of S and, if S = < a > for some  $a \in S$ , then S is called a *cyclic n-semigroup*.

**Examples.** Let N be the set of all positive integers and  $N^o = N \cup \{0\}$ . 1. If we put

$$[a_0, a_1 \dots a_n] = 1 + \sum_{j=0}^n a_j, \ a_j \in N^0,$$

them  $N^o$  becames a cyclic *n*-semigroup such that  $N^o = <0>$ . It is easily seen that every cyclic *n*-semigroup of infinite order is isomorphic to  $N^o$ .

2. Let 
$$I_{rm} = \{0,1,\ldots,r+m-1\}$$
,  $r \in N^o$ ,  $m \in N$ . If we put  $b = [a_0 \ a_1 \ldots a_n]$ ,  $a_j$ ,  $b \in I_{rm}$ ,

where  $b=1+\sum\limits_{j=0}^{n}a_{j}$  if  $\sum\limits_{j=0}^{n}a_{j}< r+m-1$  and b=r+i,  $i\equiv 1-r+1$  and b=r+i,  $i\equiv 1-r+1$  and b=r+i,  $i\equiv 1-r+1$  and b=r+i, b=1-r+1 and b=1-r+1 and b=1-r+1 and b=1-r+1 if and only if b=1-r+1 and b=1-r+1 if and only if b=1-r+1 if and only if b=1-r+1 if and b=1-r+1 if an isomorphism from b=1-r+1 if an isomorphism from b=1-r+1 if and b=1-r+1 if an isomorphism from b=1-r+1 if and b=1-r+1 if an isomorphism from b=1-r+1 if and b=1-r+1 if an isomorphism from b=1-r+1 is an isomorphism from b=1-r+1 if and b=1-r+1 if an isomorphism from b=1-r+1 if and b=1-r+1 if an isomorphism from b=1-r+1 if an isom

**Lemma 1.** If  $S = \langle a \rangle$  is a cyclic n-semigyoup with index r and period m, then  $K = \{a^{rn+1}, \ldots, a^{(r+m-1)n+1}\}$  is an n-subgroup of  $S \cdot K$  sontains an idempotent if and only if m and n are relatively prime and in that case the idempotent element is unique—it is in fact a neutral element in K.

n-semigroup which is isomorphic with Irm.

**Proof.** We call K an n-subgroup of S if for every  $a_j \in K$ ,  $j = 0, 1, \ldots, n$  and every  $k = 0, 1, \ldots, n$  there exists  $x_k \in K$  such that  $[a_0 \ldots a_{k-1} x_k a_{k+1} \ldots a_n] = a_k$ . Let  $a_j \in a^{(r+k_j)^{n+1}}$ ,  $b = a^{(r+k)^{n+1}}$ . If  $k < 1 + (n-1) \ r + \sum_{j=1}^n k_j$  we can choose  $p \in N^o$  such that  $pm - s = 1 + (n-1) \ r + \sum_{j=1}^n k_j - k$ ,  $0 \le s < m$ , and if  $k \ge 1 + (n-1) \ r + \sum_{j=1}^n k_j$ , we shall put  $s = k-1 - (n-1) \ r - \sum_{j=1}^n k_j$ . If  $x = a^{(r+s)^{n+1}}$ , then  $[a_1 \ldots a_{j-1} \ xa_j \ldots a_n] = b$  for all  $j = 1, 2, \ldots, n$  and so K is an n-subgroup of S. If  $b^{n+1} = b$ ,  $b \in S$ , we call b an idempotent in S. Let  $b = a^{(r+q)^{n+1}}$  be an idempotent in K;  $b^{n+1} = a^{(r+(r+q)^n+q+1)^{n+1}} = a^{(r+q)^{n+1}} = b$  implies that  $(r+q) \ n+1 \equiv 0 \pmod{m}$  which means that m and n are relatively prime. Conversely, if m and n are relatively prime, from n + n = 1, n = 1 and n = 1 such that  $n + 1 = 1 \pmod{m}$  (mod  $n = 1 \pmod{m}$ ). Then  $n = 1 \pmod{m} + 1 \equiv 1 \pmod{m}$  if we take  $n = 1 \pmod{m} + 1 \equiv 1 \pmod{m}$  such that  $n = 1 \pmod{m} + 1 \equiv 1 \pmod{m}$  if we take  $n = 1 \pmod{m} + 1 \equiv 1 \pmod{m}$  such that  $n = 1 \pmod{m} + 1 \equiv 1 \pmod{m}$ . Then  $n = 1 \pmod{m} + 1 \equiv 1 \pmod{m}$  will be an idempotent in  $n = 1 \pmod{m} + 1 \equiv 1 \pmod{m}$  is an idempotent, then  $n = 1 \pmod{m} + 1 \equiv 1 \pmod{m}$ 

and so, (q-q')  $n \equiv 0 \pmod{m}$ , i. e.  $q-q' \equiv 0 \pmod{m}$  because m and

*n* are relatively prime. Finally, since  $0 \le q$ , q' < m, we get q = q', i. e. b = b'. If  $x \in K$ , from (r+q)  $n+1 \equiv 0 \pmod{m}$  it follows that  $[b \dots bxb \dots b] = x$  for every  $i = 0, 1, \dots, n$ , and therefore the idempotent b is in fact a neutral element in K.

3. Some general properties of  $\lambda$ -n-semigroups. From now on we suppose S to be a  $\lambda$ -n-semigroup. It is obvious that.

**Lemma 2.** Every n-subsemigroup of a  $\lambda$ -n-semigroup is  $\lambda$ -n-semigroup.

**Lemma 3.** An n-semigroup S is a  $\lambda$ -n-semigroup if and only if  $[S \dots Sa] \subseteq \langle a \rangle$  for all  $a \in S$ .

**Proof.** If S is a  $\lambda$ -n-semigroup and  $a \in S$ , then

$$[S \dots Sa] \subseteq S \dots S < < a > ] \subseteq < a > ].$$

Conversely, if Q is an n-subsemigroup of S and  $a \in Q$ , ihen  $[S \dots Sa] \subseteq \langle a \rangle \subseteq Q$  which implies that  $[S \dots SQ] \subseteq Q$ , i. e. Q ts a left ideal in S and so S is a  $\lambda$ -n-semigroup.

**Lemma 4.** Let  $x, y \in S$ . Then  $[x \dots xy] = y$  if and only if y is an idempotent.

**Proof.** Let y be an idempotent. Then  $\langle y \rangle = \{y\}$  and for every  $x_j \in S$ , j = 1, 2, ..., n, by Lemma 3,  $[x_1 ... x_n y] \in [S ... S < y >] \subseteq \langle y \rangle = \{y\} \subseteq \{[y ... y]\} \subseteq [S ... S < y >]$ , so,

$$(1) \quad [x_1 \ldots x_n y] = y,$$

and the assertion follows from (1). Conversely, let [x ldots xy] = y. Then  $[y ldots yx] \in \langle x \rangle$  implies  $[y ldots yx] = x^{kn+1}$ ,  $k \in N^o$ . For k = 0, i.e. if [y ldots yx] = x, we have y = [x ldots xy] = [[y ldots yx] x ldots xy] = [y ldots y]  $[x ldots xy] = y^{n+1}$ , so, y is an idempotent. Let k > 0 and let us write  $x^{n}y$  instead of  $[(x^{(r-1)^{n+1}}) x ldots xy]$ . Now,

$$x^{kn} y = x^{kn} (x^n y) = [(x^{kn+1}) x \dots xy] =$$
  
=  $[(y^n x) x \dots xy] = y^n (x^n y) = y^n y = y^{n+1},$ 

and,

$$y^{n+1} = x^{kn} y = x^{(k-1)^n} (x^n y) = x^{(k-1)^n} y = \dots = x^n y = y,$$

and again y is an idempotent.

**Lemma 5.** For every  $a \in S$ , < a > has finite order. If < a > contains an idempotent, then  $|< a >| \leq 3$ . if < a > does not contain any idempotent, then the index of < a > is not greater than 2 and its n-subgroup  $K_a$  is generated by every of its elements. The set E of all the idempotents of S is a right zero n-subsemigroup of S.

**Proof.** If the order of < a > is infinite, then  $T = < a^{n+1} >$  will be an n-subsemigroup of < a > which does not contain the element  $a^{2n+1}$ ; by Lemma 2 < a > is a  $\lambda$ -n-semigroup and  $a^{2n+1} = [a \dots a(a^{n+1})] \in T$  which is a contradiction. Let  $< a > = \{a, a^{n+1}, \dots, a^{kn+1}\}$  has an idempotent  $e_a$ , which by Lemma 1 is unique. Let  $K_a$  be the corresponding n-subgroup of < a > defined as in Lemma 1. If  $x \in K_a$ , taking into account (1) and the fact that  $e_a$  is neutral element in  $K_a$ , we get  $x = [xe_a \dots e_a] = e_a$ , and so  $K_a = \{e_a\}$ . Now, if the order of < a > is greater than 3, i. e. if k > 2, then  $Q = \{a^{n+1}, a^{3n+1}, \dots, a^{kn+1}\}$ , where  $a^{kn+1} = e_a$ , is an n-snbsemigroup of < a > and  $a^{2n+1} \in [< a > \dots < a > Q] \subseteq Q$  which is, again, a contradiction. So,  $k \le 2$ , i. e.  $|< a > | \le 3$ . Let < a > does not contain any idempotent and let the index of < a > be greater than 2. Then the above applies with the only difference that this time  $a^{kn+1}$  in Q is not an idempotent. Now, let  $a^{n+1} \in K_a$ . By Lemma 2 we have that

$$a^{s+1} \binom{n+1}{n+1} = [a \dots a (a^{sn+1})] \in [\langle a \rangle \dots \langle a \rangle \langle a^{sn+1} \rangle] \subseteq \langle a^{sn+1} \rangle$$
, and then  $\langle a^{(s+1)n+1} \rangle \subseteq \langle a^{sn+1} \rangle$ .

Continuing in the same way as above, we have that  $a^{(s+2)}^{n+1}$  belongs to  $< a^{(s+1)}^{n+1} > \le < a^{sn+1} >$  and so on. So,  $< a^{sn+1} >$  contains the all elements of  $K_a$  i. e.  $K_a$  is generated by every of its elements. The last statement of the lemma follows from (1).

Let J be an index set for the family of all n-subgroups  $K_a$  of S where  $K_a$  is defined as above, i. e. it is the periodic part of the cyclic n-subsemigroup < a >. Let  $K = \bigcup \{K_j \mid j \in J\}$ . By Lemma 2 all  $K_j$  are jeft ideals in S which implies that K is an left ideal in S, too and therefore K is an n-semigroup which is a union of n-groups. Since  $K_j$  is a left ideal in S, then  $[SK_j \dots K_j] \subseteq K_j$  and so, all  $K_j$  are feft ideals in S in the sense of the definition in [3]. By the dual of Theorem 1 of [3], all  $K_j$  are isomorphic with  $K_j \times J$  for a fixed  $K_j$  where in  $K_j \times J$  the (n+1)—ary operation is defined as follows:

$$[(x_0', j_0) (x_1, j_1) \dots (x_n, j_n)] = ([x_0 x_1 \dots x_n], j_n),$$

 $x_k \in K_j$ ,  $j_k \in J$ , i. . K is isomorphic with the direct product of an n-group  $K_j$  and a right zero n-semigropup J. This implies that any two cyclic n-subsemigroups < a > and < b > of S with the same index are isomorphic, since their covresponding n-subgroups  $K_a$  and  $K_b$  are isomorphic. If G is an n-subgroup of S and if  $c \in G$ , then there exist some  $d_j \in G$ ,  $j = 1, 2, \ldots n$  such that  $c = [d_1 \ldots d_n \ (c^{2^n+1})]$  and then, by Lemma 5,  $c \in K_c \subseteq K$ . So, every n-subgroup of S is contained in K.

If S contains an idempotent e, then there exists a cyclic n-subsemigroup < a > of S such that  $e \in < a >$  (for example,  $e \in < e >$ ). Then by

Lemma 5 we have that  $K_a = \{e\}$ . Now, since all  $K_f$  are isomorphic to each other, we get that every cyclic n-subsemigroup of S contains an idempotent.

In summary we obtain the following

**Theorem 1.** Let S be a  $\lambda$ -n-semigroup. Then:

- (i) all cyclic n-subsemigroups of S with the same index are isomorphic to each other,
- (ii) the union  $K = U\{K_j \mid j \in J\}$  of the all cyclic n-subgroups of S is an n-subsemigroup of S which is isomorphic to the direct product of an n-subgroup of S and a right zero n-semigroup, and every n-subgroup of S is contained in K,
- (iii) if S contains an idempotent, then every cyclic n-subsemigroup of S contains unique idempotent.

If S is a  $\lambda$ -n-semigroup, then by Theorem 1 we have trat, either S does not contain any idempotent, either every cyclic n-subsemigroup of S contains an idempotent. In the last case we have a similar situation as in the  $\lambda$ -semigroups studied in [2]. In the next part we shall establish some more (general) properties of the  $\lambda$ -n-semigroups in which every cyclic n-subsemigroup contains an idempotent; if every cyclic n-subsemigroup of a  $\lambda$ -n-semigroup S contains an idempotent, then we call S a  $\lambda$ -n-semigroup.

4. Decomposition of a  $\lambda$ -n-semigroup into union of unipotent  $\lambda$ -n-semigroups. Troughout this part S will be a  $\lambda$ -n-semigroup.

**Lemma 6.** If  $[x_1 ... x_n y] = y$ , then every of the following assertions:

(i) 
$$x_j = z^{n+1}$$
 for some  $j = 1, 2, ..., n, z \in S$ ,

ii)) 
$$[x_j \dots x_n x_1 \dots x_j] \neq x_j$$
 for some  $j = 1, 2, \dots, n$ , implies that y is an idempotent.

**Proof.** If (i) holds with  $z = x_j$ , i. e. if some  $x_j$  is an idempotent, then f j = 1,  $y = [x_1 \dots x_n y] = [(x_1^{n+1}) x_2 \dots x_n y] = x_1^n [x_1 \dots x_n y] = x_1^n y$  and by Lemma 4 y is an idempotent. If j > 1, then

$$y = [x_1 \dots x_{j-1} (x_j^{n+1}) x_{j+1} \dots x_n y] =$$
  
=  $[[x_1 \dots x_{j-1} x_j \dots x_j] x_j \dots x_n y].$ 

By (1),  $[x_1 ldots x_{j-1} x_j ldots x_j] = x_j$ , so  $y = [x_j x_j ldots x_n y]$  with  $x_j$  an idempotent and the previous applies. If  $x_j = z^{n+1}$ ,  $z \in S$ , then

$$y = [x_1 \dots x_{j-1}(z^{n+1}) x_{j+1} \dots x_n y]$$
  
=  $[x_1 \dots x_{j-1} z(z^n x_{j+1}) x_{j+2} \dots x_n y].$ 

If  $z^n x_{j+1} = e_{j+1}$ , where  $e_{j+1}$  is the idempotent in  $\langle x_{j+1} \rangle$  then we have the case already considered; the same is if  $z^n x_{j+1} = x_{j+1}$ , since in this case, by Lemma 4,  $x_{j+1}$  will be an idempotent. If  $z^n x_{j+1} = x_{j+1}^{n+1}$ , then

$$y = [x_1 \dots x_{j-1} z x_{j+1} (x_j^n + 1 x_{j+2}) x_{j+3} \dots x_n y].$$

Here we can repeat the previous considerations with  $x_{j+1}$  instead of z and  $x_{j+2}$  instead of  $x_{j+1}$ . Continuing in that way, or, at some part of that chain we shall conclude that y is an idempotent, or, at the end we shall come to

$$y = [x_1 \dots z x_{j+1} \dots x_{n-1} (x_n^n y)].$$

Here, again each of  $x_n^n y = e_y$  and  $x_n^n y = y$  imples that y is an idepotent. Finally, if  $x_n^n y = y^{n+1}$ , then  $y = [x_1 \dots z \dots x_{n-1} (y^{n+1})] \in \langle y^{n+1} \rangle = \{y^{n+1}, e_y\}$  because  $|\langle y \rangle| \leq 3$ , and in both cases y is an idempotent.

If (ii) holds, then any of the following two cases: a)  $[x_j ... x_n x_1 ... x_j] = x_j^{n+1}$  and b)  $[x_j ... x_n x_1 ... x_j] = x_j^{2n+1} (=e_j)$  implies that (i) is satisfied. Namely, when a) is true,

$$y = [x_1 ... x_n y] = [x_1 ... x_n [x_1 ... x_n y]] =$$

$$= [x_1 ... x_{j-1} [x_j ... x_n x_1 ... x_j] x_{j+1} ... x_n y] =$$

$$= [x_1 ... x_{j-1} (x_j^{n+1}) x_{j+1} ... x_n y]$$

and when b) is true,  $y = [x_1 \dots x_{i-1} e_i x_{i+1} \dots x_n y]$  with  $e_i$  an idempotent.

**Lemma 7.** Let  $[x_1 ldots x_n y] = y$ . If y is not an idempotent, then: (i)  $x_j + e_j$ ,  $x_j^{n+1} = e_j$ ,  $j = 1 \ 2, \dots, n$ ; (ii)  $x_j = z_j^{n+1}$  for no  $z_j \in S$ ,  $j = 1, 2, \dots, n$ ; (iii) for every  $j = 1, 2, \dots, n$   $[x_j ldots x_n x_1 ldots x_j] = x_j$ ; (iv)  $y^{n+1} = e_y$ ,  $y = z^{n+1}$  for no  $z \in S$ .

**Proof.** The statements (ii), (iii) and the first part of (i are consequences of Lemma 6. Let us prove that  $y^{n+1} = e_y$ ; by Lemma 5  $[yx_1 \dots x_n] \in \{x_n, x_n^{n+1}, x_n^{2^n+1} = e_n\}$ . If  $[yx_1 \dots x_n] = x_n$  then  $[x_1 \dots x_{n-1} \ yx_1] = x_1$  as in the contray, by lemma 6,  $x_1$  will be an idempotent which the first part of (i). Now,

$$y = [x_1 \dots x_n y] = [[x_1 \dots x_{n-1} y x_1] x_2 \dots x_n y] =$$

$$= [x_1 \dots x_{n-1} y [x_1 \dots x_n y]] = [x_1 \dots x_{n-1} y y] =$$

$$= [x_1 \dots x_{n-1} [x_1 \dots x_n y]] = [[x_1 \dots x_{n-1} x_1 x_2] x_3 \dots x_n y y].$$

Let  $[x_1 
ldots x_{n-1} x_1 x_2] = t$ ; by Lemma 6, from  $[tx_3 
ldots x_n yy] = y$ , if  $t = x_2^{n+1}$  or  $t = e_2$ , it would follow that y is an idempotent. So, it must be  $[x_1 
ldots x_{n-1} x_1 x_2] = x_2$  in which case  $[x_2 
ldots x_n yy] 
ldots ] = y$ . Continuing in the same way we shall obtain  $y = [x_n y 
ldots y]$  and then,

$$y = [x_n y, y] = [[yx_1 ... x_n] y ... y] = [y [x_1 ... x_n y] y ... y] = y^{n+1}.$$

This shows that it can not happen to be  $[yx_1 ... x_n] = x_n$ . If  $[yx_1 ... x_n] = e_n$  then

$$y^{n+1} = [y [x_1 ... x_n y] [x_1 ... x_n y] ... [x_1 ... x_n y]] =$$
  
=  $[[yx_1 ... x_n] [yx_1 ... x_n] ... [yx_1 ... x_n] y] = e_n^n y,$ 

and

$$e_n^n(y^{n+1}) = e_n^n(e_n^n y) = [(e_n^{n+1})e_n \dots e_n y] = e_n^n y = y^{n+1},$$

and by Lemma 4,  $y^{n+1}$  is an idempotent; the idempotent in  $\langle y \rangle$  is unique and  $y^{n+1} \in \langle y \rangle$ , so  $y^{n+1} = e_y$ . Finally, if  $[yx_1 \dots x_n] = x_n^{n+1}$ , then

$$x_n^{n+1} = [yx_1 \dots x_n] = [[x_1 \dots x_n y] x_1 \dots x_n] =$$

 $=[x_1 \ldots x_n [yx_1 \ldots x_n]] = [x_1 \ldots x_n (x_n^{n+1})] = [[x_1 \ldots x_n x_n] x_n \ldots x_n].$ Now,  $[x_1 \ldots x_n x_n] = e_n$  or  $x_n^{n+1}$  implies  $x_n^{n+1} = e_n$  and we have the previous situation. If  $[x_1 \ldots x_n x_n] = x_n$ , then

$$y = [x_1 \dots x_{n-1} [x_1 \dots x_n x_n] y] = [[x_1 \dots x_{n-1} x_1 x_2] x_3 \dots x_n x_n y].$$

 $[x_1 ldots x_{n-1} x_1 x_2] \neq x_2$  implies  $y = [ux_3 ldots x_n x_n y]$  with  $u = v^{n+1}$  which, by Lemma 6, implies that y is an idempotent; so, we must take  $[x_1 ldots x_{n-1} x_1 x_2] = x_2$  and then,

$$y = [x_2 \dots x_n x_n y] = [x_2 \dots x_{n-1} [x_n x_2 \dots x_n x_n] x_n y].$$

From  $y = [x_2 \dots x_n x_n y]$ , by (iii) of this Lemma, it follows that  $x_n = [x_n x_2 \dots x_n x_n]$ , and by similar reasons as before,  $[x_2 \dots x_{n-1} x_n x_2 x_3] = x_3$ . So,

$$y = [[x_2 \dots x_{n-1} x_n x_2 x_3] x_4 \dots x_n x_n x_n y] = [x_3 \dots x_n x_n y_n y].$$

Continuing in the same way we shall come to  $y = [x_n \dots x_n y]$  which implies that y is an idempotent. Summarizing all we have done till now we can conclude that  $y^{n+1} = e_y$ . If we apply this to  $[x_j \dots x_n x_1 \dots x_j] = x_j$ , taking into account that  $x_j$  is not an idempotent, we shall get that  $x_j^{n+1} = e_j$  which completes the statement (i). To complete the proof of the Lemma we have, finally, to prove that  $y = z^{n+1}$  for no  $z \in S$ . If  $y = z^{n+1}$  for some  $z \in S$ , then

$$y = [x_1 \dots x_n y] = [x_1 \dots x_n (x_n z^{n+1})] = [[x_1 \dots x_n z] z \dots z]$$

implies that  $y = e_z$ . Namely, if  $[x_1 \dots x_n z] = z$ , by the first part of (iv); we have  $z = e_z$  or  $z^{n+1} = e_z$  and in both cases  $y = e_z$ ; if  $[x_1 \dots x_n z] = z^{n+1}$ , then  $y = z^{2^n+1} = e_z$ , and if  $[x_1 \dots x_n z] = z^{2^n+1} = e_z$ , it is obvious that  $y = e_z$ . From  $y = z^{n+1} \in \langle z \rangle$  it follows that  $e_y = e_z$ , since  $\langle z \rangle$  contains unique idempotent.

Let us put  $S(e) = \{x \in S \mid \text{the idempotent of } < x > \text{ is } e\}$ ,  $T = \{x \in S \mid x \neq e_x, x^{n+1} = e_x, \text{ there is no } z \in S \text{ such that } x = z^{n+1}\}$ , and  $R = T \cup E$ , where E is the set of all the idempotents in S. Let Q be an n-subsemigroup of S with the following properties: Q contains unique idempotent and, every n-subsemigroup of S which contains the idempotent Q as its unique idempotent is contained in Q. Then we call Q the maximal unipotent n-subsemigroup of S.

**Theorem 2.** Let S be a  $\lambda$ -n-semigroup. Then:

- (i) R is a left ideal in S,
- (ii)  $S = \bigcup \{S(e) \mid e \in E\}$ , disjoint union, and E right zero n-subsemigroup of all the idempotents of S,
- (iii) Every S(e) is a left ideal in S; S(e) is the maximal unipotent n-subsemigroup of S with e as its idempotent which is a zero in S(e).

**Proof.** If  $x_j \in R$  and  $y = [x_0 x_1 \dots x_n]$ , then there are two possibilities for y:  $y = e_n$ ; in the first case  $y \in E$  and in the second one, by Lemma 7,  $y \in T$ . This proves (i). The part (ii) od the Theorem follows from Lemma 5 and the difinitions of S(e) and of  $\lambda$ -n-semigroup. If  $y_j \in S(e)$ , then from  $y = [y_0 y_1 \dots y_n] \in \langle y_n \rangle$  it follows that the idempotent e corresponds to y, i. e.  $y \in S(e)$ , so S(e) is an n-subsemigroup of S an therefore a left ideal in S. By (1),  $[z_1 \dots z_n e] = e$ , for every  $z_j \in S(e)$ , and then,

$$e = [z_1 \dots z_n (z_n^{kn+1})] = [z_1 \dots z_{n-1} (z_n^{kn+1}) z_n] =$$

$$= [z_1 \dots z_{n-1} e z_n] = [z_1 \dots z_{n-1} (z_{n-1}^{sn+1}) z_n] =$$

$$= [z_1 \dots z_{n-2} (z_{n-1}^{sn+1}) z_{n-1} z_n] = [z_1 \dots z_{n-2} e z_{n-1} z_n] = \dots$$

where k, s, ... are some of the integers 0, 1, 2. This poves that e is a zero in S(e). Finally, let Q be a unipotent n-subsemigroup of S with e as its idempotent. If  $x \in Q$ , then  $< x > \subset Q$ ; Q is unipotent and so, the corresponding idempotent of x must be e, i. e.  $x \in S(e)$  which proves that S(e) is the maximal unipotent n-subsemigroup of S.

The left ideal R of Therem 2 is itself a  $\lambda$ -n-semigroup. We call R the reduced  $\lambda$ -n-semigroup. If S is a  $\lambda$ -semigroup and R its corresponding reduced  $\lambda$ -subsemigroup, then  $xy = e_y$  for every  $x, y \in R$ . This is not the case when S is a  $\lambda$ -n-semigroup if n > 1, as the following example shows:

**Example.** Let  $R = \{a_1, a_2, \ldots, a_n e\}$  and let us define an (n+1)-ary operation by;  $[a_j \ a_{j+1} \ldots a_n \ a_1 \ldots a_j] = a_j$ ,  $[x_0 \ x_1 \ldots x_n] = e$  otherwise. It is easy to see tha R is an n-semigroup and that  $[R \ldots Ra_j] = \{a_j, e\} = \langle a_j \rangle$  which, by Lemma 3 implies that R is a  $\lambda$ -n-semigroup; R is the reduced  $\overline{\lambda}$ -n-semigroup such that  $E = \{e\}$  and  $T = \{a_1, a_2, \ldots, a_n\}$ .

## REFERENCES

- [1] A. C. Clifford and G. B. Preston, The Algebraig Theory of Semigroups Providence, 1961
- [2] N. Kimura, T. Tamura and R. Merkel, Semigroups in which all subsemigroups are left ideals, Canad. J. Math., 17. N, 1 (1965), 52-62
- [3] Б. Л. Трпеноски, за некои п-полугрупи што се унии од п-групи, Билтен ДМФ на СРМ, т. 16, 1965, 11—17,