ON A CLASS OF n-SEMIGROUPS
B. Trpenovski

1. Introduction. In this article we generalize the notion of X-semi-
groups from binary to (n -+ 1) -ary case, establishing some properties for
the gencralized algebraic systems obtained in that way.

An n-semigoup S([...]) is a non-empty set S with an (»n + 1) -ary
operation [...] such that for every x;&8, j=0,1,..., 2n and every
i=1.2,..., n the following holds:

[[xp X1 - -+ Xn] Xnga- -« Xon] = [Xg oo« Xjoy [Xie o« Xign] Xegngr« - X

A non-empty subset Q of an n-semigroup S is said to be n-subsemigroup
(left ideal) of S if [Q...0]C Q ([S...SQ]C Q). An n-semigroup S is
said to be A-n-semigroup if and only if each n-subsemigroup of § is a left
ideal in S. -

2. Cyclic n-semigroups. We shall start with some remarks about the
cyclic n-semigroups. Let S be an n-semigroup and, for ¢ ¢ S, let us put:

<a> =f{o; a0, ok

where: 4"t = [a...a], a*+)'+ =[a...a (a*"t")], k > 0. Obviously,
< a > is an n-subsemigroup of S; < a > is called a cyclic n-subsemigroup
of S and, if S = <a> for some at S, then S is called a cyclic
n-Semigroup.
Examples. Let N be the set of all positive integers and N° = N () {0}.
1. If we put

n
la,a,...a,]=1 —!—Jzaaj, a; € N°,

them N° becames a cyclic n-semigroup such that N’ = < 0 >. It is easily
seen that every cyclic n-semigroup of infinite order is isomorphic to N°.
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2. Let I, =401, .+ m—1}, r¢ N°, meN. If we put

b=la,a,...ay), a5, bC Iy,

where b=l+z_a,ifza5<r+m—l and b=r+4i, i=1—r+
Jj=0 J=0

- Z a; (mod m), otherwise, then 7,,, will turn out to be an n-semigroup
j=0

such that [,,, = <0 >, If S= <a> is a cyclic n-semigroup of finite
order k, then there exist r€ N°, mc N, r +m =k, such that S is iso-
morphic to /,,,. Nalemy, if s is the least positive integer with the property
at™+ = @', r € N°, r <s, then we easily sce that q(i+r)"+1 = g(/+rn+1
if and only if i=j (mod m) where m = s—r, and all the elements in S
are: a, a"t', ..., art™m=1"+1: then f(1) = ar™*' is an isomorphism from
I, to S. We call r and m index and period, respectively, for every
n-semigroup which is isomorphic with 7,,,.

Lemma 1. If S = < a> is a cyclic n-semigyoup with index r and
period m, then K= {a’ i a(’+”’—1)“+1} is an n-subgroup of S - K son-
tains an idempotent if and only if m and n are relatively prime and in that
case the idempotent element is unique — it is in fact a neutral element in K.

Proof. We call K an n-subgroup of S if for every ¢; € K, j=0,1,...,n
and every k = 0,1,..., n there exists x, € K such that [a,,... @, X, @31 ...

vor Gy) =@ Let a;C a1l b — oUr+mt1, I k < 1 +m—1)r+ D k;
j=1

we can choose p&N? such that pm—s=1+4m—1) r+ Z!q—k.
=1

n

0<s<m and if k>>14+(@—1)r+ D k;, we shall put s=k—1—
J=l1

—m—1)r— D k;. If x =aCr+"+1, then [a;... a;_, Xaj...ay)="b for
i=1 .

all j=1,2,..., n and so K is an n-subgroup of S. If b"+ =h, b€ S, we
call b an idempotent in S. Let b= a(r+49)»+1 be an idempotent in K;
b = g(r+(r+9)Hg+nHl = g(r+9)1+1 = b implies that (r +q)n-+1=0
(mod m) which means that m and n are relatively prime. Conversely, if
m and n are relatively prime, from wm -+ v =1, v and v integers, it
follows that (r + g)n + 1 =0 (mod m) if we take g from {0,1,..., m—1}
such that r -+ g+ v=0 (mod m). Then b = a("+9)»+1 will be an idempotent
in K. If &' — a(r+a’y+1 js an idempotent, then (r 4 ¢")n -+ 1 = 0 (mod m),
and so, (g—¢)n=0 (mod m), i.e. ¢g— g'=0 (mod m) because m and
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n are relatively prime. Finally, since 0<Cgq, ¢' <m, we get ¢ —¢’, i e.

b==#. If xC K, from (r+q)n+1=0 (mod m) it follows that
[b...bxb...bl=x for every i=0, 1,..., n, and therefore the idempotent

s

b is in fact a neutral element in K.

3. Some general properties of ’-n-semigroups. From now on we
suppose S to be a A-n-semigroup. It is obvious that.

Lemma 2. Every n-subsemigroup of a h-n-semigroup is h-n-semigroup.

Lemma 3. An n-semigroup S is a h-n-semigroup if and only if
{§...5q C <a> for all acS. :

Proof. If S is a )-n-semigroup and a ¢ S, then

[SaaSa) € 8o 8 <a>]C sa>]
Conversely, if Q is an p-subsemigroup of S and a€ Q, ihen [S... Sa]
C < a> C Q which implies that [S...SQ] = O, i.e. Q ts a left ideal
in S and so § is a A-p-semigroup.

Lemma 4. Let x,yCS. Then [x...xyl=y if and only if y is an
idempotent.

Proof. Let y be an idempotent. Then <y > ={_r} and for every
=8, j=12;...,n by Lemma 3, [x;..:x3)]1€[S...S<p>]C <y>=
= {1,} C{ly... MCIS... S<y>) s0,

(M b xa 1=
and the assertion follows from (1). Conversely, let [x...xy] =». Then
[¥... yx] € < x > implies [y... px] = x¥"H, REN° For k=0, i.e. if
[y...px}=x we have y=[x...x5]=My... 05 x... w]=[-..»
[x...xp]] =", so, y is an idempotent. Let k>0 and let us write
x™y instead of [(x("—H"H)x... xy]. Now,

Xy = Xkt (x* y) = [(xrH) x . .. xy] =

=[0"%)x... ] =" ("y) ="y =y,

and,

P = 3ty — x(b-P () =xENy=...=x"y=7,
and again y is an idempotent.

Lemma 5. For every aCS, <a> has finite order. If < a > contains
an idempotent, then | < a >| < 3. if < a > does not contain any idempotent,
then the index of < a > is not greater than 2 and its n-subgroup K, is

generated by every of its elements. The set E of all the idempotents of S
is a right zero n-subsemigroup of S.
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Proof. If the order of < a> is infinite, then 7= < a"*1> will
be an n-subsemigroup of < @ > which does not contain the element (S5
by Lemma 2 < @ > is a A-n-semigroup and a1 = [q...a(a" )] € T which
is a contradiction. Let < a> = {a, a"t,..., @""*!} has an idempotent
e, which by Lemma 1 is unique. Let K, be the corresponding n-subgroup
of <a> defined as in Lemma 1. If x € K,, taking into account (1) and
the fact that e, is neutral element in K, we get x = [xe, ... e5 = ¢, and
so K, = {e,}). Now, if the order of <@ > is greater than 3, i.e. if k>2,
then @ = {a"t, @™, ..., ak"+1}, where aki+1 = ¢, is an n-snbsemigroup
of <a> and @ H¢[<a>...<a> Q]C Q which is, again, a contra-
diction. So, k<2, i.e. |<a>|<3. Let <a> does not contain any
idempotent and let the index of < a > be greater than 2. Then the above
applies with the only difference that this time a“"+1 in Q is not an idem-
potent. Now, let @41 € K,. By Lemma 2 we have that =
SHEA) = g, .a (@) E[<a>..<a> <d"H >]CL antl s,
and then < gSHpwt > C <@t >,

Continuing in the same way as above, we have that a (Gl
belongs to < a(s+) "+ > C < g%+ >and so on. So, < a'"+! > contains
the all elements of K, i. e. K, is generated by every of its elements. The last
statement of the lemma follows fiom (1).

Let J be an index set for the family of all n-subgroups K, of S
where K, is defined as above, i.e. it is the periodic part of the cyclic
n-subsemigroup < a >. Let K= () {K;|j€ J}. By Lemma 2 all K; are
jeft ideals in S which implies that K is an left ideal in S, too and therefore
K is an n-semigroup which is a union of n-groups. Since Kj is a left ideal
in S, then [SK; ... Kj] C K; and so, all K; are feft ideals in S in the sense
ot the definition in [3]. By the dual of Theorem 1 of [3], all K; are iso-
morphic with K; x J for a fixed K; where in K; x J the (n-+ I)—ary
operation is defined as follows:

[("‘:ﬂ’ fn) (xy, J'1) <o (X a’n)] = ([xo Xy oene Xaks Ja)s
x, € Ky, ji € J, i. . K is isomorphic with the direct product of an n-group
K; and a right zero n-semigropup J. This implies that any two cyclic
n-subsemigroups << a> and < b > of S with the same index' are isomor-

" phic, since their covresponding n-subgroups K, and K are isomorphic. If

G is an n-subgroup of S and if ¢& G, then there exist some dEG, j=
=1, 2,...n such that ¢ =[d;...d, (¢*+')] and then, by Lemma 3,
¢ € K, K. So, every n-subgroup of S is contained in K.

If S contains an idempotent e, then thare exists a cvclic n-subsemi-
group < a > of S such that e < a> (for example, e ¢ << e >). Then by
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Lemma 5 we have that K, = {¢]. Now, since all Kj are isomorphic to each
other, we get that every cyclic n-subsemigroup of S contains an idempotent,
In summary we obtain the following

Theorem 1. Let S be a h-n-semigroup. Then:

(i) all cyclic n-subsemigroups of S with the same index are isomo-
rphic to each other, ’

(i) the union K = U {K; | jCJ} of the all cyclic n-subgroups of S
is an n-subsemigroup of S which is isomorphic to the direct product of an
n-subgroup of S and a right zero n-semigroup, and every n-subgroup of S
is contained in K,

(iii) if S contains an idempotent, then every cyclic n-subsemigroup
of S contains unique idempotent.

If S is a 2-n-semigroup, then by Theorem | we have trat, either S
does not contain any idempotent, either every cyclic n-subsemigroup of S
contains an idempotent. In the last case we have a similar situation as in
the A-semigroups studied in [2]. In the next part we shall establish some
more (general) properties of the A-n-semigroups in which every cyclic n-sub-
semigroup contains an idempotent; if every cyclic n-subsemigroup of a
M-n-semigroup S contains an idempotent. then we call S a J-n-semigroup.

4. Decompozition of a A-n-semigroup into union of unipotent -n-se-
migroups. Troughout this part § will be a A-n-semigroup.

Lemma 6. If [x, ... x,y] =y, then every of the following assertions:

(1) xj=2"tL for some j=1,2,...,n, 2€S,

i) [x .. Xp Xy ... X %5 for some j=1,2,...,0
implies that y is an idempotent.

Proof. If (i) holds with z = x;, i. e. if some X; is an idemposent, then
fi=1, y=[% .. % )] = (") X, ... Xu Y] = X1" [%; ... Xpy] = X" ¥ and
by Lemma 4 y is an idempotent. If j > I, then

=Xy e Xy O ) X o Y] =
== [y e Xjag X o s X = Xy Ve
By (1), [y ...X%j—1%5...X]=2x; s0 y=[xx;...x%,)] with x; an idem-
potent and the previous applies. If x; = z"+!, z£ S, then
y=10 x5 @) X . X))
=[xy ... X1 2(Z" X330) X33 - . - X }]-
If z" Xj41 = €41, Where e, is the idempotent in < x;4, >then we have
the case already considered; the same is if z" Xj4q = Xjpy, since in this
case, by Lemma 4, x4, will be an idempotent. If 2" x4, = xj{1, then

P =[x X 240 (" 1 Xpe) Xy - X )]
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Here we can repeat the previous considerations with x;4, instead of z and
X4y instead of xj4,. Continuing in that way, o1, at some part of that
chain we shall conclude that y is an idempotent, or, at the end we shall
come to
¥= DXy i 2%y o+ Kny G

Here, again each of x,"y =ey and x," y =y imples that y is an idepotent.
Finally, if xy"y=p", then y=[x ...2.. %4 ()€ <y >=
= {y"*+, ey} because | < y >|<3, and in both cases y is an idempotent.

If (ii) holds, then any of the following two cases: a) [x;...x, x;...x5] =
=x,"t! and b) [x; ... X, X1 ... x;] = x2"*1 (= ¢;) implies that (i) is satisfied,
Namely, when a) is true,

p=1% e X V] = [ Xa Xy e X 2] =
=[xy XXy Xp Xy X Xy X)) =
=[x o X 5" ) Xy g - X

and when b) is true, y =[xy ... Xj_1 €5 Xj4q ... X ¥] With ¢; an idempotent.

Lemma 7. Let [x,...x,¥]=y. If y is not an idempotent, then: (i)
Xk, =gy j=1 2, .\, 05 () x=2"t forno z; €S, j=1,2,,..:n;
(ili) for every j=1, 2, ...;n [X5 ... X%u Xy ... %] =25; (V) P it=eg) y=
=2z"H for no z€CS.

Proof. The statements (ii), (iii) and the first part of (i are conse-
quences of Lemma 6. Let us prove that y"+! — ey by Lemma 5 [yx; ... x,] £
E{xn X, X, P =¢e,). If [yx; ... Xp] =X, then [x;... X4y yx3] =
= x; as in the contray, by lemma 6, x, will be an idempotent which the
first part of (i). Now, - ;

y= .. .xy =[x ... xpayxs]l X2 ... X5 )] =
=[x Xy V=[x -"u—:l_}’}’] =
=[x X ¥ X Y] = [Brr e X1 X1 Xe] X5 0o X VY]
Let [X; ... X,—1 %1 Xs] = t; by Lemma 6; from [txg ... X, yy] =y, if t = x," 12
or ¢t = e, it would follow that y is an idempotent. So, it must be [x;...
Xp—1X1X2] =X, in which case [x,...x,»y]...] =yp. Continuing in in the
same way we shall obtain y =[x,y ...y] and then,

y=[amy. M=Mx1...xa)y .. 0= [x1... %5 3]y ... y] ="

This shows that it can not happen to be [px; ...x,] = x,. If [yx; ... x,]=
= ¢,. then

Y=yl xp )] ¥y xp )] o [E X Y]l =
= [[yxy oo Xp) Xy oouXp) oo X% 2o x5) Y] =€, 3,
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and _

‘?n" (}’”+I) = e"n (E"" f"') = [(()n"hl"l) €y .. Cn ."’] = e"ny = yn+1!
and by Lemma 4, y"+' is an idempotent; the idempotent in <y > is
unique and y"t! £ < y >, so y"t' = e,. Finally, if [yx, ... x,] = x,"+, then

Xy l=[px;. Xp]=[[*1...Xn Y] X1 ... %n] =
= (X oo X DXy oo Xall = [y X0 (6] =[x - X Xp) Xy -0 Xn)-
Now, [x; ...XpXa] =en 01 x,"t' implies x,"t!=e, and we have the
previous situation. If [x, ... x, x,] = x,, then
y=1Ix1 ... %y [x1 ... xpx0]0] = [[¥; ... Xp—1 X1 %] X3 . .. Xy X V]
[X1 ... Xp_1 Xq X,] 7= Xy implies y = [uxg ... x, Xy y] with u=V"+" which, by
Lemma 6, implies that y is an idempotent; so, we must take [x; ... X5 4
x; x;] = x, and then,
y=1[Xs. .. Xg Xa ¥] = [Xa .. Xp—g[Xn X2 ... X Xn] X5 ¥].
From p=[xs...x,x,»], by (iii) of this Lemma, it follows that x, =
= [xp Xy ... X, X,]. and by similar reasons as before, [x, ... X,y X, X, X3] =
= OO '

P=1[[X¥g + oo Xy Xp X2 X5] Xy« . Xpp Xp Xn ] = [X5 « o0 Xy Xn Y V]
Continuing in the same way we shall come to y = [xn...x,y] which
implies that y is an idempotent. Summarizing all we have done till now
we can conclude that y"*! = e,. If we apply this to [x;...x, X ... x)] = xp
taking into account that x; is not an idempotent, we shall get that
x,"+' = ¢; which completes the statement (i). To complete the proof of
the Lemma we have, finally. to prove that y=z"+!' for no z€S. If
y = z"*+! for some z€ S, then

=iy =0 Xy i )] =[xy Xy 2] 2. 2]
implies that y =s,. Namely, if [x;...xn2] =z, by the first part of (iv);
we have z=e¢, or Z"H1 =¢, and in both cases y=e;; if [x,...X%,2] =
=" then y = 22"t —¢,, and if [x;...x,2] =2¥"H =¢,, it is obvious
that y =e,. From y=2z"t' € <z > it follows thatt e, =e¢;, since <z>
contains unique idempotent.

Let us put S(¢)={xC S |the idempotent of < x> is e}, T=
— (xS | x=-ey. x"H =e,, there is no z€S such that x = z"+1}, and
R =T |JE, wheie E is the set of all the idempotents in S. Let @ be an
n-subsemigroup of S with the following properties: Q contains unique
idempotent and, every n-subsemigroup of S which con ains the idempotent
O as its unique idempotent is contained in Q. Then we call Q the maxi-
mal unipotent n-subsemigroup of S. :
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Theorem 2. Let S be a h-n-semigroup. Then:

(i) R is a left ideal in S,

(iiy S=1J {S(e)| eC E}, disjoint union, and E right zero n-subsemi-
group of all the idempotents of S,

(iii) Every S (e) is a left ideal in S; S (e) is the maximal unipotent
n-subsemigroup of S with e as its idempotent which is a zero in S (e).

Proof. If x; € R and y = [x, X, ... x,], then there are two possibilities
for y: y =e,; in the first case y ¢ E and in the second one, by Lemma 7,
y € T. This proves (i). The part (ii) od the Theorem follows from Lemma 5
and the difinitions of S(e) and of A-n-semigroup. If y; € S(e), then from
y=1[0g¥1 ... ¥u]l € < yp > it follows that the idempotent ¢ corresponds to
¥, i.e. yES(e)., so S(e) is an n-subsemigroup of S an therefore a left
ideal in S. By (1), [z, ...z, €] = e. for every z; & S(e), and then,

e=[z...2a (an"'H]] =[z;...2p— (2nk" H) zy] =

=[z...2aez] =21 .. 201 @D 20 =
=[z;...2p— (zf,'f:}!} ZpaZn) =[z1...2p2€Zp_1Zp] = ...
where k, s, ... are some of the integers 0, 1, 2. This poves that e is a

zeto in S (e). Finally, let Q be a unipotent n-subsemigroup of S with e as
its idempotent. If x¢& Q. then < x> C Q: Q is unipotent and so, the
coriesponding idempotent of x must be e, i.e. x¢ S(e¢) which proves that
S (e) is the maximal unipotent n-subsemigroup of S.

The left ideal R of Therem 2 is itself a A-n-semigroup. We call R the
reduced h-n-semigroup. 1f S is a A-semigioup and R its coiresponding
reduced A-subsemigroup, then xy = ey for every x, y© R. This is not the
case when S is a A-n-semirroup if 7 > 1, as the following example shows:

Example. Let R = {a;, as, .... ay ¢} and let us define an (n -+ 1)—ary
opetation by; [@; @j41...an 8 ... ) = a;, [X, Xy ... Xa] = e otherwise. It is
easy to see tha* R is an n-semigroup and that [R ... Raj] = {a;, ¢} = <a; >
which, by Lemma 3 implies that R is a A-n-semigroup; R is the reduced
A-n-semigroup such that E = {e} and T = {a;, @, ....ay).
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