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ON n-GROUPOIDS
G. Cupona

An algebra QO (f) with an n-ary operation is said to be an n-sub-
grupoid of a grupoid G (e) if Q C G and f is the restriction of en—1
on Q.And, an algebra A (F) is said to be an Fgroupoid if there is a
groupoid G () such that 4 (f) is an n-subgroupoid of G(e) for every n-ary
operator f€ F. It is shown in § 1 that every n-groupoid is an n-subgroupoid
of a groupoid. The classes of n-subgroupoids of each of the classes of cancel-
lative groupoids and commutative groupoids are described in §§ 2,3. It is
shown in § 4 that the class of F-groupoids is a variety iff there is an n-ary
operator f € F such that, for every m-ary operator g€ F, n—11is a divisor
of m—1.

1. Universal covering groupoids. An algebra Q (f) with an n-ary ope-
ration is said to be an #-g r o u p o i d, and it is an n-subgroupoid of a groupoid
G(x) if QC G and

P e == s o O
for all a,. .., a, & Q. The following result can be obtained as a corrolary

from the main results of the papers [4] and [6], but we shall give here a di-
rect proof.

1.1. Every n-groupoid is an n-subgroupoid of a groupoid.

Proof. Let O (f) be an n-groupoid and W (o) be the groupoid which
is freely generated by the set Q. Thus, W is the minimal set of finite sequences
on Q U {o} (where o Q) satisfyng the following statements:

i QCW; (i) u, vEW=>o0uv¢c W.

Denote by U the set of elements of W in which do not occur subse-
quences of the following form:

o"1lgy...ay (@, ...,8,€0)
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It is easy to see that if Q (f) is an n-subgroupoid of a cancellative
(right cancellative) groupoid, then Q (f) is cancellative (right cancellative)
and the following quasiidentity is satisfied in Q (f):

freo X210 Znqg=P1e V2100 Zpg > @.1)
% &

fxl...xiul...u“_‘=fyl...ytul...uH,
for each i€ {1,...n}.

Conversely, assume that Q(f) is a right cancellative n-groupoid in
which all the quasiidentities (2.1) are satisfied. The universal covering U (e)
of QO (f) can be not right cancellative. We arc asking for a congrucnce @ such
that Q (f) can be embedded as an n-subgroupoid in U/,(e) and U/,(e) should
be right cancellative.

First, for each i€ {1,...,n—1}, let Q be defined by:
Q; = {02 ay . .ot @y oo 6 OF,
and let «; be a relation in Q; defined by:
ot—lag;...q o oF1h...0 &
QCitrr--rn€Ofay. .. ClayeenCa=0by...biCi11...Cn
By (2.1), the quantifier J may be changed by V, and this implies that:
c€Q, o tay...a oy o1h,...by=>otay...aqp¢c iy 0'by...Bc.

We also note that e, is the equality on Q (= Q).

Denote by « the minimal relation on U which satisfy the following
propositions:
oy UsU... Utg1Ca,

Uy XVy, Ug®Vy, OUy Uy, OVVaC U D> 0U Uy & OVyYy

It is easy to see that e is a congruence on U (e) and that G(e)=U/,(e)
is a right cancellative groupoid. Moreover, if Q (f) is cancellative, then G(e)
is cancellative too.

Finaly, the mapping a — a* embeds Q (f) into G (e).
Thus we obtain the following result.

2.2. An n-grupoid Q (f) is an n-subgroupoid of a (right) cancellative
groupoid iff Q (f) is (right) cancellative and satisfies all the quassidentities

@1). [
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As a corollary of 2.2 and the fact that every groupoid with cancella-
tion is a subgroupoid of a quasigroup ([1], VIL 4) we obtain the following
result,

2.3. The class of n-subgroupoids of gquasigroups and the class of n-sub-
groupoids of groupoids with cancellation are equal. | |

If n = 3, then there exist n-quasigroups which do not satisfy some
of the quasiidentities (2.1) (for example, [7] p. 115), and thus we get the
following result.

2.4. If n = 3, then there exist n-quasigroups which are not n-sub-
groupoids of quasigroups. []

3. Commutative n-groupoids. An n-groupoid Q@ (f) is said to be
(i,j)commutative if:

IRy BB v s K By PP K penica B s en v Ky

is an identity equation. Q (f) is called commutative if it is (i, j)-com-
mutative for each pair (7,j): 1 <i<j<n

3.1. An n-groupoid Q (f) is an n-subgroupoid of a commutative groupoid

iff Q (f) is (1, 2)-commutative.

Proof. Let Q(f) be a (I, 2)-commutative n-groupoid, and let C (o)
be the freely generated commutative groupoid by the set 0. Then

ouww=ou vV&eu=u,v=v)or{u="v,v=u).

Denote by D the set of elements of C which can not be represented
as products of the form:

H(ﬂl,..., A1, ofi—1 bl--.bﬂ, a‘+1,...am)

with a;, b; € 0.
Define a binary operation e on D by:

u, v, ouv-D = o uy = ouv,
and
u,veED, ouww=0""1ay...a,, a=fa,...a, > suv —=a.

It is easy to see that:

(i) the operation e is well dcfined:
(ii) D (o) is a commutative groupoid;
(iii) @ (f) s an n-subgroupoid of D (e).
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It is clear that every n-subgroupoid of a commutative groupoid is
a (1,2)-commutative n-groupoid. [ |

A groupoid G (+) is said to be n-commutative if the n-grou-
poid G (") is commutative.

3.2. The class of n-subgroupoids of n-commutative groupoids and the
class of commutative n-groupoids are equal.

Proof. First, it is clear that every m-subgroupoid of an n-commuta-
tive groupoid is a commutative n-groupoid.

Let Q (f) be 2 commutative n-groupoid and let U (o) be the universal
covering groupoid of Q (f). Define a relation « on U in the following way.

If v— i, is a permutation of {1,...,n}, Il a product on U(e), and u,,
{; € U, then:

H(“ln---n“p—b oyt Upyy, .. )

" (“n b e ld'p,_I, on—1 !q “ee l‘i“ Py up_'.l, . -).

It is obvious that the transitive and reflexive extension B of the rela-
tion e is a congruence on U(e) and that the groupoid Ulg(e)=G(e) is n-com-
mutative,

From 1.2 and 1.3 it follows that:

acQ, uclU= (anu=> a=u),

and this implies that:
a, bEQ > (a B b=a=h),

i.e that O (f) can be embedded in G () as an n-subgroupoid. [

The statements 3.1 and 3.2 imply that every commutative n-groupoid
is an n-subgroupoid of a commutative groupoid, and also an n-subgroupoid
of an n-commutative groupoid. But there exist commutative n-groupoids
which can not be embedded in groupoids which are both commutative and
n-commutative, for commutativity and m-commutativity imply some asso-
ciativity. (For example, every commutative and 3-commutative groupoid
is a semigroup.)

4. F-groupoids. Here we assume that F is a nonempty set of finitary
operators such that F, U F, = (//, where F, is the set of n-ary operators
belonging to F. An algebra A (£) is said to be an F-groupoi d if there
is a groupoid G () such that A (f) is an n-subgroupoid of G (x) for every
n-ary operator fC F; then we also say that 4 (F) is an F-subgroupoid of
G (*). An algebra A (F) is said to be a weak Fgroupoid if for every
sequence of operators fi,..., fy, g1,..., &s¢ F such that:

Ji€ Fappa, 83 € ij-i-h ...t =n=m+...+m (4.1)
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the following identity is satisfied in 4 (F):
frooSrXo o Xp=81---8 %0+ Xn- 4.2)
4.1. Every F-groupoid is a weak F-groupoid.

Proof. Let A (F) be an F-subgroupoid of a groupoid G (), and assume
that (4.1) is satisfied. If a,, ..., @, € A then we have:

Sroorag. .ay =%"Gy ... 0y =81...8: - Cn>
i.e. (4.2) is an identity in A (F). []

Let J, be the following set of integers:

Jp={n| Farr= T},

and denote by dp the greatest common divisor of the numbers belonging to Jp. g

4.2. Every weak F-groupoid is an F-groupoid iff dg € Jp.

Proof. Let d=dp € Jp, fC Fay, and let A(F) be a weak F-groupoid.
By 1.1, A(f) is a d+ 1-subgroupoid of a groupoid U(e). If g € Fuys, then
d is a divisor of m, and by (4.2) we have:

8Xg. Xp =S x5 .. Xy =0"x,...%Xm,

and this implies that 4 (F) is an F-subgroupoid of U (e).

Assume now that dp¢EJp. Then, if n is the least element of Jp there
is an element m ¢ Jp which is not divisible by n, and we shall assume that
m is the least element of Jp with that property. Define an algebra A (F)
in the following way:

@) Ad={a,b,c}, aEbFca;

(i) f€ Fpy1=>Sa...an =a if a, == c for some y and fem+1 = b;

(iii) g€ Fyiy ksFm=g8dp...0; =a.

It is easy to see that A (F) is a weak F-groupoid. 4 (F) is not an
F-groupoid, for if 4 (F) were an F-subgroupoid of a groupoid G () and if
FE Futy, &€ Fyyy then we would have:

b chm""l = s—n g oM+l — g M—n aem—n =

= xM—n gaﬂ-l-l em—n — *T aﬂ-}-l cm—n =fa*!l+l cm—n

=aq. D
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If £ is a class of groupoids we can ask for an axiom system of the
class of F-subgroupoids of X-grupoids. We note that there are known con-
venient descriptions of F-sugroupoids of semigroups ([2], 5) ,and F-subgrou-
poids of cancellative semigroups ([5], 3).
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I'. Yyiiona
3A #-TPYIIOMJUTE
(Pezume)

Bo paboTaBa ce TOKaxyBa JeKa CEKOj n-IPYHOMJ € n-NOATPYNOHA
ga rpymoua. Ce [aBa ONHC HAa KJAcara n-NOATPYNOMAM HA TIPYNOHIM CO
KpaTeme Kako W HA KJIAcaTa A-NOATPYHOHJM Of KOMYTATHBHH TDYNOM/UL
Ce pasriefysa W TOONIITOTO TPAUIAHE 334 CMECTyBaie Ha MPOM3BOIHH
anreGpH BO IPYNOMAM H ce JOKakKyBa JieKa kiacara F-rpynowjs e MHOro-
KPATHOCT aKKO TOCTOM 7n-apeH Onepatop fE F raxos mro n— 1 e Jaenuten
Ha m— | 3a cexoj m — apeH onepatop g€ F.



