n-SUBSEMIGROUPS OF SOME COMMUTATIVE SEMIGROUPS

G. Čupona

A subset Q of a semigroup S is said to be an n-subsemigroup of S if: $a_1, \ldots, a_n \in Q \Rightarrow a_1 \ldots a_n \in Q$. Then, by $[x_1, \ldots x_n] = x_1 \ldots x_n$ is defined an associative n-ary operation [] on Q, i.e. (Q; []) is an n-semigroup. If C is a class of semigroups, then the class of n-semigroups that are n-subsemgroups of C-semigroupes is denoted by C(n). A variety of semigroups C is called an n-variety of semigroups iff C(n) is a variety of n-semigroups. (Clearly, every variety of semigrops is a 2-variety.) The set of n-varieties of semigroups and its complement, in the set of varieties of semigroups, are infinite for any $n \geqslant 3$. ([1], [2], [3], [4]) It is also known that the set of n-varieties of commutative semigroups is infinite. ([2]) Here we show that if $n \geqslant 3$ then the set of varieties of commutative semigroups that are not n-varieties is also infinite.

Further on, by a semigroup (n-semigroup) we will mean a commutative semigroup (commutative n-semigroup).

A variety of semigroups is defined by a set of identities of the following form:

$$x_1^{i_1} x_2^{i_2} \dots x_p^{i_p} = x_1^{j_1} x_2^{j_2} \dots x_p^{j_p},$$
 (*)

where: x_1, x_2, \ldots are variables; i_v , j_v are nonnegative integers such that $(\sum i_v)(\sum j_v) > 0$. If $i_v = j_v$, for each v, then (*) is called a trivial identity. (As usualy, variables will be also denoted by x, y, z, \ldots).

Let m, s, n, k be positive integers such that $s+2 \le m$, $m \ne 2s+1$, $m \ne 2s+2$, $m \equiv 1 \pmod{n-1}$ and $m+2 \le k$. Consider the following two identities:

$$x^{s} y^{m-s} = x^{s+s} y^{m-s-1},$$
 (m, s)

$$x_1 x_2 \dots x_k = x_1^2 x_2 \dots x_k.$$
 (k)

Denote by (m, s; k) the set of the given two identities, and by $(m, s; k)^n$ the set of identities (*) which are consequences of (m, s; k) and the exponents satisfy the following condition:

$$\sum i_{\nu} \equiv \sum j_{\nu} \equiv 1 \pmod{n-1}$$
.

3 Годишен зборник

Every identity (*) which belongs to $(m, s; k)^n$ induces an identity

$$[x_1^{i_1} \cdot \cdot \cdot x_p^{i_p}] = [x_1^{j_1} \cdot \cdot x_p^{j_p}]$$
 [*]

of *n*-semigroups. We denote by $[m, s; k]^n$ the set of identities [*] such that (*) is in $(m, s; k)^n$.

It is clear that if $x^s y^{m-s} = x^i y^j$ is in $(m, s; k)^n$, then i = s, j = m - s, i.e. $[m, s; k]^n$ does not contain a nontrivial identity $[x^s y^{m-s}] = [x^i y^j]$.

Consider the variety $C^{(m,s;k)}$ of semigroups defined by (m,s;k). We will show namely that $C^{(m,s;k)}$ is not an *n*-variety. To prove this statement it is enough to find an *n*-semigroup (Q;[]) which satisfies all identities belonging to $[m,s;k]^n$, but does not belong to $C^{(m,s;k)}$ (n).

Let a, b, c be three different objects and let (Q; []) be the n-semigroup with a presentation

$$< a, b, c; [a^{s+2}c^{m-s-2}] = [b^{s+2}c^{m-s-2}] >$$
 (**)

in the variety of n-semigroups defined by $[m, s; k]^n$. Let us give a more explicit construction of (Q; []). First, let (F; []) be the free n-semigroup with a basis $B = \{a, b, c\}$ in the variety defined by $[m, s; k]^n$. In other words F consists of all, commutative products of powers $[a^i \ b^j \ c^p]$, such that: $i, j, p \ge 0$, $i + j + p \equiv 1 \pmod{n-1}$, and the equality

$$[a^{j}b^{j}c^{p}]=[a^{i'}b^{j'}c^{p'}]$$

holds in F iff the following identity

$$[x^i y^j z^p] = [x^{i'} y^{j'} z^{p'}]$$

is in $[m, s; k]^n$. The operation [] is defined in the usual way, i.e. by the following equation:

$$[[a^{i_1}b^{j_1}c^{p_1}]\cdots [a^{i_n}b^{i_n}c^{p_n}]] = [a^{i_1}+\cdots+i_nb^{j_1}+\cdots+j_nc^{p_1}+\cdots+p_n].$$

Consider the minimal congruence \approx on (F; []) such that

$$[a^{s+2} c^{m-s-2}] \approx [b^{s+2} c^{m-s-2}].$$

Namely \approx is defined in the following way. If $u = a^j b^j c^k$ is such that $i + j + k \equiv 0 \pmod{n-1}$, then:

$$[u \, a^{s+2} \, c^{m-s-2}] \sim [u \, b^{s+2} \, c^{m-s-2}]$$
 and $[u \, b^{s+2} \, c^{m-s-2}] \sim [u \, a^{s+2} \, c^{m-s-2}]$.

Now, \approx is the transitive and reflexive extension of \sim , i.e. $u \approx v$ iff there exist $u_0, \ldots, u_t \in F$ such that $u = u_0, v = v_t, t \geq 0$, and $u_{t-1} \sim u_t$ if $i \geq 1$. Then $(F/\approx;[])$ is the desired *n*-semigroup (Q;[]). We can assume that $a, b, c \in Q$.

Let us show that $[a^s c^{m-s}] \neq [b^s c^{m-s}]$ in (Q; []). Namely, we first conclude that if $[a^s c^{m-s}] = [a^i b^j c^p]$ in F, then i = s, j = 0, p = m - s. We also have that $[a^s c^{m-s}] \sim' [a^i b^j c^p]$, for any i, j, p, and therefore $[a^s c^{m-s}] \approx' [b^s c^{m-s}]$, i.e. $[a^s c^{m-s}] \neq [b^s c^{m-s}]$ in (Q; []).

Now, it is easy to show that (Q; []) does not belong to $C^{(m,s;k)}$ (n). Namely, if (Q; []) were an *n*-subsemigroup of a semigroup $S \in C^{(n,s;k)}$, then we would have

$$a^{s} c^{m-s} = a^{s+2} c^{m-s-1}$$

$$= a^{s+2} c^{m-s-2} c$$

$$= b^{s+2} c^{m-s-2} c$$

$$= b^{s+2} c^{m-s-1}$$

$$= b^{s} c^{m-s}$$

in S, and this would imply the equality $[a^s c^m - s] = [b^s c^m - s]$ in (Q; []).

Clearly, if $m+2 \le k' < k''$ then $C^{(m,s;k')}$ is a proper subvariety of $C^{(m,s;k'')}$, and thus if s and m are fixed positive integers such that $s+2 \le m$, $m \ne 2s+1$, $m \ne 2s+2$, $m \equiv 1 \pmod{n-1}$ then we have an infinite set of varieties $\{C^{(m,s;k)} | k \ge n+2\}$ of commutative semigroups which are not n-varieties.

Denote by $C^{(m,s)}$ ($C^{(k)}$) the variety of semigroups defined by the identity (m,s) ((k)). From the above considerations it follows that $C^{(m,s)}$ is not an n-variety. Namely, we notice again that there is not a nontrivial identity $[x^sy^m-s]=[x^iy^j]$ in $[m,s]^n$. And, the n-semigroup (Q;[]) with a presentation (**) in the variety of n-semigroups defined by $[m,s]^n$ is not an n-subsemigroup of a semigroup belonging to $C^{(m,s)}$.

But, the variety $C^{(k)}$ is an *n*-variety for every pair of positive numbers n, k such that $n \ge 2$. (Namely, the assumption $k \ge n + 2$ is not necessary.), First we notice that (*) is a consequence of (k) if $i_v = j_v$ for each v or $\sum i_v \ge k$, $\sum j_v \ge k$ and $i_v > 0 \Leftrightarrow j > 0$. This gives a complete description of $[k]^n$, as well.

Assume now that (Q; []) is an *n*-semigroup which satisfy any identity of $[k]^n$, i.e. each identity [*] such that

$$\Sigma j_{y} \equiv \Sigma j_{y} \equiv 1 \pmod{n-1}, \quad \Sigma i_{y} \geqslant k, \Sigma j_{y} \geqslant k$$

and $i_{y} > 0 \Leftrightarrow j_{y} > 0$.

We have to show that (Q; []) is an *n*-subsemigroup of a semigroup belonging to $C^{(k)}$.

Let $n \ge k$, and let a binary operation \cdot be defined on Q by:

$$x \cdot v = [x \ v^{n-1}].$$

Then it easy to see that $(Q; \cdot)$ is a semigroup in $C^{(k)}$, and moreover that

$$x_1x_2\ldots x_n=[x_1x_2\ldots x_n],$$

and therefore (Q; []) is an *n*-subsemigroup of $(Q; \cdot)$.

In the general case, we consider the semigroup S with a presentation

$$< Q; \{a = a_1 \dots a_n \mid a = [a_1 \dots a_n] \text{ in } (Q; [])\} >$$

in the variety $C^{(k)}$, and we have to show that:

$$a, b \in Q \Rightarrow (a = b \text{ in } S \Rightarrow a = b \text{ in } Q),$$

but here we will not give the complete proof of this statement.

REFERENCES

- Марковски С.: За дистрибутивните полугрупи, Год. збор. Матем. фак. Скопје 30 (1979), 15—27
- [2] Марковски С.: За една класа полугрупи, Математички Билтен Кн. 1 (XXVII) 29—36
- [3] Чупона Г.: Полугрупи генерирани од асоцијативи. Гол. зборн. ПМФ Ског је Секц. А 15 (1964), 5—25
- [4] Čupona G.: n-subsemigroups of semigroups satisfying the law $x^r=x^{r+m}$, Год. зборник Матем. фак. Ско.: je, 30 (1979), 5—14

Г. Чуйопа

п—потполугрупи од некои комутативни полугрупи

Резиме

Во работава се покажува дека множеството многубразија M комутативни полугрупи, такви што M(n) (т.е. класата од n-потполугрупи од M-полугрупи) е вистинско квазимногуобразие, е бесконечно, за секое n > 3.