Proceedings of the Symposium n-ARY STRUCTURES, Skopje 1982

WORD PROBLEM FOR n-GROUPS Biljana Janeva

In this paper original results will not be presented. As a direct consequence of a property for presentations of n-groups a connection between some known resuts for solvability of the word problem for presentations of groups and presentations of n-groups will be given. Also, some interesting open problems for presentations of n-groups and n-semigroups will be pointed out.

1. Presentations of n-groups

Let $B\neq\emptyset$, $B'=B\cup B^{-1}$ and $F'=F_{B'}^{(n)}$ be the free n-semigroup generated by B'. Let Λ be a set of words $w=b_1^{-1}b_2^{-2}\dots b_k^{-\alpha_k}$, $b_i\in B$, $\alpha_i\in \mathbb{Z}$, such that $|w|=\alpha_1+\dots+\alpha_k\equiv 0\ (\text{mod } n-1)$.

Define a relation \sim of two words u and v in F´, as follows:

- (i) $u=u_1bb^{-1}u_2$, $b\in B'$, $v=u_1u_2 \Longrightarrow u \sim v$
- (ii) $u=u_1wu_2$, $v=u_1u_2$, $w\in \Lambda \Longrightarrow u \sim v$
- (iii) $u \sim v$ iff there exists a sequence u_0, u_1, \dots, u_s such that $u=u_0$, $v=u_s$, and $u_i \sim u_{i+1}$ (i=0,1,...,s-1) by (i) or (ii).

The relation \sim is a congruence on F´ and F´ \sim is an n-group. We say that the n-group F´ \sim has a presentation $\langle B; \Lambda \rangle_n$. The presentation $\langle B; \Lambda \rangle_2$ is a presentation of a group and we will denote it simply by $\langle B; \Lambda \rangle$.

For the presentations $\langle B; \Lambda \rangle_n$ and $\langle B; \Lambda \rangle$ the following properties are valid ([1]):

 1.1° $\langle B; \Lambda \rangle_{\hat{n}} = \langle B; \Lambda \rangle$, where $\langle B; \Lambda \rangle_{\hat{n}}$ is the universal covering of $\langle B; \Lambda \rangle_{\hat{n}}$.

 1.2° The presentation $\langle B; \Lambda \rangle_n$ has a solvable word problem iff its universal covering $\langle B; \Lambda \rangle$ has.

Having in mind the properties 1.1° and 1.2° for presentations of n-groups and the fact that every presentation of group with one defining relator has a solvable word problem ('31) it is obvious that the presentations of n-groups with one defining relator have a solvable word problem. The algorithm is the same as for presentations of groups with one defining relator.

We can notice here again that the defining relators of the set Λ of the n-group $\langle B; \Lambda \rangle_n$ have a special form, i.e. the sum of their exponents is congruent modulo n-1. The known examples of finite presentations of groups with unsolvable word problem do not have this property, so we do not have examples of presentations of n-groups, $n \geq 3$, with an unsolvable word problem.

2. Presentations of n-semigroups

Let $B \neq \emptyset$ and $F = F_B^{(n)}$ be the free n-semigroup generated by B, (i.e. consists of all words $w = b_1 \dots b_p$, $b_1 \in B$, such that $p \equiv 1 \pmod{n-1}$, and let the n-ary operation [1] on F be defined by:

$$[w_1...w_n] = w_1...w_n$$

Let $\Lambda: F \times F$ and Λ^* be the congruence over F generated by Λ . Then $Q=F/\Lambda^*$ is an n-semigroup, and we say that $\langle B; \Lambda \rangle_n$ is a presentation of the n-semigroup Q.

Like before, denote the presentation of the semigroup $\langle B; \Lambda \rangle_2$ by $\langle B; \Lambda \rangle$. For the presentations $\langle B; \Lambda \rangle_n$ and $\langle B; \Lambda \rangle$ the following property is valid ([1]):

$$2.1^{\circ}$$
 $\langle B; \Lambda \rangle_{\hat{n}} = \langle B; \Lambda \rangle$

Concerning the property 1.2° for n-groups, for the presentations of n-semigroups it is only clear that if the semigroup $\langle B; \Lambda \rangle$ has a solvable word problem so does $\langle B; \Lambda \rangle_n$. Also, if $\langle B; \Lambda \rangle_n$ is an n-semigroup with a left (right) cancellation property, then if $\langle B; \Lambda \rangle_n$ has a solvable word problem, so does $\langle B; \Lambda \rangle$.

We point out the following open problems for presentations of n-semigroups:

- I. Is there a presentation of an n-semigroup with an unsolvable word problem?
- II. Let there exist an algorithm for solving the word problem for $\langle B; \Lambda \rangle_n$. Is there an algorithm for solving the word problem of its universal covering?

REFERENCES

- G. Čupona, N. Celakoski, Polyadic subsemigroups of semigroups, Algebraic conference, Skopje 1980, 131-152
- [2] R.C.Lyndon, On Dehn's algorithm, Math.Ann 166(1966) 208-228
- [3] W.Magnus, Das Identitäs problem für Gruppen mit einer definierenden Relation, Math.Ann, 106 (1932) 617-646

Faculty of Mathematics, Skopje, P.O.Box 504, Yugoslavia