Algebraic conference N O V I S A D 1981

POLYNOMIAL SUBALGEBRAS G. Čupona and S. Markovski

A polynomial subalgebra of an algebra $A=(A,\bigcirc)$ is a subset B of the carrier of the algebra which is closed under the polynomials belonging to a set of \bigcirc -polynomials. In this paper polynomial subalgebras are considered, together with a few properties and examples. A special attention is given to the polynomial subalgebras of the algebras belonging to a variety.

1. Throughout the paper O and O' will be two sets of operational symbols and $X = \{x_1, x_2, \ldots, x_n, \ldots\}$ will be the set of individual variables. By O_X will be denoted the set of all O -polynomials, i.e. $O_X = \operatorname{Term} (O)$. If $P \in O_X$ and if each variable that occurs in P is in the set $\{x_1, \ldots, x_n\}$, then we will usually write $P = P(x_1, \ldots, x_n)$. Let $P = P(x_1, \ldots, x_n)$. Let $P = P(x_1, \ldots, x_n)$. The mapping $P = P(x_1, \ldots, x_n)$ induces a mapping from $P = P(x_1, \ldots, x_n)$. The mapping $P = P(x_1, \ldots, x_n)$ induces a mapping from $P = P(x_1, \ldots, x_n)$ into $P = P(x_1, \ldots, x_n)$ defined by: (i) $P = P(x_1, \ldots, x_n)$.

Let \underline{A} be an \bigcap -algebra, \underline{A} an \bigcap -algebra and $\phi: A + A$ a mapping such that $\phi(f_{\underline{A}}(a_1,\ldots,a_n)) = f_{\widehat{\underline{A}}}(\phi(a_1),\ldots,\phi(a_n))$ for each $f \in \bigcap$ (n) and $a_1,\ldots,a_n \in A$. The mapping ϕ in this case will be called a \wedge -homomorphism from \underline{A} into \underline{A} . Moreover, if $\underline{A} \subseteq \underline{A}$ and if the embedding of \underline{A} into \underline{A} is a \wedge -homomorphism, then \underline{A} is said to be a \wedge -subalgebra of \underline{A} . (We will sometimes say polynomial homomorphism (polynomial subalgebra) instead of \wedge -homomorphism (\wedge -subalgebra).)

If \underline{A} is an \underline{C}' -algebra, then an \underline{C} -algebra \underline{A}' by the same carrier \underline{A}' is defined by: $\underline{f}_{\underline{A}}'$ ($\underline{a}_1',\ldots,\underline{a}_n'$) = $\underline{f}_{\underline{A}}'$ ($\underline{a}_1',\ldots,\underline{a}_n'$), for each $\underline{f}\in\underline{C}'$ (n) and $\underline{a}_1',\ldots,\overline{a}_n'\in\underline{A}'$. We say that \underline{A}' is induced from \underline{A}' by \underline{A} .

Let \square be a class of \square -algebras and \square be a class of \square -algebras. Then by \square will be denoted the class of \square -algebras which are \triangle -subalgebras of \square -algebras belonging to \square , and by \square the class of \square -algebras \triangle such that all \triangle -subalgebras of \triangle are in \square . We say that a pair (\square , \square) is \triangle -compatible if each algebra \triangle \square is a \triangle -subalgebra of an algebra \triangle \square such that \square \square \square

The following properties give some connections between \mathbb{C}' , \mathbb{C}^{\wedge} and \mathbb{C}' .

- $\underline{1}^{\circ}$. (a) If $\mathbb C$ is a class of $\mathbb O'$ -algebras and $\mathbb C'$ a class of $\mathbb O'$ -algebras, then: ${}^{\circ}(\mathbb C^{\circ})\subseteq \mathbb C$, $\mathbb C'\subseteq ({}^{\circ}\mathbb C')^{\circ}$.
- (b) The equation $^(C^*) = C$ holds iff each C^* -algebra $\underline{A} \in C$ is a Λ -subalgebra of an C^* -algebra \underline{A}' such that each Λ -subalgebra of \underline{A}' is in C.
- (c) The equation $(^{^{^{\prime}}})^{^{\prime}} = [^{^{\prime}} \text{ holds iff } [^{^{\prime}} \text{ contains any }]^{^{\prime}}$ -algebra \underline{A} such that every Λ -subalgebra \underline{A} of \underline{A} is Λ -subalgebra of \underline{A} " \in $[^{\prime}]$.
 - $\underline{2}^{\circ}$. If ([], []') is a \land -compatible, then [] [] []'.
- 3° . If C' is a quasivariety of G'-algebras, then ^C' is also a quasivariety of G'-algebras. ([8], p. 274).

We note that there are known infinite many varieties of O'-algebras C' such that ^C' is a proper quasivariety. This suggests to look for a description of the set of varieties C' of O'-algebras such that ^C' to be also a variety of O'-algebras.

 $\underline{4}^\circ$. Let \underline{C}' be a variety of \underline{O}' -algebras and \underline{A} be an \underline{O} -algebra. Let \underline{F}' be the \underline{O}' -algebra which is freely generated by \underline{A} in \underline{C}' and let $\underline{\rho}$ be the least congruence on \underline{F}' such that:

 $a = f_{\underline{A}}(a_1, \dots, a_n) \text{ in } A \implies a \text{ } \rho \text{ } f_{\underline{F}}^{\bullet}(a_1, \dots, a_n) \text{.}$ Then $A \in {}^{\bullet}\!\!C'$ if the following condition is satisfied:

 $a,b \in A \Rightarrow (apb \Rightarrow a=b)$.

- $\underline{5}^{\circ}$. Let $\mathbb{C}' = \operatorname{Var}_{\mathbb{C}'}$, Σ' be a variety of \mathbb{C}' -algebras defined by a set of identities Σ' . Denote by $\langle \Sigma' \rangle$ the set of identities which are consequences from Σ' , i.e. which hold in all \mathbb{C}' -algebras belonging to \mathbb{C}' , and denote by $^{\circ}\Sigma'$ the set of \mathbb{C}' -identities $p \equiv q$ such that $p^{\circ} \equiv q \in \langle \Sigma' \rangle$. Then $^{\circ}\mathbb{C}'$ is a variety iff $^{\circ}\mathbb{C}' = \operatorname{Var}^{\circ}\Sigma'$. And, if $^{\circ}\mathbb{C}'$ is the variety of all \mathbb{C}' -algebras then $^{\circ}\Sigma'$ consists of trivial identities, i.e. the identities of the form $p \equiv p$, where $p \in \mathbb{C}'$
- $\underline{6}^{\circ}$ Let $\mathbb{C} = \operatorname{Var}_{\mathfrak{T}} \Sigma$, $\mathbb{C}' = \operatorname{Var}_{\mathfrak{T}'} \Sigma'$ be such that $\mathbb{C} \subseteq {}^{\circ}\mathbb{C}'$. Denote by Σ'' the following set of \mathfrak{T}'' -identities:

$$\{p^* \equiv q^* \mid p \equiv q \in \Sigma\} \cup \Sigma^*$$
,

- and let [" = Var $_{\mathbb{C}}$ ". Then the pair ([, [') is $_{\sim}$ -compatible iff [' \subset [".
- 7° . If (' is an axiomatizable class of ('-algebras, then (can be defined by a system of open formulas. ([7]).
- $\underline{8}^{\circ}$. Let Σ' be a class of \bigcup' -identities satisfying the following condition:
- (**) If u',v' are finite sequences on $O' \cup X$, $p' \in O_X$ and if there is a $q' \in O_X$ such that $u'p'v' = q' \in C'$, then there is a $q'' \in C'$ such that $u'xv' = q'' \in C'$, where x is a variable which does not occur in u'p'v'.

Then 'Var (5]' is a variety of (-1)-algebras ([5]).

- $\underline{2}$. Now, we will state some results concerning special classes of algebras, which will throw better look on the properties $1^{\circ}-8^{\circ}$.
- 1) Let $\underline{\text{Sem}}$ be the variety of semigroups. If $0 = \{\cdot\} = 0 (2)$ and if $p(x_1, \ldots, x_n) \in 0_X$, then by the associative law an (2) identity of the form $p \equiv x_1 x_2 \dots x_n$ holds in $\underline{\text{Sem}}$, where $i_v \in \{1, 2, \ldots, n\}$. Thus, we can assume that if $0 = x_1 x_2 \dots x_n$ is a variety of semigroups, then $0 = x_1 x_2 \dots x_n$, where $x_1 x_2 \dots x_n = x_n \dots x_n = x_n \dots x_n \dots x_n \dots x_n = x_n \dots x_n \dots x_n \dots x_n \dots x_n \dots x_n = x_n \dots x$

The following result is known as Cohn-Rebane's theorem ([1] page 185):

If \underline{A} is an \mathbb{O} -algebra, then there is a semigroup \underline{S} and a mapping $f \mapsto \overline{f}$ of \mathbb{O} into S such that $A \subseteq S$ and $f_{\underline{A}}(a_1, \ldots, a_n) = \overline{f}a_1 \ldots a_n$ for each $f \in \mathbb{O}'(n)$ and all $a_1, \ldots, a_n \in A$. Then we say that \underline{A} is an \mathbb{O} -subalgebra of the semigroup \underline{S} . If \mathbb{O}' is a class of semigroups, then by $\mathbb{O}'(\mathbb{O}')$ will be denoted the class of \mathbb{O} -algebras which are \mathbb{O} -subalgebras of semigroups belonging to \mathbb{O}' . Thus, the Cohn-Rebane's theorem can be formulated as follows:

1.1) Sem (0) is the variety of all 0-algebras.

We will state some other results. First, we will give some definitions. If $p \in \mathcal{O}_X$ and if $b \in X \cup \mathcal{O}$, then $|p|_b$ is the number of occurences of the symbol b in p. Also, by Absem we denote the variety of commutative semigroups, and by $\underline{C}_{r,m}$ the variety Absem $(x^r = x^{r+m})$, where r and m are positive integers. Then we have:

- 1.2) $\underline{A} \in \underline{Absem}$ (\underline{O}) if \underline{A} satisfies any identity p = q, where $p,q \in \underline{O}_X$ are such that $|p|_b = |q|_b$, for each $b \in \underline{O} \cup X$ ([10]).
 - 1.3) $\underline{\mathbf{c}}_{r,m}(\mathcal{O})$ is a variety iff r=1 or $\mathcal{O} = \mathcal{O}(1)$. ([6]).

We note that, if $\widetilde{U}(0) = \emptyset$, then 1.1) and 1.2) are consequences from 8° . If in 1.1) or 1.2) we have $\widetilde{U}(0) = \emptyset$, $\widetilde{U}(0) \neq \emptyset$ (or in 1.3) $\widetilde{U} \neq \emptyset$), then the condition (**) of 8° is not satisfied.

- 2) Let $\widetilde{\mathbb{O}}=\{f\}=\widetilde{\mathbb{O}}(n)$, $\widetilde{\mathbb{O}}'=\{\cdot\}=\widetilde{\mathbb{O}}'(2)$ and $f^*=x_1x_2...x_n$. If $\widetilde{\mathbb{O}}'$ is a class of groupoids, then $^*\mathbb{O}'$ is denoted by $\widetilde{\mathbb{O}}'(n)$. Also, $\underline{\operatorname{Sem}}$ (xyz=xyxz, xyz=xzyz), $\underline{\operatorname{Sem}}$ (xyz=xyxz), $\underline{\operatorname{Sem}}$ (xyz=xyxz), $\underline{\operatorname{Sem}}$ (xyz=xyxz), will be denoted respectively by: $\underline{\mathbb{D}}$, $\underline{\mathbb{D}}^{\ell}$, $\underline{\mathbb{P}}_{r,m}$. And, $\underline{\operatorname{Sem}}_n$ is the class of n-semigroups, i.e. algebras with an associative n-ary operation.
 - 2.1) $\underline{\operatorname{Sem}}(n) = \underline{\operatorname{Sem}}_n$.
 - 2.2) $P_{r,m}(n)$ is a variety iff r=1 or n-1 is a divisor of m.
 - 2.3) $\underline{C}_{r,m}(n)$ is a variety for all r,m,n.

- 2.4) D(n) is a variety for every n.
- 2.5) $D^{\ell}(n)$ is a proper quasivariety for every $n \ge 3$.
- 2.6) Let Σ be a set of semigroup identities $p \equiv q$ such that $|p|_{\dot{1}} \equiv |q|_{\dot{1}} \pmod{n-1}$ (***)

for each $i=1,2,\ldots$, where $n\geq 3$, and let $\binom{\prime}{}=\underline{\operatorname{Sem}}(\Sigma)$. Then $\binom{\prime}{}(n)$ is a variety. (We note that this result is a corrolary from $\underline{8}^{\circ}$; and, conversely, if a variety $\binom{\prime}{}=\underline{\operatorname{Sem}}(\Sigma^{\prime})$ satisfies the condition (**) of $\underline{8}^{\circ}$, then (***) is satisfied for every identity $p\equiv q\in \Sigma^{\prime}$.)

The above results are proved in the papers [3], [4], [5], [9]. Some of the results in 1) and 2) suggest the following conjecture: If () is a variety of semigroups such that () is a variety of ()-algebras for every (), then ()'(n) is a variety of n-semigroups for every () 2.

- 3) If \underline{R} is a ring, then by 1.1) there is a semigroup \underline{s} and a pair of elements $a,b \in S$ such that x+y=axy, $x \cdot y = bxy$ (" \bullet " is the multiplication in the ring \underline{R}). But, if \underline{S} is a semigroup with at least two elements, and if the operations + and \bullet defined on \underline{S} by: x+y=axy, $x \cdot y = bxy$, where $a,b \in S$, then $(S;+,\bullet)$ is never a ring. This example shows that it can happen a pair (C,C') to be not \wedge -compatible, although C,C'. In [2] there are given several examples of such noncompatible pairs. We note that in each of the examples 1.1)-1.3, 2.1)-2.4) we have a compatible pair of varieties.
- 4) Now we will finish our considerations by an example of a variety $C' = Var\Sigma'$ such that C' is not a variety although Σ' does not contain non trivial identities. Namely, let $C' = C'(2) = \{\cdot\}$, $C = C(3) = \{f\}$, and $f' = (x_1x_2)x_3$. If $E' = \{(((x_1x_2)x_1)x_2)x_1 = ((x_1x_1)x_1)(x_2x_2)\}$, then Σ' does not contain nontrivial identities, but Σ' is a proper subclass of the class of ternary groupoids (i.e. algebras with a ternary operation).

REFERENCES

- [1] Cohn P.M.: Universal Algebra, New York 1965
- [2] Čupona G.: Za teoremata na Kon-Rebane, God. Zb. 20, 1970, 15-34
- [3] Čupona G.: n-subsemigroups of semigroups satisfying the law $x^r = x^{r+m}$, God. Zb. Mat. fak. 30, 1979, 5-14
- [4] Čupona G., Celakoski N.: Polyadic Subsemigroups of Semigroups, Algebraic Conference, Skopje 1980, 131-152
- [5] Čupona G., Markovski S.: Smestuvanje na univerzalni algebri, God. Zb. 25-26, 1976, 15-34
- [6] Čupona G., Crvenković S., Vojvodić G.: Subalgebras of commutative semigroups satisfying the law x^r = x^{r+m} Zbor.rad.PMF Novi Sad br. 11.1981(to appear)
- [7] Los J.: On the extending of models (I), Fund. Math. 42, 1955, 38-54
- [8] Maljcev A.I.: Algebraičeskie sistemi, Moskva 1970
- [9] Markovski S.: Za distributivnite polugrupi, God. Zb. Mat. fak. 30, 1979, Skopje
- [10] Rebane Ju. K.: O predstavlenii universalnih algebar v komutativnih polugruppah, Sib. Mat. žurn. 7, 1966, 878-885