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EMBEDDING OF ALGEBRAS IN DISTRIBUTIVE SEMIGROUPS
S.Kalajdzievski

Abstract.Subalgebras of different kinds of distributive se-
migroups are considered in ([11] , (8] and ng . Here we make
corresponding investigations concerning left (right) semigroups.
We also esteblish some conections between e« -subalgebras and

n-subsemigroups of each of the classes of distributive semigro-
ups, whereas ¢ is an n-ary operator.

0. PRELIMINARIES

Necessary preliminary definitions and results will be sta=- !
ted first.

An Q-algebra A = (A;Q) is an Q-subalgebra of a semigroup
S = (83.) if ACS and there is a mapping Qw»@ from L2 into S,
such that

(1) (81,855 000y8,) =D8 850008
for every w¢fl(n), 81s85eees8,6 A (Q (i) denotes the set of all
i-ary operators in Q. ).

i e {u} =Q(n) =) , then instead of "{2-(sub)algebra" we say
">~-(sub)algebra. An w-algebra A = (Aj;w) is called an n-sub-
semigroup of a semigroup § = (83.) if weQd(n), n23, ASS and

(2) Q(al,az,...,an) = 81850008,

for all 8) 985900 2, € A,

Let V be a variety of semigroups. Then V(Q))(V(n)) denotes
the class of fl-subalgebras (n-subsemigroups, resp.) of semigro-
ups in V and V() (¥v(n)) denotes the variety of f)-algebras
( @ -algebras, resp.) defined by the set of all identities valid
in v(Q) ( v(n), resp. ). If VI (V(n)) is a variety then cle-
arly v = v ( ¥v(n) = V(n), resp.). But in general V(Q)
(V(n)) is a quasivariety [10, pg.254]. In several papers (cal,
131,141,061,171,(81,19],121] ,112),113] ) special varieties V are
considered and the corresponding answers whether V(Q) (V(n)) is
a proper quasivariety or a variety are given. One of the firsés
results is that SEM(Q) is the variety of all Q-algebras [1] ,

911



912

78

and the other is that SEM(n) is the variety of all n-semigro-
ups [4] , whereas SEM denotes the variety of all semigroups.

Here we are dealing with the following four varieties of
semigroups: The variety Dt @©F) of left (right, resp.) dis-
tributive semigroups, i.e. the variety defined by the left
(right, resp.) distributive law

(3) xyz = xyxz ( (3*) =xyz = x2y2 ) ,
the variety D = D{ﬂ.Dr of distributive semigroups and the
variety D° of commutative distributive semigroups.

It is shown in (111 that D(n) is a variety and that .'De(n),
DF(n) are proper quasivarieties of n-semigroups. We also
know ([3]) that DC is a member of an infinite get of varie-
ties JIt of commutative semigroups such that Mn) is a va-
riety. Concerning {)-subalgebras, we have ([81) that D)
is a variety of Q-algebras for any opecrator domain £2 and
(£91) that D Q) is a variety iff |.Q\ Q(0)| 1.

In this paper we are going to prove the following theorems:

THEOREM 1. DYQ) is & variety iff 0= Q(0UQL) .

THEOREM 2. D Q) is a variety iff Q= Q(O)UQ(1) zud
QLI < 1.
THEOREM 3. Let ¢« De an n-ary operator (n»3). The follow~
ing relations are satisfied:
i) D%n) = D°@)
ii) D@)CD(n), the inclusion is strict
iii) if pe{€,r} , then neither of the classes DP(n), DP@)
is a subclass of the other.

Before giving the proofs of the theorems we shall state
some lemmas which are obvious or easy to prove.

LEMMA O.l. Let V be an arbitrary variety of semigroups.
It Q= 0(0), then V) is a variety. If 0 #0(0), then
V@) is a variety iff V(Q\Q(0)) is a yariety.

Further on we assume that 2(0) = ¢ and that Q+# @.

TEMMA 0.2. If 2cQ'and DQ) (D°Q@) ) is 2 proper
quasivariety, then .'l)c(n_') (DFQ) ) is a proper guasivariety.

Let 5 be a word in an arbitrary alphabet. Denote the num-
ber of occurrences of symbols in E by a(g), the set of symbols
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occurring in § by c(!) and the i-th symbol in ¥ from left to
the right (the right to the left) by S(i) ( (i)g, TesP. ).

Two words § and m in an arbitrary alphabet are said to be
:‘_‘)‘—correlated if:s

a) C(S) = c("l) 1 !(1) ="'t(i)! i=1,2, (1)3 = (1)"'\_

b) the sequences of the first occurrences of the symbols
in § and m_are equal ( whereas !(i) is the first occurrence
of the symbol 's(i) in g if g(j) # S(i) for every j, j< i)

c) if (k) # (l)g for every k, Ockgd(g), then -\-L(k} ¥
# (1)m for every k, 0<kgdM™).

A word ¢ is said to be the inverse of a word m if d(g) =
= d(m) and ¥(i) = (i)n for every i, 0«igd(g) = dlm).

Two words € and m are sald to be q)r_—correlated if their
inverses are Df-correlated.

LEMMA 0.3. (C11]) A semigroup identity ¢ =m is yalid in
D¢ (DY) iff € and v are D~correlated (D =-correlated).

LEMMA O.4. An Q-identity =% is valid in Q) (D7Q) )
iff ¢ 2nd m azre oD8-correlated (JD -correlated).

1. PROOF OF THEOREM 1

First, let Q = Q(1).

Let A = (A4;Q) belong to the variety "T'I'D‘(Q). We shall show
that A€ DYQ), so that WOQ) = JQ).

Let ) = {S;0eQ} be a2 set of symbols such that AND =9
and OET D> ST for every @,ceQd. Let F(.) be the free semi-
group in the variety D¢ generated by the set Boua. Say that
u,veF(.) are «-neighbours or simply neighbours if u=ulec‘oob-u2,
v=u, *acly, for w(b)=a in A. Let & be the transitive and
reflexive extension of the relation of neighbourhood in F(.).

LEMMA 1.1. Relation 4« is a congruence on F(.).

Proof Let U =Vy and u2=:v2. Then uluezulvazvlve. ¢

Tet D(.) = F(.)/x= . We shall show that A is a subalgebra
of D(.).

Define a value, denoted by [ J, as a partial mapping from
F(.) into A by: [51652 asa] =@, e cos(a).

It is easy to see that:
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1°. [ ) is a well defined mapping, and that
2%, if u,v are neighbours and u is in the domain of [)
then v is also in the domain of [1 and ful] = Lv] .

2

The set A can be considered as a subset of D. For, if a=b
for some a,beA, then there is a .sequence a—-uo,ul,...,ut_l,ut:b
such that u;,u are neighbours (0< i<t-1) and a=ta1='[_u11 = ees
... =[b]=b.

The fact that @(a)=Ha for every «¢Q), agA is obvious.

Let Q#Q(1).

If « is an n-ary operator in Q (n3»2), then the quasiidentity

(4) ox" = cayn'lx—bmxzn'l = cayn-lw xz" ™t

i+l

is valid inDc(Q). Namely, for an arbitrary subalgebra A=(A3Q)
of a semigroup S(.) belonging to D¢ whose elements a,b satisfy
the relation «(a®) = o(bn'la), we have: c.)(acn']') = Es.a.cn_l =
- @a.etl = (™)L = @100 1a))ucB T - bR el -
=& L a.00l -Gl ga.o?] - SpP Ll a(ac?h)) -
=ca(bn-l&a(acn—l)} for every ceA. On the other hand, the
quasiidentity (4) is not a consequence of the identities in
D%). To prove that, consider the algebra A=(A;{w}), belonging
to the variety F%s) and generated by the set {a,b,c} , with
one defining relation between the generators: Q(an)dbn_la).
The relation q)(bn-lo(acn-l)) = o(acn_l) is not valid in A.
Roughly speaking, staerting with c.:)(acn-]‘), the element a remains
in the second and the element c in the last place after using
the identities in D%w). So, the defining relation can not be
used to change the element a in the second place, because of
the element ¢ in the last.

Thus, by Lemma 0.2 we have shown Theorenm 1.

2. PROOF OF THEOREM 2

Let 0 = {©} = Q(1). Utilizing Lemma 0.4 , we see that
¢ =% is an identity inD"@) iff (1)g = (1)n . On the other
hand; the class of f-algebras defined by the identity of that
type is precisely D (Q) (see [9]). Thus, if A€ W0 @Q), then
AeD(Q) and because D @cd @), Ac D'Q). We can now conclude
that OTQ) =DEQ) and that HTQ) is a variety.
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Let 0 ={w,t} =Q(1). The quasiidentity
(5) % =Tx—>Fx =
is valid in .Dr(Q) (proceed as for the quasiidentity (4)). An
example of an algebra A=(Aj{w,c})belonging to 'V.Br(Q) and - not
satisfying (5) is the following: A = {a,b,c}, @(x)=b for every
xeh, ©(a)=b, T(b)=c=a(c). We have «Xa)= w(a), but ae(a)='b;£

#c= 'cz(a). The algebra A belongs to V0¥ (Q) because every L -term

1 with d(g)} 3, has an interpretation in A equal to ¢ for
§(1)='t’ and to b for e(l)=cw.
Finally, let Q = {0} = Q(n), n22. The quasiidentity

n-1 1

(6) eyt = P axy® ™t =0yt

is valid in ;Dr(Q). To check that consider an Q-algebra A
belonging to HDT(Q) and its elements a and b satisfying the
relation c.xabn_l) = «Xa™). We have: Q(abn'l) = (a?) = D.a" =
=G.ata = Xat).a =Q(abn_l).a =¢'.5.a.bn-1.a -3t -
= Q(bn"la).

In order to prove that the quasiidentity (6) is not a con-
sequence of the identities valid in D) define an @=-algeb-
ra A=(4;Q) as follows: A = {a,b,c} ,

c if dn=c or dnzdn_l=b
Q(dl'dg"."dﬁ) = .
a otherwise .
We have o(bcn_l) = ¢ = (d®) and c.)(bcn"l) =c #as= r.)(cn-lb).
Thus (6) is not valid in A and it is obvious that _&sVDr(Q).
Now we can use Lemma 0.2 and the proof of Theorem 2 is
completed.

3. PROOF OF THEOREM 3

1°. It is easy to see that u = v is an identity in JD° iff
c(u) = c(v) and d(u),da(v)» 3 or it is a trivial one. Thus g =
= w is an identity in D @) or D%(n) iff c(g) = c(m) or it
is a trivial one. So, bearing in mind that both D) and
D°(n) are varieties ([83,[11]) we have proved the first part
of Theorem 3.

2%, An identity u = v is valid in D iff it is trivial or
c(u) = e(v), u(l) = v(1), (Lu = (L)v and d(u),d(v)> 3. Thus:

a) §=m is valid in D(w) iff c(s) = eM), (1)5 = (1)m
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and d(g),d(m) >3, or it is trivial. =

b) §=m is valid in D(n) iff c(g) = c(q), (L) = (1),
d(s),d(-q);a and g(i) =m(J) where 3(:1) and M (Jj) are the first
variable symbols occurring in ¥ and m respectively, or it is
trivial.

We can see that every identity valid in D(n) is valid in
D(w). Thus, because both classes are varieties ([9],[11])),
every algebra belonging to D (w) belongs to L{n). The converse
assertion is evidently not true. For example, the identity
wxy?t =c.)yxyn_2 is valid in D(w) but not in D(n).

3°. For an o©-term ¥, denote by § the scmigroup term obtained
from g by deleting every occurrence of an operator symbol in g -
An analogue of Lemma 0.4 is the following assertion: an iden-
tity ¥ =m is valid in D(n) (P"(n) ) iff § ana M are Df-cor-
related (JDr-correlated, resp.). Thus, it is easy to check
that:

a) The identity exy™ ! =cwx™ xy®™ ! is valid in D) and
not in-D‘(n). Conversely, Qx? = sze'a—l is valid in D% n) but
not in D).

b) The identity @X@yx-2"0 = Ffyx°2~2 is valid in o ()
but not in DT(n). Conversely,caxaayen_e = ngy2n-2
in :[)r(n) but not in D ().

is walid
Theorem % is proved.
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