EMBEDDING OF ALGEBRAS IN DISTRIBUTIVE SEMIGROUPS

S.Kalajdžievski

Abstract. Subalgebras of different kinds of distributive semigroups are considered in [11], [8] and [9]. Here we make corresponding investigations concerning left (right) semigroups. We also establish some conections between ω -subalgebras and n-subsemigroups of each of the classes of distributive semigroups, whereas ω is an n-ary operator.

O. PRELIMINARIES

Necessary preliminary definitions and results will be stated first.

An Ω -algebra $\underline{A} = (\underline{A}; \Omega)$ is an Ω -subalgebra of a semigroup $\underline{S} = (S; \cdot)$ if $\underline{A} \subseteq S$ and there is a mapping $\omega \mapsto \overline{\omega}$ from Ω into S, such that

(1) $\omega(a_1, a_2, \dots, a_n) = \overline{\omega}a_1 a_2 \dots a_n$ for every $\omega \in \Omega(n)$, $a_1, a_2, \dots, a_n \in A$ ($\Omega(i)$ denotes the set of all i-ary operators in Ω).

If $\{\omega\} = \Omega(n) = \Omega$, then instead of " Ω -(sub)algebra" we say " ω -(sub)algebra". An ω -algebra $\underline{A} = (A;\omega)$ is called an n-sub-semigroup of a semigroup $\underline{S} = (S; \cdot)$ if $\omega \in \Omega(n)$, $n \geqslant 3$, $A \subseteq S$ and (2) $\omega(a_1, a_2, \dots, a_n) = a_1 a_2 \dots a_n$

for all a, a, ..., a, & A.

Let V be a variety of semigroups. Then $V(\Omega)$)(V(n)) denotes the class of Ω -subalgebras (n-subsemigroups, resp.) of semigroups in V and $\widetilde{VV}(\Omega)$ ($\widetilde{VV}(n)$) denotes the variety of Ω -algebras (ω -algebras, resp.) defined by the set of all identities valid in $V(\Omega)$ (V(n), resp.). If $V(\Omega)$ (V(n)) is a variety then clearly $\widetilde{VV}(\Omega) = V(\Omega)$ ($\widetilde{VV}(n) = V(n)$, resp.). But in general $V(\Omega)$ (V(n)) is a quasivariety [10, pg.254]. In several papers ([2], [3],[4],[6],[7],[8],[9],[11],[12],[13]) special varieties V are considered and the corresponding answers whether $V(\Omega)$ (V(n)) is a proper quasivariety or a variety are given. One of the first results is that $SEM(\Omega)$ is the variety of all Ω -algebras [1],

and the other is that SEM(n) is the variety of all n-semigroups [4], whereas SEM denotes the variety of all semigroups.

Here we are dealing with the following four varieties of semigroups: The variety $\mathfrak{D}^{\mathfrak{c}}$ ($\mathfrak{D}^{\mathfrak{r}}$) of left (right, resp.) distributive semigroups, i.e. the variety defined by the left (right, resp.) distributive law

(3) xyz = xyxz ((3') xyz = xzyz), the variety D^{c} of distributive semigroups and the variety D^{c} of commutative distributive semigroups.

It is shown in [11] that D(n) is a variety and that $D^{c}(n)$, $D^{r}(n)$ are proper quasivarieties of n-semigroups. We also know ([3]) that D^{c} is a member of an infinite set of varieties M of commutative semigroups such that M(n) is a variety. Concerning Ω -subalgebras, we have ([8]) that $D^{c}(\Omega)$ is a variety of Ω -algebras for any operator domain Ω and ([9]) that $D(\Omega)$ is a variety iff $|\Omega \setminus \Omega(0)| \leq 1$.

In this paper we are going to prove the following theorems: THEOREM 1. $\mathcal{D}^{\ell}(\Omega)$ is a variety iff $\Omega = \Omega(0) \cup \Omega(1)$.

THEOREM 2. $\mathcal{D}^{r}(\Omega)$ is a variety iff $\Omega = \Omega(0) \cup \Omega(1)$ and $|\Omega(1)| \leq 1$.

THEOREM 3. Let ω be an n-ary operator (n > 3). The following relations are satisfied:

- i) $\mathcal{D}^{c}(n) = \mathcal{D}^{c}(\omega)$
- ii) $\mathcal{D}(\omega)\subset\mathcal{D}(n)$, the inclusion is strict
- iii) if $p \in \{\ell, r\}$, then neither of the classes $\mathcal{D}^{p}(n), \mathcal{D}^{p}(\omega)$ is a subclass of the other.

Before giving the proofs of the theorems we shall state some lemmas which are obvious or easy to prove.

LEMMA 0.1. Let V be an arbitrary variety of semigroups. If $\Omega = \Omega(0)$, then $V(\Omega)$ is a variety. If $\Omega \neq \Omega(0)$, then $V(\Omega)$ is a variety of semigroups.

Further on we assume that $\Omega(0)=\emptyset$ and that $\Omega\neq\emptyset$.

TEMMA 0.2. If $\Omega \subseteq \Omega'$ and $D'(\Omega)$ ($D^{T}(\Omega)$) is a proper quasivariety, then $D'(\Omega')$ ($D^{T}(\Omega')$) is a proper quasivariety.

Let ξ be a word in an arbitrary alphabet. Denote the number of occurrences of symbols in ξ by $d(\xi)$, the set of symbols

occurring in **g** by c(**g**) and the i-th symbol in **g** from left to the right (the right to the left) by **g**(i) ((i)**g**, resp.).

Two words ξ and η in an arbitrary alphabet are said to be \mathfrak{D}^{ℓ} -correlated if:

a) $c(\xi) = c(\eta)$, $\xi(i) = \eta(i)$, i = 1,2, $(1)\xi = (1)\eta$

b) the sequences of the first occurrences of the symbols in ξ and η are equal (whereas $\xi(i)$ is the first occurrence of the symbol $\xi(i)$ in ξ if $\xi(j) \neq \xi(i)$ for every j, j < i)

c) if $\xi(k) \neq (1)\xi$ for every k, $0 < k \le d(\xi)$, then $\eta(k) \neq 0$

 \neq (1) η for every k, $0 < k \le d(\eta)$.

A word ξ is said to be the <u>inverse</u> of a word η if $d(\xi) = d(\eta)$ and $\xi(i) = (i)\eta$ for every i, $0 < i \le d(\xi) = d(\eta)$.

Two words \mathbf{x} and $\mathbf{\eta}$ are said to be $\mathbf{D}^{\mathbf{r}}$ -correlated if their inverses are $\mathbf{D}^{\mathbf{r}}$ -correlated.

LEMMA 0.3. ([11]) A semigroup identity $\xi = \eta$ is valid in \mathcal{D}^{ℓ} (\mathcal{D}^{r}) iff ξ and η are \mathcal{D}^{ℓ} -correlated (\mathcal{D}^{r} -correlated).

LEMMA 0.4. An Ω -identity $\xi = \eta$ is valid in $\mathcal{D}^{\ell}(\Omega)$ ($\mathcal{D}^{r}(\Omega)$) iff ξ and η are \mathcal{D}^{ℓ} -correlated (\mathcal{D}^{r} -correlated).

1. PROOF OF THEOREM 1

First, let $\Omega = \Omega(1)$.

Let $\underline{A} = (A; \Omega)$ belong to the variety $\widetilde{VD}(\Omega)$. We shall show

that $\underline{\Lambda} \in \mathcal{D}^{\ell}(\Omega)$, so that $\widetilde{V}\mathcal{D}^{\ell}(\Omega) = \mathcal{D}^{\ell}(\Omega)$.

Let $\overline{\Omega} = \{\overline{\omega}; \omega \in \Omega\}$ be a set of symbols such that $A \cap \overline{\Omega} = \emptyset$ and $\omega \neq \tau \Rightarrow \overline{\omega} \neq \overline{\tau}$ for every $\omega, \tau \in \Omega$. Let F(.) be the free semigroup in the variety \mathcal{D}^{ϵ} generated by the set $\overline{\Omega} \cup A$. Say that $u, v \in F(.)$ are ω -neighbours or simply neighbours if $u = u_1 \cdot \overline{\omega} \cdot b \cdot u_2$, $v = u_1 \cdot a \cdot u_2$, for $\omega(b) = a$ in A. Let \approx be the transitive and reflexive extension of the relation of neighbourhood in F(.).

LEMMA 1.1. Relation \approx is a congruence on F(.).

Proof Let $u_1 \approx v_1$ and $u_2 \approx v_2$. Then $u_1 u_2 \approx u_1 v_2 \approx v_1 v_2$. ::

Let $D(.) = F(.)/\approx .$ We shall show that \underline{A} is a subalgebra of D(.).

Define a <u>value</u>, denoted by [], as a partial mapping from F(.) into A by: $[\overline{\omega}_1\overline{\omega}_2 \ldots \overline{\omega}_s a] = \omega_1\omega_2 \ldots \omega_s(a)$.

It is easy to see that:

1°. [] is a well defined mapping, and that
2°. if u,v are neighbours and u is in the domain of [] ,
then v is also in the domain of [] and [u] = [v] .

The set A can be considered as a subset of D. For, if $a \approx b$ for some a,beA, then there is a sequence $a = u_0, u_1, \dots, u_{t-1}, u_t = b$ such that u_i, u_{i+1} are neighbours $(0 \le i \le t-1)$ and $a = [a] = [u_1] = \dots = [b] = b$.

The fact that $\omega(a)=\bar{\omega}a$ for every $\omega\in\Omega$, as A is obvious. Let $\Omega\neq\Omega(1)$.

If ω is an n-ary operator in Ω (n>2), then the quasiidentity

(4)
$$\omega x^n = \omega y^{n-1} x \rightarrow \omega x z^{n-1} = \omega y^{n-1} \omega x z^{n-1}$$

is valid in $\mathcal{D}'(\Omega)$. Namely, for an arbitrary subalgebra $\underline{A}=(A;\Omega)$ of a semigroup S(.) belonging to \underline{D}' whose elements a,b satisfy the relation $\omega(a^n)=\omega(b^{n-1}a)$, we have: $\omega(ac^{n-1})=\overline{\omega}.a.c^{n-1}=\overline{\omega}.a^n.c^{n-1}=(\omega(a^n)).c^{n-1}=(\omega(b^{n-1}a)).c^{n-1}=\overline{\omega}.b^{n-1}.a.c^{n-1}.a.c^{n-1}=\overline{\omega}.b^{n-1}.a.c^{n-1}=\overline{\omega}.b^{n-1}.a.c^{n-1}=\overline{\omega}.b^{n-1}.a$

Thus, by Lemma 0.2 we have shown Theorem 1.

2. PROOF OF THEOREM 2

Let $\Omega = \{\omega\} = \Omega(1)$. Utilizing Lemma 0.4, we see that $\xi = \eta$ is an identity in $\mathcal{D}^r(\Omega)$ iff $(1)\xi = (1)\eta$. On the other hand, the class of Ω -algebras defined by the identity of that type is precisely $\mathcal{D}(\Omega)$ (see [9]). Thus, if $\underline{A} \in V\mathcal{D}^r(\Omega)$, then $\underline{A} \in \mathcal{D}(\Omega)$ and because $\underline{D}(\Omega) \subseteq \mathcal{D}^r(\Omega)$, $\underline{A} \in \mathcal{D}^r(\Omega)$. We can now conclude that $\underline{D}^r(\Omega) = \underline{D}(\Omega)$ and that $\underline{D}^r(\Omega)$ is a variety.

Let $\Omega = \{\omega, \tau\} = \Omega(1)$. The quasiidentity (5) $\omega x = \tau x \rightarrow \omega^2 x = \tau^2 x$

is valid in $\mathcal{D}^{\mathbf{r}}(\Omega)$ (proceed as for the quasiidentity (4)). An example of an algebra $\underline{A}=(A;\{\omega,\tau\})$ belonging to $\widetilde{VD}^{\mathbf{r}}(\Omega)$ and not satisfying (5) is the following: $A=\{a,b,c\}$, $\omega(x)=b$ for every $x\in A$, $\tau(a)=b$, $\tau(b)=c=\tau(c)$. We have $\omega(a)=\tau(a)$, but $\omega^2(a)=b\neq 0$ for $\tau(a)=b$. The algebra $\tau(a)=b$ belongs to $\tau(a)=b$ because every $\tau(a)=b$ every $\tau(a)=b$, with $\tau(a)=b$, has an interpretation in $\tau(a)=b$ equal to $\tau(a)=b$.

Finally, let $\Omega = \{\omega\} = \Omega(n)$, $n \ge 2$. The quasiidentity

(6)
$$\omega xy^{n-1} = \omega x^n \rightarrow \omega xy^{n-1} = \omega y^{n-1}x$$

is valid in $\mathfrak{D}^{r}(\Omega)$. To check that consider an Ω -algebra \underline{A} belonging to $\mathfrak{D}^{r}(\Omega)$ and its elements a and b satisfying the relation $\omega(ab^{n-1}) = \omega(a^{n})$. We have: $\omega(ab^{n-1}) = \omega(a^{n}) = \overline{\omega}.a^{n} = \overline{\omega}.a^{n}.a = \omega(a^{n}).a = \omega(ab^{n-1}).a = \overline{\omega}.a.b^{n-1}.a = \overline{\omega}.b^{n-1}.a = \omega(b^{n-1}a).$

In order to prove that the quasiidentity (6) is not a consequence of the identities valid in $\mathcal{D}^{r}(\Omega)$ define an ω -algebra $\underline{A}=(A;\omega)$ as follows: $A=\{a,b,c\}$,

 $\omega(d_1,d_2,\ldots,d_n) = \begin{cases} c & \text{if } d_n=c \text{ or } d_n=d_{n-1}=b \\ a & \text{otherwise} \end{cases}$

We have $\omega(bc^{n-1}) = c = \omega(b^n)$ and $\omega(bc^{n-1}) = c \neq a = \omega(c^{n-1}b)$. Thus (6) is not valid in \underline{A} and it is obvious that $\underline{A} \in \overline{VD}^r(\Omega)$.

Now we can use Lemma 0.2 and the proof of Theorem 2 is completed.

3. PROOF OF THEOREM 3

1°. It is easy to see that u = v is an identity in \mathcal{D}^{c} iff c(u) = c(v) and $d(u), d(v) \geqslant 3$ or it is a trivial one. Thus $\mathbf{g} = \mathbf{n}$ is an identity in $\mathcal{D}^{c}(\omega)$ or $\mathcal{D}^{c}(n)$ iff $c(\mathbf{g}) = c(\mathbf{n})$ or it is a trivial one. So, bearing in mind that both $\mathcal{D}^{c}(\omega)$ and $\mathcal{D}^{c}(n)$ are varieties ([8],[11]) we have proved the first part of Theorem 3.

2°. An identity u = v is valid in \mathcal{D} iff it is trivial or c(u) = c(v), u(1) = v(1), (1)u = (1)v and d(u), $d(v) \geqslant 3$. Thus:

a) $\mathbf{g} = \mathbf{\eta}$ is valid in $\mathcal{D}(\omega)$ iff $c(\mathbf{g}) = c(\mathbf{\eta})$, $(1)\mathbf{g} = (1)\mathbf{\eta}$

and $d(y), d(y) \geqslant 3$, or it is trivial.

b) $\xi = \eta$ is valid in $\mathfrak{D}(n)$ iff $c(\xi) = c(\eta)$, $(1)\xi = (1)\eta$, $d(\xi), d(\eta) \ge 3$ and $\xi(i) = \eta(j)$ where $\xi(i)$ and $\eta(j)$ are the first variable symbols occurring in ξ and η respectively, or it is trivial.

We can see that every identity valid in $\mathcal{D}(n)$ is valid in $\mathcal{D}(\omega)$. Thus, because both classes are varieties ([9],[11]), every algebra belonging to $\mathcal{D}(\omega)$ belongs to $\mathcal{D}(n)$. The converse assertion is evidently not true. For example, the identity $\omega xy^{n-1} = \omega yxy^{n-2}$ is valid in $\mathcal{D}(\omega)$ but not in $\mathcal{D}(n)$.

- \mathfrak{Z}° . For an ω -term \mathfrak{z} , denote by $\overline{\mathfrak{z}}$ the semigroup term obtained from \mathfrak{z} by deleting every occurrence of an operator symbol in \mathfrak{z} . An analogue of Lemma 0.4 is the following assertion: an identity $\mathfrak{z} = \eta$ is valid in $\mathfrak{D}^{\ell}(n)$ ($\mathfrak{D}^{r}(n)$) iff $\overline{\mathfrak{z}}$ and $\overline{\eta}$ are \mathfrak{D}^{ℓ} -correlated (\mathfrak{D}^{r} -correlated, resp.). Thus, it is easy to check that:
- a) The identity $\omega xy^{n-1} = \omega x^{n-1} \omega xy^{n-1}$ is valid in $\mathcal{D}^{\ell}(\omega)$ and not in $\mathcal{D}^{\ell}(n)$. Conversely, $\omega x^n = \omega^2 x^{2n-1}$ is valid in $\mathcal{D}^{\ell}(n)$ but not in $\mathcal{D}^{\ell}(\omega)$.
- b) The identity $\omega x \omega y x^{2n-3} = \omega^2 y x^{2n-2}$ is valid in $\mathfrak{D}^r(\omega)$ but not in $\mathfrak{D}^r(n)$. Conversely, $\omega x \omega y^{2n-2} = \omega^2 x y^{2n-2}$ is valid in $\mathfrak{D}^r(n)$ but not in $\mathfrak{D}^r(\omega)$.

Theorem 3 is proved.

REFERENCES

- 1. P.M.Cohn, <u>Universal</u> <u>Algebra</u>, D.Reidel, Publ.Comp. Dordrecht, Holand 1981
- 2. G.Čupona, n-subsemigroups of semigroups satisfying the identity $x^{r}=x^{r+m}$, God.Zbor.Mat.Fak. Skopje, 30, 1979, 5-14
- 3. G. Čupona, n-subsemigroups of some varieties of abelian semigroups, God. Zbor. Mat. Fak. Skopje, 31, 1981
- 4. G.Čupona, S.Markovski, Polynomial subalgebras, Algebraic conference, Novi Sad, 1981, 1-7
- 5. G.Čupona, G.Vojvodić, S.Crvenković, <u>Subalgebras of</u> abelian torsion groups, Algebraic conference, <u>Novi Sad</u>, 1981, 141-148
- 6. G.Čupona, G.Vojvodić, S.Crvenković, <u>Subalgebras of semilattices</u>, Univ. u Novom Sadu Zb.Rad.Prirod.-Mat.Fak. 10, 1980, 191-195

- 7. G. Čupona, S. Crvenković, G. Vojvodić, <u>Subalgebras of commutative semigroups satisfying the law x^r=x^{r+m}, Univ. u Novom Sadu Zb.Rad. Prirod.-Mat.Fak. 11, 1981</u>
- 8. S.Kalajdžievski, <u>Subalgebras of commutative distributive</u> semigroups, God.Zbor.Mat.Fak. Skopje, 32, 1981
- 9. S.Kalajdžievski, Subalgebras of distributive semigroups "n-ary structures", Skopje, 1982, 223-228
 - 10. А.И. Мальцев, Алгебраические системы, Мир, Москва, 1980
- 11. С. Марковски, За дистрибутивните полугрупи, Год. Збор. Мат. Фак. Скопје, 30, 1979
- 12. Ю.К.Ребане, <u>О претставлений универсальних алгебр в коммутативных полугрупах</u>, Сибирск. Мат. Ж. 7, 1966, 878-885
- 13. Ю.К. Ребане, <u>О претставлении универсальних алгебр в</u> нильпотентних полугрупах, Сибирск Мат. Ж. 10, 1969, 947-949

Математички факултет п.ф.504 91 000 Скопје Југославија