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§0. INTRODUCTION

The main aim of this work is an investigation of structu-
res with one vector wvalued operation, i.e. vector valued grou-
poids, with a special attention on vector valued semigroups and
groups. Almost all the results of this kind of structures known
up to now are given here and many new results are obtained too
(they are noted in §10).

This work is divided into ten section. In §1 we define the
notion of "(n,m)-groupoid" as an ordered pair Q=(Q;f), where Q
is a nonempty set, n and m are positive integers and f:Qn-vQ
is a mapping. In §2 some classes of v.v. groupoids are conside-
red (here and further on, "v.v." is an abbreviation for "vector
valued"). Here we define the classes of commutative v.v. gro-
upoids, v.v. quasigroups, v.v. semigroups and v.v. groups, and
we investigate some elementary relations between these classes.

Although well-known, the necessary definitions and proper-
ties for presentations of semigroups are given in §3, the rea-
son being clearness and completeness of the subsegquent investi-
gation. The problem of embedding of a v.v. groupoid into a se-
migroup, given with a corresponding presentation, is often pla-
ced in this work. To any v.v. groupoid Q one associates a semi-
group Q" which is generated by the set Q and is defined by a
set of defining relations. (g“ is called the universal semi-
group for Q.)

In 54 we consider the question for embedding of a v.v.
groupoid into a semigroup and we give a complete answer to this
question. We consider also the notion of “pure albedding” of
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2 ¢UPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

(n,m)-groupoids into semigroups and we give a complete answer
for n 2m.  For the case n<m, we show that every free (n,m)-
groupoid has the above property; however, we have not a satis-
factory description for the class of (n,m)-groupoids which are
pure (n,m)-subgroupoids of semigroups when 1 <n <m.

In 55 the general associative law for y.v. semigroups
is proved and a number of characteristic properties of v.v.
semigroups and v.v. groups are obtained. The notions "poly-
(n,m)~-groupoid™ and "poly-(n,m)-semigroups" are introduced too,
and it is shown that there is no essential difference between
the class of (n,m)-semigroups and the class of poly-(n,m)-se-
migroups.

In §6 the free v.v. semigroups are described and it is
shown that every free v.v. semigroup is cancellative. Also a
description of the universal semigroups of the free v.v. semi-
groups is given. Further investigations of the universal semi-
groups for v.v. semigroups, called "universal coverings", are
done in 57, Explicit descriptions of universal coverings of
v.v. semigroups are obtained and it is shown that every cance-
llative v.v. semigroup is embedable into a cancellative semi-
group.

In §8, v.v. groups are investigated by means of their uni-
versal coverings and corresponding v.v. variants of Post and
Hosszu-Gluskin Theorems are proved. The main goal of 59 is the
investigation of the (n,m)-groups in the cases n=2m and n=m+l.
It is shown that the theory of (2m,m)-groups in its great part
is analogous to the theory of the (usual) groups and that eve-
ry set is a carrier of a (2m,m)-group. The (m+l,m)-groups are
also closely connected to the groups, but the situation is
essentially different when existence is in gquestion. Namely,
if G is a finite set such that (G| > 1, then there is_no
(m+l,m)-group with a carrier G. By the results of [14] it fol-
lows that every infinite set G is a carrier of an (m+l,m)-group.
However, we knov only one kind of nontrivial (m+l,m)-groups,
namely the free ones. Examples of (2m+l,m)-groups are given,
and it is shown that there is no finite nontrivial (5,3)-group
with an odd order.

Further discussions - the notes and the comments made in
§10, are related to the preceding nine section and some re-
sults of other papers.

The work ends with an index, a list of notations, and
also, according to our knowledge, a complete bibliography on
vector wvalued algebraiec structures.
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V.V. GROUPOIDS, SEMIGROUPS AND GROUPS 3

§1. VECTOR VALUED GROUPOIDS

on a nonempty set Q is any mapping f from Q" into Qm, where Q°
denotes the s-th Cartesian power of Q: Q% = 0QxQ, 0 = 0x0xQ,...,
and @' = Q.

For example, a (3,2)-operation on Q is a mapping £: Q% —Q32,
a (3,3)-operation on Q is a mapping g: Q* — @3, and (1,3)-ope-
ration on Q is a mapping h: Q — Q. In this sense, a (2,1)-ope-
ration means a binary operation and an (n,1)-operation means an
n-ary operation.

In some cases, when it will not be necessary to emphasize
the integers n and m, we will say vector valued operation (v.v.o.)

instead of (n,m)-operation.

Let f be an (n,m)-operation on a set Q. We can associate to
f a sequence of n-ary operations f1,f2,...,fm by putting.

((gi€f{1,2,...,m}) f,(@a ,...ra) =by) = f{a1,...,an)={b1,...,bm). (1.1)

Then we call £, the i-th component operation of f and we write
f = (51!fzr---ffm}- (1.2)
Conversely, if £ ,f_,... ’fm is a sequence of n-ary operations on

the set Q, then there exists a unique (n,m)-operation f on Q such
that (1.2) is true.

Thus, every (n,m)-operation f: Q" — @™ induces a sequence
£,,£,,...,£ of n-ary operations on the set Q, and the converse

is also true.

If f is an (n,m)-operation on a set Q, then by the analogy
with the case n22, m=1, we call the pair Q= (Q;f) an (n,m)-
groupoid. In that case, if the equality (1.2) is true, we say
that cpQ = (Q;f,,f,,...,£f ) is the component algebra of Q and

We will call an (n,m)-groupoid also a vector valued groupoid

{vivig.)s
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4 CUPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

Here, we will introduce some short notations which will be
used frequently further on.

1) The elements of Q°, i.e. the sequences [COPE SPRTT W
(aieQ) will be denoted by a,a,---a  or af; in some cases when
there will be no risk of misunderstanding the sequence
(a,,aa,...,as) will be denoted by one letter, often underlined:
a. Thus the symbols

s
la,,az,...,as); a,a,---ag; aj; a
will denote the very same object, namely an element of a°.

2) The symbol xg will denote the sequence xixi+1---xj when

i<j, and the empty sequence when i >3j.
3) 1f x1=x==-..=xp=x (xieQ), then the sequence x? is deno-
ted by the symbol k.

4) The set {1,2,...,s} will be denoted by Ns and by N, so-
metimes will be denoted the empty set. The set of positive inte-
gers will be denoted by N.

Let us return to the v.v. groupoids. The fact that we can
associate the algebra cpQ to a given v.v.groupoid Q, allows us
to carry over all the notions which make sense for universal al-
gebras to v.v. groupoids without giving their explicit defini-
tions. Such notions are: a subgroupoid, a direct product, a ho-
momorphism, a congruence, a factor groupoid etc.

For example, if (Q;f) is an (n,m)-groupoid, then a nonempty

ajer” & f(a]) = b => pTep™. (1.3)

Another example: if Q = (Q;f) and Q” = (Q7;f") are (n,m)-groupo-

from Q into Q~ iff:

£(a]) = b} => £°(a)) = b;.

One can define the other mentioned notions analogously.

Next we give a description of a free (n,m)-groupoid with a
given basis B (B##), which ilustrates the use of homomorphisms

(1.4)
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V.V. GROUPOIDS, SEMIGROUPS AND GROUPS 5

as well. The description is simple enough, since it is the (ab-
solute) free algebra with the basis B and signature F={f, ,f,,...
""fm}’ where fi is an n-ary operator and fi#fj for i#j. This
algebra can be described in the following way.

Put H =B and suppose that the sequence HO,H1,...,HP of
disjoint sets is built up. Let Cp be the set defined by:
= n n
Cp = {uj€H UH U...U Hp) {aieNn}uier}.
Then the set Hp+1 is defined by:
Hp+1 = 'meCp.

Without loss of generality, we suppose that Hp+1n ﬂi*=ﬂ for
every i€N. Further on we will make such suppositions without an

explicite explanation.
If uEHp, then we say that the element u has the hierarchy
P-

n

p and we write Xx(u)
Now, put B = \U H_ and define n-ary operations £ ,f_,...,f
in B by: p=0
n, _ n
(vien ) £, (uj) = (i,u)). (1.5)
So we obtain an (n,m)-groupoid (B;f), where f=(f1,£=,...,fm).

The following theorem shows that (B;f) is a free (n,m)-

groupoid with a basis B.

Theorem 1.1. If @ = (Qig) is an (n,m)-groupoid, and £ 18 a
mapping from a nonempty set B into Q, then there exists a unique
homomorphism t of the (n,m)-groupoid (B;f) into the groupoid (Q;g)

which s an extension of E.

Proof. Let D be an (n,m)-subgroupoid of (B;f) such that
B=H,&D. Suppose that every element which has a hierarchy less
than or equal to p is in D. If X(u)=p+l, then

u = (1,u]) = £, (u])eD.

Thus, H +1§D and so B = D, which means that B is a generating
set of (B;f).
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Let (Q;g) be an (n,m)-groupoid and let £: B— Q be a
mapping. So we have a mapping ¢ defined on H_. Further on we use
induction on hierarchy. If x(u)=p+l, then u=(i,u?} , where x(uv] <p,
and so c{uv}=ﬁveQ. Setting

g(w) = g, (@),
we obtain
n =11
c(fi(u1}) = gi(u1}-

Thus, ¢ is a homomorphism which is an extension of £. The fact
that B is a generating set implies the conclusion. 0

Example 1.2. Let a=U N; and define unary operations g,
(16N ) on A by: =y

a = at+1
uGNm = gi[u) = ineNm

for iENm. Let g'=[g1,gz,...,gm). Then it is easily seen that (Aj;g)
is isomorphic to the free (1,m)-groupoid with a basis consisting
of m elements. Thus, if m=1, then (A;g) is isomorphic to (N;s) .,
where s(x)=x+1 for all x€N.

§2. SOME TYPES OF VECTOR VALUED GROUPOIDS

Here we will consider the problem of classification of v.v.
groupoids in general. A corresponding classification can be made
according to assumed useful properties or by following the cla-
ssifications of the binary groupoids. Here we will use the se-
cond possibility. '

Suppose that ‘9 is a class of groupoids and consider the
problem of defining a set {? (n,m) ‘n,mal} such that, for every
nmz1, ?[n,m) is a class of (n,m)-groupoids, where ?j’ (2,1)=9.
Of course, this problem is not uniquely solvable because the on-
ly demand ‘9(2,1]=‘9 has not some essential limitation.

One of the possibly ,acceptable" solutions is the component
definition. In that case, it is necessary first to define
the set {%(n) |n21] such that for every n21, %(n) is a
class of n-groupoids which satisfies the condition ‘9[2}=?.
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V.V. GROUPOIDS, SEMIGROUPS AND GROUPS 7

Then, 3;(n,m} will be defined by:
: (Q;f)efg{n,m) <=> (VieN ) (Q;f;)eg(n)",

where fi is the i-th component operation of f, i.e.
£=lf 1 L5000 00f ).

For example, if ?; is some of the classes

(a) commutative groupoids, (b) cancellative groupoids,
(c) gquasigroups, (d) semigroups, (e) groups,

then the definition of ﬁ?(n) for every n2= l'} is well-known in
every of the above five cases. Therefore, if we use the compo-
nent method, we will obtain five classes of (n,m)-groupoids and
it is not necessary to define them explicitly. However, these
definitions, except in the case of commutativity, are not equi-
valent with the corresponding "direct" v.v. definitions.

(a) An (n,m)-groupoid (Q;f) is said to be commutative iff

for every permutation aesn the following identity holds
£(x]) = £(o(xD)), (2.1)

T
where o(x]) = xg(1)xa(z)"'xo(n}'

This definition makes sense for every n,m=>1. On the other
hand, it is clear that an (n,m)-groupcid is commutative iff each
one of its component n-groupoid is commutative. Therefore the
given direct definition (2.1) of the concept of commutative (n,m)-
groupoid coincides with the corresponding component definition.

Here we will define a congruence in the (n,m)-groupoid (B;f)
(see T.1.1) which will bring us to a free commutative
(n,m)-groupoid.

Define a relation = on the free (n,m)-groupoid (B;f) with
a basis B by induction on hierarchy, i.e. if u,v€B, then:
1) x(u) =0 => (u = v iff u = v),
2) x(u) = p+l => (u = v iff u = (i,u]), v = (i,v]) for some

4) 5 . .
' f—grqupo:d is in fact a unar and so the cancellation is
equivalent with injectivity, the guasigroupness with bijectivi-

;g, while the commutativity and associativity are always satis-
ed.

[
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8 CUPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

i€N and there exists a permutation (i,,i,,...,i ) of (1,2,...,n)

such that v = u, for every v) .

i

v
Then the following statement is true:

Proposition 2.1. The relation = is a congruence on (B;f)

and the faetor (n,m)-groupoid (B/=;f) is a free commutative
(n,m)-groupoid with a basis B. [l

The direct definitions of the corresponding generalizations
of the classes (b)-(e) differ essentially from the component
ones.

Two different non-component definitions for cancellative

v.v. groupoids and v.v. quasigroups can be immediate realized:
one faor arbitrary n,m and the other for n-mz1.

(ba1) If xv,yveQ are such that

TR 1 Ty ] n, . .n¥m
£(x)) = X v £F0) & Yo,
and if there exists a sequence of positive integers i,,ia,...,in
such that 1<i,  <i ,<... <jﬁlsn+m, xiv=yiv, for every VENn, then
n+m _ _n+m
X, =N e

Examples 2.2. 1) Let + denote the usual addition on N, and
define an n-ary operation f on N by f(x])=x +x +...+x . Then one
obtains a partial (n,1l)-gquasigroup.

2) Define a (2,2)-operation f on Z by f(x?)=(x,+x,, x,-x,).
Then one obtains a partial (2,2)-quasigroup.

3) A partial (n,m)-quasigroup (Z;f) for every n,m=21 one
obtains if f is defined by:

n
ny . Lo _ s 1=1
f(x,) =y, <=> vy = 3£¢J xj, ieNm.

the following condition is satisfied:

(c.1l) For every element y?eQn and for every sequence of po-

sitive integers i? such that i,<i,;, there exists a uniquelly
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V.V. GROUPOIDS, SEMIGROUPS AND GROUPS 92

n+m

determined element x"MgQ™™ gsuch that f(x?}=xn+1

3 and ¥ ==, for

every veNn. v

(Clearly, every quasigroup is a (2,1)-quasigroup.)
Obviously, the following statement is true:

Proposition 2.3. Every (n,m)-quasigroup is a partial (n,m)-

quasigroup. [

E.2.2. shows that the converse of P.2.3. is not true, i.e.
there are partial (n,m)-quasigroups which are not (n,m)-quasi-
groups.

Example 2.4. Let Q=Z_ and define a (3,3)-operation f on Q by:
£(x3]) = y7 <=> Y, =X, P4, , ¥, =X, +2X,+3Xa,
Y, =X, +Hdx +2x
Then it is easy to check that (Q;f) is a (3,3)-quasigroup.
Now suppose that n-m=k 21. An (n,m)-groupoid (Q;f) is said

is true in (Q;f):
i m.k - i m_k = m _ .m
(b.2) f(a1x1ai+1) = f(a1y1ai+1} K=Y
for every i€{0,1,...,k}.

Using a shortened notation, we can write this implication
in the following way:

(b.27) f(axb) = f(ayb) => x = y,
where QQEQk and g,xeom.

(n-m=k 21), iff the following condition is satisfied:

(c.2) For every gger and c€Q™, there exists a unique ele-
ment §EQm such that

The following proposition follows directly from the prece-
ding definitions:
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Proposition 2.5. If n-m=k 21, then:

(i) Every (n,m)-quasigroup is a weak (n,m)=-quasigroup.
(ii) Every weak (n,m)-quasigroup is a ecancellative (n,m)-—
groupoid.
(iii) Every partial (n,m)-quasigroup is a cancellative (n,m)-

groupoid. 11

Let n-m=k 2 1. An (n,m)-groupoid Q=(Q;f) is called an (n,m)-
semigroup iff the following equality
j+n) n+k )

X

Aok, j
(d.1) f(f(x1)xn+1) o f{x1f(xj+1 j4n+s

is an identity in (Q;f), for every jeNk.

Examples 2.6. Here we suppose that Q is a nonempty set and
that n-m=k = 1.
1) Fix an element aeQ™ and put f(x])=a for every xeQ”.

group on Q.

2) Define an (n,m)-operation £ on Q by f(x})=x] for every

semigroup. Dually, a right zero (n,m)-semigroup (Q;g) can be de-

fined by g(x?}=x2+1.

3) Let Q=AxB={(a,b) |aeA, beB } and define an (n,m)-opera-
tion £ on Q by

m

Ny = — — = i
£(c]) = @) <=> (c;=(a;,b;), dj {aj,bj+kL ien , jeN ).
Then (Q;f) is an (n,m)-semigroup, and it is a direct product of
a left-zero (n,m)-semigroup on A and a right zero (n,m)-semi-

group on B. We say that (Q;f) is an (n,m)~-rectangular band.

4) Let (Q;g) be a t+l-semigroup, t=1, m21 and n=(t+1l)m.
pDefine an (n,m)-operation f on Q, by:

T | ST o .
£(x,) =y, <=>y; = glX;Xs pXyppp) ¢ 1Ny
Then (Q;£f) is an (n,m)-semigroup.

Note that a given semigroup (Q;-) induces a t+l-semigroup
+
(Q;g9) by g(xf ')=x1-x=---xt+1. Together with the above, this gi-
ves new examples of ((t+l)m,m)-semigroups.
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5) Given a lattice (Q;A,v) one can define a (3,2)-semigroup
(Q; £) by
3
E(x)) = (x,A%,AX,, X, VX VX,).
Similarly, if (Q;A) is a semilattice and if f is defined by
n ;
f(xy) = yT <=>y,; = X,AX,A....AX , Q€N ,
then one obtains an (n,m)-semigroup (Q;f).
6) Let Q=N and define f by
5] M ¢ IO X, X, ee0X ).
Then (Q;f) is an (n,m)-semigroup.
An (n,m)-groupoid Q=(Q;f) is called an (n,m)-group iff:
(e.1) @ is an (n,m)-semigroup; and
(e.2) (Yaeo®) twbeQ™) (ax,yeo™ (£ (ax)=b=f(ya)).

Examples 2.7. 1) Let (Q;g) be a t+l-group and k=tm, t21.
Then (Q;f), where f is defined in E.2.6. 4), is an (n,m)-group,

n=(t+1)m.

2) If (G;+) is an abelian group, then (G;f), where
fi(aTbcT) = a;-b+c,, is a (2m+l,m)-group.

3) Let G=z,={0,1,2,3} and 0=2=0, 1=3=1. Then (G;f), where
f(xyzt) = (x+z-y-t+y+t, y+t-X-z+x+z)
is a (4,2)-group.
4) Let ¢: R®* — R® be defined by
¢(s,u) = (5-*% sinu, u + % sins),

where R is the set of real numbers. Then ¢ is a bijection and
(R;£), where

f(stuv) = ¢~ ' (s+u+(sint+sinv), t+v+2(sins+sinu)),
is a (4,2)-group.

5) If f: C®— C?, where C is the set of complex numbers,
is defined by:

1210



12 CUPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

1+i/3 1-iv3
£(27) = (2,43, -—5—= 2,, 2,42, -—5— 2Z,),

then (C;f) is a (5,2)-group.
The proof of the following proposition will be given in §8.

Proposition 2.8. If @=(Q;f) s an (n,m)-semigroup, then the

following statements are equivalent:

(Z) @ is an (n,m)-group;
(ii) (va6Q®) (wbeQ™) (atz,yeQ™) (f(az)=b=f(ya));
(ii1) @ s a weak (n,m)-quasigroup. [
As consequences of the above proposition one can obtain the
following two descriptions of v.v. groups.

Corollary 2.9. An (n,m)-semigroup (Q;f) is an (n,m)-group
iff there exist (n,m)-groupoids (Q; f) and (Q;f ) such that for
every geo", beQ"

fla"f(ab)) = b, f(f (bala) =b. 0

Corollary 2.10. Let n-m=k 22. An (n,m)-semigroup (Q;f) is
an (n,m)-group iff there exist a positive integer ienk_, and an
(n,m)-groupoid (Q;f °) such that for every E&Q", Ilé‘Qk—t, g&'Qm

flaf *(ach)b) = ¢. D

The following proposition is obviously true:

Proposition 2.11. Let n22. If @=(Q;f) is an (n,1)-groupoid,
then:

(i) @ is an n—-quasigroup <=> Q is an (n,1)-quasigroup
<=> @ is a weak (n,1)-quasigroup.
(i1) Q is an n-semigroup <=> @ is an (n,1)-semigroup.

(i21) Q@ is an n—-group <—> @ is an (n,1)-group. [l

Further on we will say also: v.v. semigroup, v.v. group,...
instead of (n,m)-semigroup, (n,m)-group,... .

If 8 is a property of v.v. groupoids, then we say that a
v.v. semigroup has the property ¥ iff it has that property as a

v.v. groupoid. Therefore, the meanings of the following expessions

are clear: "3 commutative v.v. semigroup®”, ”a cancellative v.v.
semigroup”, etc.
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V.V. GROUPOIDS, SEMIGROUPS AND GROUPS 13

In this sense, it could be said that an (n,m)-group is

if n,m22, there are no nontrivial commutative (n,m)-groups as
we can see by the following

Proposition 2.12. Let n,m22. If @=(Q;f) is a commutative
(n,m)-groupoid, then the following statements are equivalent:

() 1Ql=1, Z.e. Q@ 18 a one-element set.
(i7) @ is a cancellative (n,m)-groupoid.

(iiZ) @ te an (n,m)-group.

Proof (ii) => (i). Let (ii) be true and a,b€Q. Since Q is
commutative, we have

k e
f(k;1 ') = f(aba 5
and because of (ii), i.e. (b.2), it follows that
m=1 m=2
ab =bab i.e. a = b.
(iii) => (ii). Follows from P.2.5. and P.2.8. [I

Each of the defined classes of v.v. groupoids can be desc-
ribed by the component operations too. So, if cpg={0;f‘,fz,....:-)
is the component algebra which corresponds to the (n,m)-groupoid
0=(Q;£f), then Q is an (n,m)-semigroup iff the following equality
n+k} e

n n
£5 (£, (X £, (x]) - - £ (x])x]

(ij)

e j+n, ntk
+1) £ (%5401 %anes)

is an identity in cpQ, for every jENk and iENm.

= j J
fi(x1f1(xj

Note that the identity (ij) can be written in the following
w=Component-vector" form:

n, n+k
£ (E(x)x
for every jenk, ieﬂm.

1f €(n,m) is a class of (n,m)-groupoids, then the question
for a suitable description of the free objects in the class
Q?(n,ml (if such objectsdo exist) occurs naturally.

o .
) = £ (=G IHAGIEL ) 13
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14 JUPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

By the construction of the free (n,m)-groupoid in §1 and
the definition of partial (n,m)-quasigroup, it is clear that:

Proposition 2.13. Every free (n,m)-groupoid (B;f), with a

basis B, 18 a partial (n,m)-quasigroup.

Proof. Let the conditions of (b.l) be satisfied. If there

exists a positive integer v such that iv >n, i.e. X i Tn+i for
some ieNm, then
n n . n n . n
£,0x7) = £.(yD), i.e. (1,2]) = (1)), 1.e. X = y3,
which implies x?+m = y?+m.

If all iU:Sn, then we have again x?==y?, which implies the

same conclusion. [l

§ 3. PRESENTATIONS OF SEMIGROUPS

I Q=(Q;f) is a given v.v. groupoid, then we can associate
to Q a semigroup Q°, obtained by a corresponding presentation
induced by Q. Therefore we will make a brief discussion of pre-

sentations in the class of semigroups.

Let B be a nonempty set and denote by B the set of all

non empty finite sequences on B, i.e.

st = U 8P.
p21 5
Sometimes the elements of B’ will be called words in B. Thus,
+
B" = {b,b,---b | b eB, t21},

and if a ,b,€B, p,q21, then
a,az---ap==b,bz---bq <=> p =q and {YvENp) a,=b .

We denote by B* the set B+LJ{1}, where 1 denotes the empty
word and lEB+.

1f ueBP< B*, then p is called the dimension of u and we wri-
te p=d(u). (Thus, d(1)=0).

The set B+ with the operation of concatenation of sequences
is a semigroup, and moreover it is a free semigroup with a basis B.
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V.V. GROUPQOIDS, SEMIGROUPS AND GROUPS 1-¥

In other words, if $=(S;-) is a semigroup and £: B— S is a
mapping, then there exists a unique homomorphism E+ from BY into
S which is an extension of £. So, if u=b1b2---b+eB+, then

ET(u) = £(b,)-E(b,) e E(by).

The set B* with the operation of concatenation is a free
monoid with a basis B. So, if $=(S5;-) is a monoid with the iden-
tity e and £: B— S is a mapping, then £ can be extended, in a
unique way, to a homomorphism £* from B* into S, where

g*(1)=e & (vueBH)e*(uwy=¢¥(u).

Further on we will often write £(u) instead of £+(u}and
£X(u).

Let S=(S;-) be a semigroup and £: B — S be a mapping such
that E(u}=§(v]2], for every pair (u,v)€A. Then we say that £ is
lization £~ of (B,A) in a semigroup S°=(S7;.) there exists a
unique homomorphism z: S — S~ such that £ °=¢&, then we say that

Proposition 3.1. If S and T are two semigroups determined
by a presentation <B;A>, then S and T are igomorphie. [

Further on we will usually write S = <B;A>" instead of
wS = (8;-) is a semigroup determined by the presentation <B;A>".

We will also write S=<B;A>. Thus, <B;\> will have three meanings.

A
Proposition 3.2. Let = be the least congruence on the semi-

group B containing A. Then B+/§ = <B;A>. 0T

Here we give a more explicit description of the congruence é.

+_ .+ :
T To avoid any c0nfusi02, the elements of B xB will be
denoted by (u,v), where u,ve€B .

2) We write E instead of E+ (as we said above).
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16 CUPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

Firet,; if u,veB+ are such that u=u,u™u,, v=u,v-u,, where
(u”,v7)er, and u, ,u_€B*, then we write u Fi—-v. Let A be the
symmetric extension of hﬁ—, i.e.

u-& v <==> u =t vV or v ri— Wa

A
Finally, let = be the reflexive and transitive extension ofzﬁq
i.e. u A v iff there exist uo,u1,...,uten+, such that t 20, u=u,,

A
v=u, , and u_, -~ ug for any iGNt.

1f ueB®, then we denote by u! the element of B+/i containing
u, i.e.

ot = (ver* | u i vy, 3.9

The dimension d(u") of u" is defined by:

Tt = @) | veus. (3.2)
A presentation <B;A> is said to be proper iff
{va,beB](agh => a=b). (3.3)

In this case we may assume that B is a subset of B+/£. (We note
that the assertion ,<B;A> is proper", does not mean
« (¥b€B)b = (b} " .)

We will denote by <B;A> the semigroup B+/g. In order to sim-
plify the notations, we will write u instead of uA, i.e. we will
use the elements of Bt as ,names" for the elements of <B;A>. Thus,
wu=v in <B;A>" means ,u L v", and d(u)={d(v) | u L v}. Of course,
if <B;A> is not proper, it may happen a=b in <B;A>, but a#b in B.

Proposition 3.3. Let m and k be two positive integers such
that for every (u,v)@A, df(u) zm, d(v) zm and d(u) =d(v) =m (med k).

A
a) If w16'B+ and d(w,) <m, then for all w2€B+, w,=w, iff

W, T, .

b) If m>1, then the presentation <B;\> 18 proper and moreo-
ver we may assume that

b |
BUB3yU...uB™ 'c <B; 1>

ot ITf u,ueB* and u L v, then d(u) = d(v) (med k). 0
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V.V. GROUPOIDS, SEMIGROUPS AND GROUPS 17

It is usually desirable to have a procedure for answering
the question whether or not two given words u,&eB+ are equal in
<B; A>., For this aim one uses very often a special mapping ¥ of
pt b (ues™),
a uniquely determined element w(u}Euﬂ.

into BY which associate, to every equivalent class u

<B; A> iff the following conditions are satisfied:

(i) v(uvw) = y(uy(v)w) for every u,w€EB*, ves',
(ii) (u,v)er => y(u)=y¢(v).
(iii) ¥(u) = u for every uen?.

Proposition 3.4. If ¥ 28 a reduction for <B;A>, then

Vlul)=v(v) iff u 4 v, for all u,veB+, i.e. kery = é_ o

Proposition 3.5. Let ¢: BY — B” be a reduction for <B;A>
and let s=¢(B*). If the operation ® ig defined on S by:

(Vu,v€s) uev = v(uv), (3.4)
then (8;®) = <B;A>.

Proof. First, (i) implies that y®=y, i.e. ¢ is a retract
and, moreover, y is a surjective homomorphism from B+ onto (S;e).
The conditions (ii) and (iii) imply that 2 is a kernel of ¢y, and
therefore B+/£ is isomorphic to (S;e). 0

Proposition 3.6. A presentation <B;A> ie proper iff there
exists a reduction : B' — B for <B;AN> such that (vbeB) v(b)=b.

We note that any presentation admits a reduction. Namely,
let S be a subset of BY such that for every ueB” there exists
exactly one element vES which satisfies the relation u A v, i.e.
S contains one and only one element from each class of the equi-
valence é. Then a reduction ¢ can be defined by:

A
(vueB’) (y(u)es & u = y(uw).

Now we will apply the notion of reduction for a presentation
in order to prove a v.v. variant of Cohn-Rebane’s Theorem. First
we will introduce two more notions.
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18 CUPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

A partial (n,m)-operation (p.v.v.o.) on a set A is a mapping
f: & — A™, where oJ= cgf (wthe domain of f") is a subset of A".
If F is a set of p.v.v.o. on the set A, then A=(A;F) is called a
partial vector valued algebra (p.v.v.a.).

Let A=(A;F) be a p.v.v.a., and let F” be a set such that
F"N(AUF)=@ and f+— £~ is a bijection from F to F~”. Denote by
B the set AUF”, and consider the presentation <B;A>, where

m
1

A= ((£7a},07) | £@]) = bY in a}.

of occurences of elements of F” in the word u. (Namely, dg(a)=0,
dg(f°)=1, dg(uv)=dg(u)+dg(v), for any a€a, fe€F, u,veB'.)

1f ueB” has a form u=u’f-aju", where u’,u"eB*, fer, aledd,

st — g* by induction on degree. Denote by S the set of reduced
words. Then

(0) (vues) y(u) = u.

Let u=u’f’au" be a reducible word, where f€F, a’:&‘aaf and u” has
the least possible dimension. If bT=f{a’11] in A, and v=u’blu",
then dg(v)=dg(u)-1. Therefore, by the inductive hypothesis,
v(v)es is well defined. Now we define ¢ (u) by:

(1) p(u) = v(v)

So, we have defined a mapping ¢: Bt — S, and by induction
on dimensions and degrees it can be shown that the conditions
(i), (ii), (iii) are satisfied, i.e. ¢ is a reduction for the
presentation <B;A>. Therefore (S;e)=<B;\>, where ,e" is defined
by (3.4).

Clearly, AUF'c S, i.e. ¢ is a proper reduction.
E i 3 f(al;‘)=l:t':l in A, then we have:

foea,e...%a = y(fa,...a ) =y(b]) =b,eb,e...eb_.

n m
Conversely, if f€F is an (n,m)-operation and aTeA”, b7Tea™ are

such that
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V.V. GROUPOIDS, SEMIGROUPS AND GROUPS 19

f'-a1-...can = b,eb_#...b

in (S;e), then we have
V(f-aj)=f"ea e...ea =b e...eb =y (b])=b],
and therefore f(a7)=b% in A.

This proves the following wv.v. variant of Cohn-Rebane’s

Theorem 3.7. If A=(A;F) is a p.v.v.a., then there exists a
semigroup S=(S;e) and a mapping f v f° from F into S such that
Ac 5 and

m

f(a?) = by in 4 <=> fea_ ea *...%a = b,%b,*...%b ir 5,

2

or any a_,b.€A and any (n,m)-operation f€F. [I
Y a,,9, Y

Now we will consider the question of associating a semi-
group to a given v.v. groupoid by using presentations of semi-
groups.

Let Q=(Q;f) be an (n,m)-groupoid and let ﬁ=AQ where Ag is
the following set of defining relations:

A = 1@5,PT) | £@]) = b in 0. (3.5)

Then Q%=<Q;A> is called a universal semigroup for the given (n,m)-
groupoid Q. (Note that A

0 is the graph of £.)

Having in mind P.3.2., we have the following:

Proposition 3.8. Let @ be an (n,m)-groupoid and A=A Then

Q'

K ,
g‘:q*/: and the natural mapping
nat”: a r— aA
is a realization of (Q,A) in Q".

For every realization n: @ — S of (Q,A) in a semigroup

S=(S;+.), there is a unique homomorphism t: @ — S, such that
(vbeQ) n(b) = ¢(d"). 1

Next we will give a description of the universal semigroup
for the free (n,m)-groupoid (B;f) with a basis B, defined in §1.
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20 CUPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

e

x = x7(1,y)(2,y)+++ (m,y)x",
where x~,x"€B* and y=u?c—:§n. and, if this is not satisfied, then

will be denoted by R.
We note that in this case A=A-§ has the following form:

A= (], (1,u]) (2,u]) - (m,u])) | u €B}.

e

manner. Namely
Ibl =1, 1(1,u™] = Zlu,l, lyzl=lyl+lzl,
=0 S v
for every bE€B, u?eB ¢ Yi,2Z€B°,

By induction on lengths we define a reduction ¥ in <B;A>
as follows:

(0) ¥v(x) = x, for every x€R.

Let x be a reducible element of B' and assume that y(y) is
a well defined element of R for every y€B' such that |yl <Ixl.

Consider, first, the case m=>2.

If x=x"(1,u”) (Z,u?)- . (m,uf}x", where x” has the least pos-
sible dimension, then we put y=x’u?x". Clearly, lyl<Ixl, and
thus, ¢(y)€R is well defined. Then y(x) is defined by:

(1) vix) = vly),

and therefore y: B' — R is a well defined mapping in the case
mz22.

In the case when m=1, a reduction ¢: Bt — B8t can be defi-
ned by induction on hierarchy. If u=(1,u?)€B then y(u) is defi-
ned by:

{1-5) y(u) = wtu,)w(u,)-nwtunL
And, if x=u§e§P. then y(x) is defined by

(") ¥(x) = y(u)---d(u).
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