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By induction on lengths (for m 22) or on lengths and hierar-
chies (for m=1), it can be shown that y is a reduction for
<B;\>. Therefore, by P.3.5., if we define an operation e on R by

xey = ¢ (xy),
we obtain that R=(R;e) is the universal semigroup for (B;f).

We note that in the case m=1, g=B+, i.e. BY is the univer-
sal semigroup for (B;f).
§4. VECTOR VALUED SUBGROUPOIDS OF SEMIGROUPS

An (n,m)-groupoid Q=(Q;f) is called an (n,m)-subgroupoid of
a semigroup (S;-) iff Q€S and for every ar:eon, br:leQm

n — m m— - - - - - - .
f(a,) = b in Q => a,-a *...*a, = b, b,+...+b in S. (4.1)
If, in addition, for every aT,bTeQ™ the following implication is
true
a,*a,*...tay = b,+b,c...cby in § => al=by, (4.2)

then we say that Q is a pure (n,m)-subgroupoid of S.

It is clear that:

Proposition 4.1. 4n (n,1)-groupoid @ is an (n,1)-subgroupoid

of a semigroup S iff @ ts a pure (n,1)-subgroupoid of S. [I

Proposition 4.2. An (n,n)-groupoid @=(Q@;f) is a pure (n,n)-

subgroupoid of a semigroup iff
(Va?eQ“J f(a:l) = a’:,
i.e. f ts the identity transformation on Q".

Proof. If f is the identity transformation on Q, then (Q;f)
is a pure (n,n)-subgroupoid of ot. o

Let Q=(Q;f) be an (n,m)-groupoid, A=A, be the set of defi-
ning relations as in (3.5) and Q" be the corresponding semigroup
<Q; A>. The congruence 4 is also defined in §3. Here we will wri-
te —, ~ instead of |—A—, Av, respectively.

The definition of (n,m)-subgroupoids of semigroups can be
restated by the following:
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22 CUPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

Proposition 4.3. 4n (n,m)-groupoid @=(Q;f) is an (n,m)~

subgroupoid of a semigroup S=(S;-) iff Q€ S, and the inclustion
ar— a from @ into S is a realization of (Q,A) in S. 0

We recall that the presentation <Q;A> is proper iff
(¢a,b€Q) (a 2 b => a = b), (4.3)
and then we can assume that Q is a subset of QA=Q+/£.

Thus, we have the following description of the class of
(n,m)-subgroupoids of semigroups.

Theorem 4.4. An (n,m)-groupoid @=(Q;f) is an (n,m)-subgrou-
poid of a semigroup iff the presentation <Q;\> is proper, and
then @ P8 an (n,m)-subgroupoid of Q™. If this is satisfied, and
tf @ is an (n,m)-subgroupoid of a semigroup S=(S;:), then there
exists a unique homomorphiem C: QA -8, such that t(al=a for
every a€Q. [I

The following proposition is a consequence of P.3.3. b)
and T.4.4.

Proposition 4.5. If min{n,m}>2, then every (n,m)-groupoid

28 an (n,m)-subgroupoid of a semigroup. [J
For the class of pure (n,m)-subgroupoids of semigroups, we
have the following result:

Theorem 4.6. If @=(Q;f) is an (n,m)-groupoid, then the

Ll

following conditions are equivalent:

(t) @ i8 a pure (n,m)-subgroupeid of QA;
(i1) @ is a pure (n,m)-subgroupoid of a semigroup;
(£i5) (Va,b7eq") (a" 2o =5a"="). (4.4)
Proof. Clearly, (i) => (ii).

Let Q be a pure (n,m)-subgroupoid of a semigroup S$=(S5;-),
m 4 Moom mA. m
and let a,,b €Q be such that a,=b’. By T.4.4., Q is an (n,m)-
subgroupoid of Q*, and there exists a homomorphism ¢: Q" — §,
such that (¥c€Q)z(c)=c. Thus, we have a,a,---a =b,---b_ in onr,
and this implies a,®a,®...ea =b e...eb in S; hence we obtain
that al=b]. Thus, (ii) => (iii).
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%
Assume now the condition (iii). If a,b€Q are such that aéb,
then we have a & b a', and this, by (iii), implies a=b'a , i.e.
a=b. Therefore, by T.4.4, @ is an (n,m)-subgroupoid of Q*. If
ay,bleQ™ are such that a,a 2°++a =b,b,c--b_ in Q" then aly - by,
and this by (iii) implies a, *bm in Q*. i.e. Q is a pure (n,m)-

subgroupoid of Q*. O
In the case n-m=k 21 we have the following:

Proposition 4.7. Let n-m=k 21. An (n,m)-groupoid @=(Q;f)

is a pure (n,m)-subgroupoid of a semigroup iff @ is an (n,m)-
semigroup.

Proof. First suppose that Q is not an (n,m)-semigroup. Then,

there exists a"Xep™** ang 1euk such that

m _ n+k i+n, _n+k e =1l
Y = £(£(aDal’) # falf(ajihal s, ) = cF.

Therefore, T.4.6. (iii) implies that Q is not a pure (n,m)-sub-
groupoid of a semigroup.

17}

The converse follows from T.7.7. il

The above discussion gives a complete description of all
the (n,m)-subgroupoids of semigroups, except the (1,1+k)-subgrou-
poids of semigroups for k 21. So, next we consider this case.

Suppose that Q=(Q;f) is a (1,1+k)-groupoid, where k 21. For
every a€N, define a set Q?L(f) of polynomial operations on Q

with a degree o« as follows.

First, ga(f)*{l } (where 1yt x+= x is the identity trans-
formation on Q), and Q? (f)={f }. Suppose that for every a:
1<a <8, C? (£) is a well-defined nonempty set of (1,l+ak)-ope-
rations on Q. Then heq) (£) iff there exist ge‘? ,(£) and
B840, Yy e ey (B=1)K] such that

1+Rk 1+8k

i+k+2

i+k+1

<=> g(x) =xj1'yx 144

h(x)=x, & fly)=x; 5 (4.5)

Using the polynomial operations, we will describe the class
of (1,1+k)-subgroupoids of semigroups and the class of pure
(1,1+k)-subgroupoids of semigroups as well.

1
? P.4.7. is stated in this form only for completeness.
It is not used in the proof of T.7.7.



24 CUPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

Theorem 4.8. 4 (1,1+k)-groupoid @=(Q;f) is a (1,1+k)-sub-
groupoid of a semigroup iff for every positive integer B and
polynomial operations g,heq;;(f), the following implication is
satisfied:

glz) = hiy) => = = y. (4.6)

Proof. Let (Q;f) be a (1,1+k)-subgroupoid of a semigroup

and let, for an arbitrary B, the polynomial operations g,he@B{fJ

and x,y€Q be such that g(x)=h(y). Then x 4 y, which implies that

x =y, by T.4.4.
For the converse we need the following two lemmas.

Lemma 4.9. 17 u,v,weq* are such that vi—u, vVi—w, U # W,

then there exists v‘6Q+ sueh that ur— v°, W —uv°.

Proof. By vi—u, vi—w it follows that

O Lol g - S T
v ay ajai,, a; ajaj+1'

_ i-1 14k p _ .J=1 1+k.p
u=ay b, A4 W s Ay G, 41’

where f(ai}=b:+k, f(a.)zc:+k

for example i < j. Putting

. _ A=1 1+k_j=1 _1+k_p
=a, b, F44°1 aj+1'

. Since u#w, it follows that i#j,

v
we obtain that up—v”, wi—v~-. [
Lemma 4.10. fet u:afeea, v6Q*. There exist u1,vz,...,vt€Q+
auch that

W= U, —"0 == 3o = V), = ¥

iff there exist integers @ a0, 0,0y >0 and hveige (f) sueh that
v

P h1(a1)h2(a2)-°-hsfas).

Proof. We will prove this by induction on t. For t=1, we

have
_ _i=-1 1+k_s £
vim el b ey, = ) eeo(a YE(a) Ela, ) ered(ag)
Let v,__ = h ,(a ) )h,(a;) **h (a;)
oy _‘_c:+6k_'_

1223
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i=-1 1+k _1+8k
3_1(aj_1)c1 a "cy . hj+1(aj+1}"°hs(as)'

, £(c;)=a,"*. Then

v, = VvV = h1(a1}---h.

;
_ 146k
where hj[aj} =.e,

v = h1(a,)°°'hj_‘(a

- _i=1._.1+k 1+6k
where hj(aj)—c1 d, $4a 1]

j—1)h5(aj)hj+1(aj+1}"'hs{as)'

Now, to complete the proof of T.4.8., assume that for every
g9,hef, (£). x,yeQ,

g(x) = hiy) => x = y.

Let x 4 Y, X,Y€Q. By T.4.4. it suffices to show that x = y. First,
L.4.9. implies that there exist UypeearUiy Vogeon, Vo such that

Xr-—u1t— r——-ut = \.ft—n.v‘;__1 — s _,v‘ - Y.
Now, by L.4.10., there exist q,h&‘%(f), such that
g(x) = u, = v, = hly),
which implies x = y. [0

The following theorem gives a description of the class of
the pure (1,1+k)-subgroupoids of semigroups.

Theorem 4.11. Let Q=(Q;f) be a (1,1+k)-groupoid, k = 1.
Then, @ is a pure (1,1+k)-subgroupoid of a semigroup iff for eve-

PY Osens0p, Bo""’sk =0, such that Agte.otay = Bot.. . +By and
any h 6P (£), g6 P, (f), Q satisfies the following implica-
tion: v »

ho(a:oi'---hk{a:k) =g°(yoJ---gkfykJ => :c]; = yg. (4.7)

Proof. Let Q be a pure (1,1+k)-subgroupoid of a semigroup
and let the assumption of the implication (4.7) holds. Then, by

L.4.10., x5 4 4K k= yX. Thus, (4.7) is satis-

A
o = and this implies Xy
fied.

Conversely, suppose that (4.7) is satisfied in Q, anﬁ
x]:,y]:eokh be such that x}: !:. Then, the definition of =,
L.4.9., and L.4.10. imply that there exist corresponding poly-

such that

A
=¥

nomial operations hv'gv

ho (%)== hy (%) = go(yg)---gp (). O
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In the case 1<n<m, we do not know a satisfactory descrip-
tion of the class of pure (n,m)-subgroupoids of semigroups.
The next theorem shows that such pure (n,m)-subgroupoids of se-
migroups do exist.

Theorem 4.12. If n<m, then every free (n,m)-groupoid s a

pure (n,m)-subgroupoid of a semigroup.

Proof. Let Q=(B;f) be the free (n,m)-groupoid with a basis
B. By T.4.6. we have to show that Q is a pure (n,m) -subgroupoid
of Q*. We use the description of Q" given in §3. Thus Q*=(R;*),
where R;¢(§+), and xey=¢ (xy). Suppose that uT,vTeﬁm are such
that u,eu_e...eu = v ev e...ev  in (R;e¢), i.e. v (uM=yp (v]).
Since n <m, w(u?)#uT iff ul=(l,w?), for AENm, and then
vl wy. O

It is natural to ask the question about the existence of
pure (n,m)-subgroupoids Q of semigroups, under the assumption
that Q has a corresponding property €. In the case when n-m20,
the answer to this guestion give P.4.2. and P.4.7.

Here we will show that, for 2 <n <m, there are no nontri-
vial commutative (n,m)-groupoids which are pure (n,m)-subgroupo-
ids of semigroups.

Let Q=(Q;f) be a commutative pure (n,m)-subgroupoid of a
semigroup S=(S;-), where 2 <n<m. In the case n=m, by P.4.2.,
we have f(a?}=a? and so f(a=a1a2}=aza1a§, which implies that
a?=a=a1a2,.i.e. a,=a,. Since a, and a, are arbitrary, the equa-
lity a,=a_, implies that [QI=1.

Now suppose that 2 <n<m. If b1,...,bmeQ, then
b,b,...b, = (b1bz...bn)bn+1...bm =

= (bb,.esb )b ...b = b,b,...b

n' n+1 m

implies that b,=b, for arbitrary b, ,b_€Q. Hence [Q[=1.
Thus we have

Proposition 4.13. If 2<n <m, then a commutative (n,m)-gro-

upoid @=(Q;f) is a pure (n,m)-subgroupoid of a semigroup iff
lgt=2. 0O

1225



1226

V.V. GROUPOIDS, SEMIGROUPS AND -GROUPS 27

(Note that every (1,1+k)-groupoid is commutative, so that
in this case, P.4.8. and P.4.11. can be applied.)

§5. THE GENERAL ASSOCIATIVE LAW

The general associative law is true for v.v. semigroups
too. We will prove this fact in details. First we will introdu-
ce the notion of polynomial operation.

Throughout this section we will assume that Q=(Q;f) is a
given (n,m)-groupoid, where n-m=k 2 1.

Let 9,9, +9,r++++9 be v.v. operations on a set Q, such that
g is an (n,m)-operation, and g, is an (nv,mv)~operation for eve-

ry v€N_,and let the following equalities be satisfied:

t‘

p = n,+n_+...4n n=m+m_+...+m_.

t! Bl t
Define a (p,m)-operation h=g(gf) by:

h(xP) = glg, (x,)9,(x,) g, (x.)), (5.1)

ni

2 , B0

where x5 Eqi;"'i

t
For every positive integer o define a set (3i{g)= {;1(f) of
}, with a degree a, inductively, in the

following way. First put
R = 0y Pun =@, (5.2)

(As before, 10: X +~— X is the identity transformation on Q; fur-
ther on, we will write 1 instead of 1Q.)

Suppose that the number 8 2 2 is such that for every a:
0 <a <pg the set G? (f) of v.v. operations is well-defined. Then
the set Qﬁ (f) of v.v. operations on Q will be defined in the
following way he {P (£) iff there exist v. Vi operations g, g,
on Q such that gef}’ (f), g, e@ (f), B=a + zc , 0<a<B and

v=1

= g(g,)- (5.3)

” The definition of q%{fj in this section differs from

the definition of CF;rf) in 84, because here we have n >m.



28 CUPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

Proposition 5.1. For every integer o 2 0, the set @u(_f‘) 8
nonempty. If a > 0 and h€ @;‘(f), then h 18 an (m+ak,m)-operation.
(s)

Proof. Let a = 0. Define a set (f | s21}, of v.v. ope-
rations on Q, such that f(s)e‘?‘ (f), by induction on s. First,
for s=1, put f{ }—f Suppose that f(“)e@ (f) is a well-defi-
ned (m+ak,m)-operation on Q and define a v.v.o. glmtr) by:

{a+1] - f[f(a} 1). (5.4)

hen fe @ (£), 16 P, (£) ana £(*)e QP (£) imply that
““’e@ (f) and that f(“h} is an {m+{¢+1)k m)-operation on
Q. Thus, for every a 20, the set ?P (f) is nonempty.

Next we show the second part of the proposition, using the
induction again. Suppose that

ge P (), g,€ 93 (£), h=g(g})e P, (£), B=ata,+...%a,, where
0<a<B, g is an (m+ak,m) Operation, and g9, is an [n m )=
operation on Q.

TE uv=0r then gv=1 which means that nv=1=m“, and for a >0 we

have nv=m+uuk. m =m. Therefore, h is a (p,m)-operation, where

P = n,+n,+...4n m+ak = m +m +. . .tm .

tl
Let i integers from the sequence L L be positive, and
the other t-i be zeros. Without loss of generality, we may assu-

me that o, ,a ""'“i>0’ a =...=at=0. Then we have:

- ) i+

p= (m+m1k}+...+(m+nik)+(t—i] = mi+(a1+...+ai)k+[t-i}
and m+qek=mi+(t-i), which implies that

P = m+u.k.+(a1+...4'ui}k = m+pk (B=u+a1+...+g Ya

i
Thus, h is an (m+gk,m)-operation. O

Proposition 5.2. 1f ge @ (j‘), then @ (g) C @asfj“).
Proof. The statement is obviously true for g€{0,1) and so

we will assume that g = 2.

Let {e @ (g). Then, there exist integers y,y it Y such
that 0 <y <8, B—y+y JHeetyy, b=hh)), ne @ (9), b ec? (g). By
the inductive hypothesis it follows that he(jD {f), h GQ (f]
and
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1228

af = ay + ay, heeeh avt,

and thus 19(.?’ [ 2 R i |

the following lemma:

Lemma 5.3. Let (Q;f) be an (n,m)-semigroup. Then
Yk-r
f(y+5) = frv)(l fréJ 1) (5.5)
for every y,6 2 1, and 0 <r <vk.

Proof. The proof will be done by induction. Since (Q;f)

is an (n, m}—se?igroup, it follows that €P {f)-{f(’)}, i.e.
e Blapar £ 1),

1) Let (5.5) be satisfied for 1,6. Then

k-r k
glds+) _ v} 1 = £(£(1 £
2k-r k-r
D Q@70 L eQe 1) = LA T 5.

2) Let (5.5) be satisfed for y.,1. Then by 1):

r-k vk-r+k
grvkein) o ftlf““)) = e % T
r (y+1)k-r r (y+1)k-r
- ftlfm}(lf 1 ) =gt gy Y
for r 2 vk; and
k r vyk-r k
glytita) _ f(f(vﬂ)“ = f(f(wr)“f 1)1)
K F (y+1)k-r (vy+1)k-r
=s£M) 0 ¢ E 5 g ey et Ty Ty
for r <vyk.
3) Let (5.5) be satisfied for y,§. Then
r (y+6§)k-r
f(Y+5+1} " f(v+51(1 £ 1 J e
r yk-r r (y+8)k-r
= £V (1 g8 Y1 £ 1 = i
. r 6k vk-r r yk-r

Theorem 5.4. (GAL). 4n (n,m)-groupoid @=(Q;f) is an (n,m)-
semigroup i1ff, for every integer a 2 0, the set gi(fJ has exact-

Ly one element.
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Proof. The definition of (n,m)-semigroups implies that Q

is an (n,m)-semigroup iff ‘3;(fl={f(2)}, where £(5) is defined

in the proof of P.5.1. Therefore, if for every a, Q?;{f) is a
one-element set, then Q is an (n,m)-semigroup.

Conversely, let Q be an (n,m)-semigroup. Obviously,
I, (£)1=1 for a<2. We will show, by induction, that @, (f)=
{f‘B)} for every B 21, which will complete the proof.

Let he€ qé[f)' i.e. h=g{g1), where g€ &P (£f), g € @ (f),
a A ak

B=ata, +...+a
_f(ﬂ')

0 <a <B. The inductive hypothesis implies that
L, >0=>g, = £*2) | gince
0 <a <8, there exists an integer ), such that o,y >0. Let r+l

be the least positive integer, such that L S —T#O. Then g

t'
and: uA=0 =>gq, = L a

r+1
and g1=gz=...=gr=1. Using L.5.3., we have:
_ S e o
h =g(g;) = £ (1f qr+2) =
r ak-r r+m+1k
bae®L Ty gt

r+m+tk
1

( =
r+z) N

t

(a+1)
£ ( Iy+2

).

=f

(t)

Applying the same procedure a finite number of times, we obtain

that h=£(8) B5'™)_£(B)

As a consequence of GAL and P.5.2. we have

——  Proposition 5.5. If (g;f) is an (n,m}=semigroup, then
(Q;fra}

) i8 an (sk+m,m)-semigroup, for every sz=1. O

Using GAL and the usual induction, we obtain

Proposition 5.6. If (Q;f) is a commutative (n,m)-semigroup,

then fQ;frsJ

g=21. 0

) i8 a commutative (m+sk,m)-semigroup, for every

Now we give the following characterization for the cancel-

lative v.v. semigroups.

Theorem 5.7. If (Q;f) is an (n,m)-gsemigroup, then the fol-

lowing conditions are equivalent:

(Z) (Q;f) is eancellative;
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(i2) rQ;f(SJ) t8 a cancellative (m+sk,m)-semigroup, for
every sz 1;
(ii1) (Q;f(SJJ is a cancellative (m+sk,m)-semigroup, for
some 8 =21;
(tv) (@;f) satisfies the following impliecation:
K o TN =t
£eak &) = peak gy or £ BX) = POy bY) = 2 = YT
(v) there exist 1,821, ie”skﬂ’ sk =22, such that the
following implication in (Q;f) is true:

fBJ‘LmSk _(s)tmsk LT

f (a 4 1+1} =7 (a ¥, zfq) = T U
Proof. (i) => (ii). Let (QFf) be cancellative and let

t 20 be an integer such that, for every s: 1<s<t, the v.v.

semigroup {Q;f(S}) is cancellative. Suppose that the equality

£ (el tE ) = 18 gl PetK (5.6)
is true, where 0 <i <tk, and let a <minf{i,k}. By the equality
(5.6), iy

ac(t-1) (t-1)k-i+a, _tk .

s (254,74 )3 (tar)k-itatr) =
= (t=1) m_(t=1)k-i+a,_tk .
= f(ajf (ag,.¥7a )2 (t-1)k-i+ats)?

now, using the facts that (Q;f) is cancellative and that
{Q;ftt-”) is cancellative, we obtain that xT=yr1n, i.e. the equa-
lity (5.6) implies that x‘:'=yT. Therefore the (m+tk,m)-semigroup
;£'®)) is cancellative.

(ii) => (iii) is obvious.

(iii) => (i). Suppose that, for some s =2, the (m+sk,m)-
semigroup (Q:f(S}) is cancellative and let

im k _ 1m k
flayx, ay } flayy i+1]' (5.7

where i€{0,1,...,k}. Then, for arbitrary b1""'b(s-1)keo'

(s) ;.. (s=4)k_i m_ k _ (s) 1 (s=- 1)k im
£ B! alefack )y w18

by which, since (Q;f{S)) is cancellative, we obtain that xl;ﬂ=yT.
Thus (5.7) implies that x=y", i.e. (Q;f) is cancellative.

ay ai+1}'

It is clear that (i) => (iv). We will show that (iv) => (i).
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We can assume that k 22, for if k=1, then (iv) is the con-
dition (b.2) of §2, i.e. (Q;f) is cancellative.
Let (iv) be true and let b
f(a x b) = f(a y b),
where gQGQk, §,xEQm. Then:
f£ b axba)=£*wayba), or

£(f(bax)ba) = £(f(bay)ba),

by which, after two applications of (iv), one obtains x=y. Thus
(iv) => (i).

Since the implication (ii) ==> (v) is obviously true, it
remains to show that (v) implies some of the conditions (i)-(iv).

Suppose first that the following condition is true:

(v”) k=22 and there exists i€N
implication in (Q;f) is true:

inm k
flaix a; )

k-, Such that the following

T im_ k - _ .m
7 f(a1y1ai+1) - xT =Y,

We will show that (v”) => (iv). First, one can show by
induction on s that, by (v~”), the following implication is true:

f(sltafixTa§§+1) = g8 (BAMLEK j ms 2P a O, (5.8)

Let f(xa)=f(ya), dla)=k, d(x)=d(y)=m, and choose b and c
such that:
d(bxac) = sk+m, d(b)=si, d(ac)=sk-si.

Then one can obtain the following equality:
£4%) (bxac) = £%) (byac).
Applying (5.8), we have x=y. By symmetry, we have also f(ax)=f(ay)

=> x = y. Thus we showed that (v7) => (iv), i.e. (v7) => (i).

fls) satisfies the condition (v~”), (when k is

Now, since
replaced by sk), we conclude that [Q;f(SJ) is cancellative, i.e.
(v) => (iii). O

The next theorem gives a characterization of v.v. groups,

using the operations f(SJ.
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Tneorem 5.8. If (Q;f) 28 an (n,m)-semigroup, then the fol-

lowing conditions are equivalent:

(i) (@;f) 28 a v.v. group.

(i) (Q;f(aj) i8 a v.v. group, for each s 21.
(iii) (q; %/
(Zv) There exist s 21 satisfying sk >2, and ieﬂsk—1’ such

) i a v.v. group, for some s 21.

that the equation

r'%%@zb) =¢ (5.9)

8k=1

i8 solvable for given gﬁQz, begQ geQm.

(v) There exists s 21, such that sk 22 and for each
£€NBk_1, the equation (5.9) is solvable.
(vi) For each s 21, satisfying sk 22, there exists ieﬂsk—q’
such that the equation (5.9) is solvable.
(vii) For each 8 21, satisfying sk =2, and each iENsk_1,

the equation (5.9) is solvable.

Proof. It is obvious that: (ii) => (iii), (vii) => (v),
(vi) => (iv), (vii) => (vi), and (v) => (iv).

(i) => (ii): Let s 21, O GQ , ceQ Then there
exist x1,...,x €™ such that f(x a )(c, f(ggs L - )= =Xgreees
reeep £(X a )=x,. This 1mplies that f s) (x,a, “eedg )=c. Symmetri-
cally, there exists xEQ such that f(s)(a ol x)—c This, to-

gether with P.5.5., implies that (Q; f(S}} is a v.v. group.
(s=1)k
(iii) => (i): Let aGQ ceQ  a€Q, and let b= a . Since

(Q; f[s)) is a v.v. group, there exists deQ , such that f(s){abd}—c
This implies that the equation f(ax)=c has a solution. Symmetri-
cally, the equation f(ya)=c has a solution. This, together with
the assumption that (Q;f) is a v.v. semigroup, implies that (Q;f)
is a v.v. group.

(1) => (vii): Let s>1, sk>2 and i€N_ _ . Let aegl,

sk~
sk-1 sk-i i
beQ i ceQ » @80, u= a , v=a. Then there exists weQ , such

that ftsl{auw)-c, and there exists zeo , such that f(S)(zvb)—w.
Now, f{S)(af(s){uzv)b}uc, i.e. the equation f‘S)(axb)-c is sol-
vable.
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(iv) => (v). Let s and i be the numbers which exist by
(iv) . The proof of (v) will be devided into three parts. Let
5k- , ajenl Sk-JEQSk_J, cEQm a€0.
(a) If j<4i, then (iv) implies that there exist d,gﬁQ
-2
such that £5) (a) 133 ab$e1) )=c ana £05) (3 K24 IpiTd)=a.
7 L o B
Then f(S)(athbfk j}=E,for hT=f[S)(2jangk ﬁ% 9.

(b) If 0<t=3j-i<i, then (a) and (iv) imply that there

sk-1i
exist d,geQ™ such that £(5)(at dabSk Jy=c ana £%)(a], g a )=a.

sk
Then f(S)(a2thfk 3)59, for hT:fts)(g a ).

(c) The general case follows from (a) and (b).

(v) => (iii). Let s be the number which exists by (v).
EEQSK, ceQ™. Then a=bd for some beQ, dEQSk-1. Let u€Q and
sk-1
v= u . Then (v) implies that there exisﬁ a,ﬁEQ such that
£/ (bav)=c ana £'5) (dgu)=a. so, £/3) (5°w) is a solution of the
equation f(s)(ax) =c. Symmetrically, the equation f(S)(xa} =c is

solvable. 0O

By using GAL, we can consider v.v. semigroups as v.v. alge-
bras with infinitely many v.v. operations and these algebras we
call ,poly-(n,m)-semigroups”". The notion of poly-(n,m)-semigroup
will be introduced here, and it will be used in the construction
of free v.v. semigroups (§6).

Let P be a non-empty set and let n,m,k be as above, i.e.
n-m=k2>1. If
(n,m) m

g: P — P, where P(n,m) = LJ Pm+5k;
521

From a given (n,m)-groupoid we can obtain a poly-(n,m)-
groupoid as follows.

Let 0=(Q;f) be an (n,m)-groupoid and let = be a choice of

one and only one polynomial operation wSE‘gztf). For this =,
define a mapping

m+sk

£%s Q(n,m) — Q™ by: £" (a,

) = = _(aT+SK)
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Then we obtain a poly-(n,m)-groupoid 2"=(Q;f“) which is said to

In general, since the set c?;{f) may have more than one
element, it is possible a given (n,m)-groupoid to induce more
than one poly-(n,m)-groupoid.

(S), we use the notations £” and g’

For the choice ﬂs=f
f{S) is as in (5.4).)

instead of f' and gﬂ respectively. (Here,

Note that there are poly-(n,m)-groupoids that are not in-
duced by an (n,m)-groupoid.

On the other hand, if P=(P;g) is a poly-(n,m)-groupoid, then

one can obtain an (n,m)-groupoid Py =(P ), where

;g#
n,°_ n

g, (&,) = glaj),

i.e. g, is the restriction of g on P". Therefore, the (n,m)-

groupoid P 4 is called a restrictiéh of the poly-(n,m)-groupoid P.

Obviously, if Q=(Q;f) is an (n,m)-groupoid, then

(£N)5 (A7) = £5(a]) = £aD),

(Q“ ]# = ..ou

for any choice .

However, if P is a poly-(n,m)-groupoid, then it may happen
(g# f‘#g. We will give below (P.5.10) a sufficient condition
for the equality (Pg )ﬂxg.

A poly-(n,m)-groupoid P=(P;g) is called a poly-(n,m)-semi-
group iff the following equality
m+rk, sk
1 j+
is an identity in P, for every a“,bXEP, r,s=21 and je{0,1,...,skl.

3 _ J,m+rk_sk
glayg(b )a ) g(a1b1 aj+‘] (5.10)

By GAL we obtain the following:

Proposition 5.9. Let @=(Q;f) be an (n,m)-semigroup. Then:
(1) @¥ is the unique poly-(m,m)-groupoid induced by Q;
(ii) (Q* g = &
(iii} g# 18 a poly=(n,m)=-semigroup. 0
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The following proposition is also true.

Proposition 5.10. Let P=(P;g) be a poly-(n,m)-semigroup.
Then:
(2) the restriction Py is an (n,m)-semigroup;
(i) (Py)¥® =p. D

The notion of a cancellative (n,m)-groupoid and of a poly-
(n,m)-group as well can be introduced in an obvious way. Namely,
a poly-(n,m)-groupoid P=(P;g) is said to be cancellative iff the
following quasi-identity

g(a?x?a§E1J - g{a{y?a§51) => XT = YT: (5.11)
holds in P for every s 21 and every j€{0,1,...,sk}.

A poly-(n,m)-groupoid P=(P;g) is called a poly-(n,m)-group
iff P is a poly-(n,m)-semigroup and any equations on xT,yT of
the form
g(akx™ = b = g(yTa5h), (5.12)
are solvable in P for every s 21.

The following proposition is true:

Proposition 5.11. Let @ be an (n,m)-groupoid.

(Z) Q is a cancellative (n,m)-semigroup iff Qﬁ* i8 a ecan-
eellative poly-(n,m)-semigroup;
(i2) @ Zs an (n,m)-group iff g* ie a poly-(n,m)-group. 0O

By P.5.9. and P.5.10., it is not necessary to make any
distinction between an (n,m)-semigroup and its induced poly-
(n,m)-semigroup because there is no essential difference between
them. However there is a reasonable motivation for introducing
poly-(n,m)-semigroups, as we will see in §6 in the construction
of free v.v. semigroups.

The above discussion allows us to write [aT+5k
g (EII:H'Sk
(n,m)-semigroups (s 21, arbitrary). In this notation we will
admit also s=0, setting [a7]=al}.

] instead of.
) in both cases: for (n,m)-semigroups (s=1) and for poly-

We will use this notation in the following:
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Proposition 5.12. Let (Q;f) be a ecancellative (n,m)-semi-
(nym) Then:

group and let axb, ayb, a’‘zb’, a'yb’eq

[azp] = [ayd] => [a2b] = [au2]-
Proof. Let [axb]=[ayb] and choose an arbitrary element e€Q.

Let aeQ(S-1)k-r

sk sk
a for 0 sr<k. Then [axb e ] =[ayb e ]implies that
k=r K=z (t=1)k+1
[§§ e | = [ybe]. Let a"€Q “for 0 <t <k. Then
k-r k-2 k-r k-t k=xr—-% 2k
[axbe e]=[aybe e ],and[ e axbe]=
2k-r-4 2k aksr=¢ 2k-r-%
=[ e a‘ybe]. This implies that [ e a“xb] =[ e a‘yb].

Because axb, ayb, a’xb’, a‘yp'e@ ™™,

to [axp]=[agp]. O

the same procedure leads

§6. FREE VECTOR VALUED SEMIGROUPS

In this section we will give a construction of free (n,m)-
semigroups. Although the construction will make sense for m=1
too, we will assume that m =22, because the description of free
n-semigroups (i.e. (n,1l)-semigroups) with a basis B is well
known.

Namely, if m=1 and n >3, then the subset D of B' defined by

ak+1 I

D= (b ax1, b €B} (6.1)

is a free n-semigroup with a basis B, the operation in D being
the usual concatenation of sequences.

First we will state the following:

Proposition 6.1. Let B be a non-empty set and (B;f) be the

free (n,m)-groupoid with a basis B. If = is the least congruence
on (B;f) such that the corresponding quotient (n,m)-groupoid
(B/*;f) i8 an (n,m)-semigroup, then (B/=;f) is a free (n,m)-se-

migroup with a basis B.

Proof. Let (Q;g) be an (n,m)-semigroup, £: B— Q be a
mapping and E: (B;f) — (Q;g) be the unique homomorphism which
is an extension of £. Then (B/kerE;f) is an (n,m)-semigroup.
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This implies that =Ckeri. If we define n: B/= — Q by

n(u) =£(u), then we obtain that n is an extension of £ and a
homomorphism of (n,m)-semigrouns. Moreover, n is unique with
respect to these properties. [J

Using the characterisation of (n,m)-semigroups as poly-
(n,m)-semigroups (P.5.9., P.5.10.), we can give a description
of the free (n,m)-semigroups by a corresponding factorization
of free poly-(n,m)-groupoids. Namely:

Proposition 6.2. Let F(B) be a free poly-(n,m)-groupoid

with a basis B. If = is the least congruence on F(B) such that
F(B)/~ i a poly-(n,m)~semigroup, then F(B)/= is a free (n,m)-
semigroup with a basis B. (]

(Here, the notion of: a congruence, a homomorphism and a
free poly-(n,m)-groupoid, we will not define explicitely. Howe-
ver, we will give a description of a free poly (n,m)-groupoid
as well.)

In the first section (§1) we gave a description of a free
(n,m)-groupoid (B;f) with a given basis B. By a similar discu-
ssion one obtains the following description of a free poly-(n,m)-
groupoid with a basis B.

Proposition 6.3. Let B be a nonempty set and let
1

]
= ¢y _xelmm FB) = Qe

¢ =8, C F
o p*a P m p p=o P
Define a mapping f: F(BJ{n’mJ-—* P(B)™ by:
f(uT*Bk} = P (View, ) ui=f£,uT+8kJ.

Then F(B)=(F(B);f) is a free poly-(n,m)-groupoid with a basis B. [J

Below we will give a more explicit description of the con-
gruences in (B;f) and F(B), which are denoted by a same symbol =.

First we define a relation —— in B and a relation in F(B)
with the same notation —>-. Namely, the relation +—— in B is de-
fined by:

A} P(n:mn}

See §5 for the definition of ¢ *'™), p.34:
P
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o on e j+n j+n, n+k
wi— o ge=D [1,u1(1,uj+1)...(m,uj+1}uj+n+11,
. n n, n+k
v = [1,(1,u,),...,(m,u1]un+1)

for some jeNk'

If u,v€F(B), then:

u - v <=> [u=(i,x°(1,y)...(m,y)x"), v=(i,x7yy")]
where ieﬂm, XX ER(BIY; x'x"eF(B+] and yEF(B)(n'm). Suppose that
+%_ is defined in B'and in F(B) as well. Then in each one of

these cases we set

a+ Po— S O
U —Ly<=>u= (i,xux"), v=(i,xv7x"),

a -
where u”"—— v~. Now,
a
U p— v <=> (da) u p— v. (6.2)

If - is the symetric extension of the relation h—}then the rela-
tion = is the reflexive and transitive extension of .

In other words,

u-~- v <=>4ujp— VvV Oor v — 1,
and

u = v iff there exist t =2 0 and u,,uz,...,ut such that
u,=u, u.=v, u_, S uy for 1€f1,2,..c;Ehs

The following problem rises naturally in the both cases:
given two elements u,v€B or u,veF(B), find an effective procedu-
re for answering the question whether or not u = v. One of the
possibilities to solve this problem is the notion of reduced
elements.

It is natural to say (in both cases) that an element u is
the definition of —— in the two cases it follows that every
i {41 is finite.
This implies that, for every w, after a finite number of steps,
one can get an element u, such that w = u and u is reduced. If,

in addition, the following proposition is true:

sequence of elements u,,u ,... such that u, — u
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"

wl,v are reduced and u = v => u = v",

then the following proposition would be true:
o (¥w) (2!u, reduced) w = u".

Therefore, to answer the gquestion whether or not w = v, one
would find the reduced representatives of w and v, and w = v iff
these representatives are equal.

In the first case (in P.6.1.) it is possible two distinct
reduced elements to be equivalent (and thus this procedure can
not be used), as the following example shows.

Example 6.4. Let n=3 and m=2. If a“QB, and

W
then:

w

(1,a,(1,a,(1,a3)(2,a3)) (2,a,(1,a3) (2,a))) €B,

"

(1,a,(1,(1,a%) (2,a})a,) (2,(1,a3) (2,a)a,))

= (1,(1,a,(1,a3)(2,a3)) (2,a,(1,a]) (2,a}))a,)

|
[

T (1,(1,(1,a]) (2,a])a,) (2,(1,a2) (2,ad)a,)a,)
We also have:
w = (1,(1,a3(1,a3)) (2,a3(1,a3))(2,a3)) = v

and this implies that u = v. It is clear that u and v are redu-
ced. Thus two different reduced elements in B are equivalent. We
note that such examples we have for any n,m of m2>2.

Fortunately, this is not possible in F(B), i.e. two distinct
reduced elements are not equivalent. Thus, to obtain the free
poly-(n,m)-semigroup with a basis B, it is necessary to give a
description of the reduced elements and the procedure for obta-
ining reduced representatives of given elements as well.

notation: |x|, where X€(B, F(B), B', F(B)"}, by induction, as

follows (see also p. 20):

Ibl = 1 for bEB;

m+rk
Y + :
|{1,uT rk}| = szluvl for (1.uT+rk)ECp+1; and
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