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t
) =g lu | for uteB* or F(m)*.
V=1

Denote by S(B)=S the set of all the reduced elements of F(B).
Now we will define a mapping y: st — gt as follows.
1) If xes® and 1<a <m-1, then ¢(x)=x.

Assume that y§(y)€S is well defined for every yGS+ such that
lyl < I1xl and y(y) satisfies the following condition:

v(y) # y => m < dly) <dlp(y)) and ly(y)i<iyl. (6.4)

Now, if x has a form x=x7(1,z)...(m,z)x", where x~,x"€S*, (v,z)€s
and x~ has the least possible dimension, then we define y(x) by:

2) p(x) = p(x"zx").
And, if x has not such a form, then we put:
3) y(X) = x.
The assumption (6.4) implies that if ¢ (x) is defintd by 2), then:
fp(x)] < Ixl and d(yp(x)) > d(x),

and this implies that y: 8= gt is well defined mapping such
that (6.4) holds for every y€S+. \ A

By induction on length, the following statement can be .easi:
ly shown.

Proposition 6.5. If =°,z",565*%, (v,y)65, 265, i,a,B€H ,
a # 1, B # m, then:

(2) plz (1,y)...(m,ylx=™) = p(z yx"),
(i%) Wiz “zx") = $(x YlzHhc"),
(2i3) ¥2 = ¥,
(iv) Wlx) # 2 => m<d(z) <d(w(z)) and lyp(z) | < lzl,
(v) d(y(z)) = d(z) (mod k),
(vi) Y(yx) # (i,yla, wlxzy) # z(<i,y),
(vii) v((a,ylx) = (a,y)v(z), $(x=(B,y)) = v(z)(B,y),
(viii) (£5z)es irf zer(B) ™™ and y(z)=z. O

Now, we are ready to prove the main result of this section.
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m+5k (n,m) m+sk

First, if u, and ieNm, then vy =(i, w{u ))es,
and thus we can define a poly—{n,m)—groupoid §=(S;g) by:
g(u™K) = M jef (VieN ) v, = (1, (u™K)), (6.5)

Theorem 6.6. S 78 a free poly~(n,m)-semigrouyp with a basis B.

Proof. By P.6.5. (i), (iii), (viii) it can be easily seen
that S is a poly-(n,m)-semigroup and it is clear that B is a ge-
nerating subset of S.

Assume that Q0=(Q;f) is a poly-(n,m)-semigroup and £: b+ b
a mapping from B into Q. Then, there is a unique homomorphism
£: F(B) — Q. Denote by ¢ the restriction of ¥ on S. We will
show that ¢ is a homomorphism from S in Q, and this will comple-

te the proof. 5
m+sk} = v:n, i.e. v, = (i,w{u1m+s )., and

tlu,) = v, tlv,) = V,. If (1,u,"%¥)es, then we have

Let g(u,

misk, . u1m+Sk and thus

¥ (ua,

= mt 3 = m+tsk, _ ~-m
= 1,0 228y = £ @ TN, Leel £(E M) - T

v
i
- o G m+rk m+rk, m+sk
Assume that: u, u;(1,w, )...(m,w )u3+m+1,
Then:
3 m+rk m+sk
(i, ﬂ’(u uJ+l'l'l+1)J

and by induction we have:

V= £ {njﬁm+rkﬁm+sk

j+m+1

=3 _m+rk +sk
£ (@@ O

I

- +,
(u1m sk) y

Thus, we showed that

m+sk} L V 193 f(_1'n+sk = VT‘ o

As a corollary we obtain the following desired result:

g(u

Proposition 6.7. If w,v65C F(B) are such that u = v, then
=9 [

Note that we do not make difference between a free poly-
(n,m)-semigroup and a free (n,m)-semigroup. Therefore, S(B) is
a free (n,m)-semigroup.
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Theorem 6.8. Let S=(S;g) be a free (n,m)-semigroup, with a
basis B of cardinality B, and m22. If « is a cardinal such that
as max{ﬂ,}io}, then there exists an (n,m)-subsemigroup T of S,

whiech i8 a free (n,m)-semigroup with a basis C of cardinality u.
Proof. Clearly, it is enough to show that if B={b} is a
one-element set, then S has a free (n,m)-subsemigroup with an
infinite basis.
Namely, if S is defined as in T.6.6., and if

m+rk

ar=[l,b Y,

then the (n,m)-subsemigroup T of S generated by A={ar | z21)
is a free (n,m)-semigroup with a basis A. 0

We note that the above result, in the case m=1 holds only
if g 2 2.

Theorem 6.9. Every free (n,m)-semigroup is cancellative.

Proof. Let 5=(S;g) be the free poly-(n,m)-semigroup with a
basis B, defined as above. We will show that the following impli-
catinon holds:

vixy) = p(xz) or ¢(yx) = p(zx) =>p(y) = ¢(z) (6.6)

for any x,y,z, and this will imply the desired result that § is

cancellative.

Assume that y¢(xy)=y(xz). We will show that y(y)=y(z), by
induction on Ixyzl. First if y(xy)=xy, ¢(xz)=xz, then y=z. By
P.6.5. (ii) we have

pl(x)y) = v(xp(y)) = p(u(x)z) = v(x(v(z)),
and thus we can assume:
pix) = x, yly) =y, v(z) =2z, and y(xy) # xy.
Therefore, we have:
x = x7(1,x")...(g,x"), y = (g+1,x")...(m,x")y",
for some gEN =

m=1
Then, one of the following conditions holds:
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a) vixz) =x2, b)) z= (B+l,x")...(mx")z".
In the case a) we would have:
XY . (B X2 = Pl xE"y ")
and this would imply: ~
(1,x")...(B,x")z = ¥ (x"y"),
which is impossible by P.6.5. (vi).
If b) holds, then we have:
Y(xx"y") = v(xx"z"7),
and this (by the induction) implies y§(y )=¢(z7), hence (by
P.6.5. (vii)):

v(y) = (B+1,x")...(m,x")y(y")
= (B+1,x")...(m,x")v(z")
= 9(z).

Thus, ¢(xy)=¢(xz) => ¢(y)=v(z), and by symmetry:
¢ (yx)=¢ (zx) => y(y)=v(z). This completes the proof of (6.6).

Assume that
g(uSKv™) = gk,
where g, Vo ules, s21; F.es
v (SKe™) = g (uSKe™).
By (6.6), this implies ¥(v})=¥(w}), hence by P.6.5. (iv), either

Vi (VI =p(w3)=w], or ¥(v])=y=v(w}), where v]=(1,y) (2,y)=(m,y)=
=u?. 1]

Let S=(S;[ ]) be the free (n,m)-semigroup with a basis B
as above. (Here we denote g by [ ]). Denote by § the set vish,
e 58
s = xest | v(x) = x}.

Define a (binary) operation e on é by:
xey = ¥ (xy)

By P.6.5 (ii) and (6.6) it can be easily shown that the
following statement is true:
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Proposition 6.10. E = (85;) is a cancellative gemigroup

generated by 5. []

iheorem 6.11. é is the universal semigroup for the (n,m)-
gemigroup S.
Proof. We have to show that §=<S;A>, where
A= g, v]) | [u]] = ] in s}
First, it is clear that the embedding from S in S is a
realization of (S,A) in é.

Let £: ub= U be a realization of (S,A) in a semigroup
H=(H;o). We are looking for a homomorphism ¢: § — H, which is
an extension of .

Consider first the homomorphism et st — H, defined as in
§3, i.e. by:

"
+, a - —
£ (uy) = u,0u,0...ou ,
for every ufes“. By induction ‘on lengths and dimensions we will
show that: '
+
(exesT) e (x) = £F(p(x)). (6.7)

We have only to consider the case when y(x)#x.

If x=(1,y)...(m,y), where, (v,y)€s, y=uT+rk, then:
£7(x) = T,y)0(2,3)0...0(my)
and:
et = ety = U0...0u 0= et
for [uT+rk] = v, where v,=(1,y).

Assume now that, x=x7(1l,y)...(m,y)x", where x°,x"€s*,
x“x"es*, (v,y)es. Then we have:

I

¥ (x7yx") = ex(x") et (y)E* (x")

E*(x )€V ((1,y) (2,y) ... (m,y)) £* (x")
e (x7(1,y) ... (m,y)x")

e¥(x),

e* (v(x))

1}

I

and this completes the proof of (6.7).
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IE x,yeé, then:

0

t(xey) = c(v(xy)) = £¥ (v (xy))
+ + +
E (xy) = £ (x)o& (y)

z(x)orl(y),

I

and this implies that
extension of £. [

< é — H is a homomorphism which is an

If we consider S as a poly-(n,m)-semigroup, then it is na-
tural to consider the following presentation:
- +sk + :
AT = {(uT & ,VT) | [uT SK] = VT in §}.

Then, we have <§; A> = <§;A"> = é, and this statement is a co-

rollary from the following more general

Proposition 6.12. Let P=(P;g) be a poly-(n,m)-semigroup and
A, A" sete of semigroup relations on P defined by:

A= {(a},b7) | gta}) = BT}
Ko = gl BT | gra e

1 E]

Then: <P; A> = <P;A>. 0

§7. UNIVERSAL COVERINGS QF VECTOR VALUED SEMIGROUPS

Here we will give a more precise description of the univer-
sal semigroup gﬁ of an (n,m)-semigroup Q=(Q;f), defined in §3.
z __.sk+m__sk+m
We recall that, as in §5, if u=a; €0 then

[u] = f(S)(afk+m}€Qm

for every s 20. The relations +—, ~ and 4 are defined as in §3

with A=AQ.

Proposition 7.1. If u€Q™, v€Q*, then

w } o ipp veg®ktm

sk+m

and [v]=u, for some s 20.

Proof. Let veEQ and [v]=ueQ™. 1f s = 0, then u = v, and

A .
clearly u = v; if s = 1, then the definition of A implies u Q Vi
o
Suppose that v=a S¥*™ g > 3 ang [v]=u. Then [v]=[wai§;T‘], where
k+my ,.m A sk+m k . "
w=[a """]eQ™ ana v = way ... Since [wa§+;T1]=u, by induction on
sk+m A

s we have i A
wak+m+1 = u, 2. u = v,
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Assume now that ueom, v€Q+ and u A v. Then there exist
+ —

uo,...,uteQ , £20, such that u=u_, v=u, and Wy g oYy for iGNt.

By P.3.3. c) we have that d(ui_1) Ed(ui} =m(modk) for every ieNt’

and so it is enough to prove that [u,_ ]=[u;]. But, the last

equality is true by the definition of }— and the GAL. [

Proposition 7.2. If u8Q® and a = m then there exists a uni-
que BE€{0,1,...,k-1} such that a-m =B(modk) and u 4 v for some

UGQM+B.

Proof. Let a=m+yk+f, 0 <B <k, and suppose that u=u"u", whe-
re u€d™ ", uveo®. Then, by P.7.1., u” - [u“], which implies

u v, where v=[u']u"eQm+B. O

As a consequence of P.7.1. and P.7.2., we have that:

u,veQ™ and u z v imply a = v.
i.e.

Qm

Thus, by P.3.3. and the above remark, we have the following des-

s St

cription of the universal semigroup Q°.

Theorem 7.3. The untversal semigroup Q" of an (n,m)-semi-
group @ has a carrier Q" represented as a disjoint union of the
form

2 m
QURTU...UQve ,V...UQ,_, (7.1)

where Qm+B=QM+ﬁ/E and E 18 the restriction of A on Qm+8 for eve-
ry géN,_ . O

Note that, by using the multiplicative notation e for the
operation on Q°, we have that

a1...aib1...bj if i+j <n
a,...a;*b ...b, = (7.2}
i e b, if i+j2n
11 n-i+1°"°"""73 J
We will denote by oV the subset

m
Q"uo U ..U

1
of Q* and we say that Q" is the universal envelope of Q. It is
clear that:
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Proposition 7.4. Q" is an ideal in @~. O

Note that the set N _ =N, . ={1,...,m,m+l,...,n-1} is a
cyclic semigroup generated by 1, of an index m and a period k,

with respect to the operation @ defined by:

a+g if a+Bf £n-1
a®B = (7.3)
a+f-tk if m+tk €a+f <m+(t+1l)k

The following proposition follows directly from (7.2) and
(7.3).

Proposition 7.5. The map |l Il: @~ — N defined by

n=1

lull = a 2Fff ugQ® or ueQa,is a homomorphism from Q" onto (Hn“1;9). O

If m<tk <m+k, then tk is the neutral element in the sub-
group Z£={m,m+l,...,m+k-1} of {Nn_1;$). This, and P.7.5+ imply:

Corollary 7.6. th i8 a subsemigroup of gv and 8o of @°. 1
T.7.3. implies that the following is true:

Theorem 7.7. Every (n,m)-semigroup @ is a pure (n,m)-sub-
groupoid of its universal semigroup @".

(In this case we say that @ is a pure (n,m)-gubgemigroup
of @~.) a .

This result is a generalization of Post’s theorem for poly-
adic groups ([4 ], [6 ], [41]) and that is why we reffer to it

as Post Theorem. ,'
Further on, according to T.7.7., the semigroup Q" will

called a universal covering of the (n,m)-semigroup Q.

We note that, if P=(P;g) is a poly-(n,m)-semigroup, then
the semigroup <P; I'(P)>, where

m+sk

r(e) = (a7 mApe

b7 | ga7™™*) = b7, s21, a b er},

coincides with the universal covering Q" of the restriction
Q=P 4 of B.

groupoid Q iff Q is a pure (n,m)-subgroupoid of S and § is gene-
rated by Q. Every covering of an (n,m)-semigroup Q is a homomor-
phic image of the universal covering 0", i.e.
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Proposition 7.8. If a semigroup S is a covering of an (n,m)-

semigroup @, then the inclusion a +— a of @ into 5 can be unique-

ly extended to a homomorpﬁism of @ into S. [l

Proposition 7.9. If the universal envelope Q" is a cancel-

Lative semigroup, then @ is a cancellative (n,m)-semigroup. In

this case, if aT+t, bT+zeQm+1, 0 <7 <k, then the following econ-

ditions are equivalent:

i e A ae A a3
() 2, am+1 b1 bm+t L Qm+z’

(Z2) the equality

[csk—i m+i] = [cikﬂibT+£] (7.4)

_ i %
holds in @ for every s z1 and every cueQ;

(721) there exist 8 =21 and chQ such that the equality (7.4)
holds in @.

Proof. Let uer, v;weQm and suppose that [uv]=[uw]. Then in
QY=(Q";e*) we have uev=[uv]=[uw]=uew, which implies v=w. Similar-
ly, [vu]=[wu] implies v=w.

It is clear that (i) => (ii), (ii) => (iii).

Suppose that for some s 21 and some cveo the equality (7.4)
holds in Q. Then we have in QV

C1.....C '31...3 = C_®,..%C

sk-1i m+i 1 sk-i.b1"'bm+i

and multiplying by d1"'dm+i'

+i_sk-i = +i_sk-i
[a7 et Jea,...a ;= [dF <t Jeb,...b ...

The last equality implies a,...a . ;=b, in @Y, i.e. in Q-.0

L "'bm+i

Next we will show that every cancellative (n,m)-semigroup
admits a cancellative covering.

Theorem 7.10. Let @ be a cancellative (n,m)-semigroup and
define a relation = on @ by

u * v <=> (7wQ") [ww] = [ww]. o (72:5)

Then = ig8 a congruence on Q* and Q = Q*/: 12 a cancellati-

ve covering of Q.
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Proof. If ueQ®, veo® and u = v then a = 8 (modk); namely,
if weQ" and [uw]=[vw], then a+y =B+y (modk).

From P.5.12., it follows that u = v iff d(u) = d(v) (modk)

and [w,uw, ]=[w vw ] for every w1,wzeo+ such that d(w,uw,)=m (modk).

Now, it is easy to see that = is a congruence on Q+ and that
Wu * wv or uw = vw implies u = v.

Q+/= is cancellative.

[}

Thus, the factor semigroup Q°
We can assume that Q€ Q™ = Q+/-, since

a,ben and a = b implies [2]=[ban_1] in Q,
m =1
i.e. a=b a , after cancelling. Hence, a =b.

nj_,m . n m _ .
Let [af]=bT in Q. Then a| = b, i.e. a,az...a,=b ...b  in

Q.- This means that Q is an (n,m)-subsemigroup of Q~. In fact,
Q is a pure (n,m)subsemigroup of Q~, since

a = b} implies [cEaT] = [chT] in Q,

and the cancellativity of Q implies aT = b,

4

It is clear that Q~ is generated by Q. [I

Example 7.11. Let (Q;[ ]) be a constant (n,m)-semigroup de-

fined as in E.2.6.1), i.e. there is an aTeQm such that
n m
[x7] = af

for all xveQ. Then:

=

»_I
u "

where u,v€Q+, o+ i v’v“@g* (and A=AQ). Namely, let u=hfaTbi+1,

v=c?aTcg+1 for some b ,c,€0, i,p20. Then, the fact that

A
f = y? & a? for every xv,yleq implies
i.m, A.in=in 3
b1x1bi+1 Xy n—i+1bi+1
n_j
1cp+1

X

u

=
=

p,N-p,n 3
Ci¥,4 xn-i+1bi+1
4

1,
Ballcd, D v.

CEY

[ES

+1

Conversely, let u 4y andu # v. Then we can apply some of the

defining relations from A iff u and v contain aT as a subword.

v <=>u = v or (uv=u’a,u", V=V'ETV"); (7.6)
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As a consequence of (7.6) we have that

Q. = fueg” | lul=a, aT is not a subword of u}u{aﬂ“ 5™}

for every a: m<a <n, where b is a fixed element of Q. Hence,
the multiplication in Q" can be given by
t

1

t

c?d if s+t <n and aT is not a subword of cfd1

- ey
cled =< .
a, g, otherwise,
where 0 sr<k, r = s+t-m (modk).

It can be easily seen that if IQl=q < =, then |Q"| <= as

well, and moreover
4 +
R S AR I kgt (k1) gF 41

g2 (g-1)2

for 22, and 1Q"I=n-1 for gq=1.

Example 7.12. Let (Q;[ ]) be a left zero (n,m)-semigroup
defined as in E.2.6. 2). Then we have

ud v u=vor [@w=(v) ana @die™ (w=cfu”, w=dv)  (7.7)

where u,veQ"', u”,v7eQ*. Namely, the defining relations imply
that if u A v, tken the first m elements of u and v are the same.
On the other hand, since u 4y imply |ul Ivl (modk), if

u=cr1nb:1|, v=ch? (j 20) then

m

=
=

m_Jj mnj A mm.,j
H C1b3 c1x1b2 = °1Y1dg

=
=

ch? v.

Now we have the following description of Q°:
a=-m

Q = (ueQ” | u=v b , Ivi=m},

where m<a <n and b is a fixed element of Q. The multiplication

on Q% is given by duE
cid;, if s+t <m

r
cSeat ={c™b, if s=m
r
cfdr:l—s b, otherwise
where 0 £r <k, r =s+t-m (modk).

If |Ql=q < = then [Q"| <= as well, and



52 CUPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

m
R m=1 qg -1
10"l = kg + T
for g2, and IQ"| = n-1 for g=1.
By duality, we have corresponding results for right zero

(n,m)-semigroups too.

Example 7.13. Let (Q;[ ]) be an (n,m)-rectangular band, de-
fined in E.2.6. 3), where Q=AxB, A is a left zero and B is a
right zero (n,m)-semigroup. One can show that if u,veQ+,

m<|ul = lvl <n, then
A
u=v<=>us= (31,b1}...(ai.bi},
= m_ _m i s &
) ‘.C,td,}---‘ci:di}r 8, =Cq» bi+1-m_ i+1-m’
where a ,c €A, bk'dlﬂﬂ‘ Also, if IAl = a € =, |Bl = B € =, then
m,m
g A m,m_ a B =1
[QI—"(AKB}I—RGB 1+—ue-':r
for aB 22, and IQ°] = n-1 for aB = 1.

Example 7.14. A universal covering semigroup of a free
(n,m)-semigroup S=(S;[ ]) is the semigroup S=(S;*) defined in
§6. But '_3_ has not the usual form:

-~

s = sus“u...usmusmhu ceeUS_, > (7.8)
To get such a form we have to make a modification.

Define first a mapping x = X from é in S+, in the follo-
wing way. If xeé, then:
X if 1'<d(x) <n
X =
(1,y)...(m,y)2z, where x=yz, yes{“'"‘], 0 =d(z) <k.
Denote by S the set {x | x€S}, and define a (bimary) operation
‘s on S° by:

xey = ¥(xy). .

Then we get a semigroup S°"=(5";¢) isomorphic with é, and morover
(7.8) holds.
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§8. VECTOR VALUED\CROUPS AND THEIR COVERINGS

In this section we will give some characterizations of v.v.
groups, mainly using their coverings.

Let n,m be given integers, n-m=k 21. Recall that an (n,m)=
semigroup (Q;[ ]) is an (n,m)-group if for each QGQK, QEQm, the-
re exist x,y€Q™ such that [ax]=b=[ya]. The question about the
existence of v.v. groups will be considered later, but we know
that (n,m)-groups do exist;see E.2.7. Since an (n,m)-group
(@;[ 1) is also an (n,m)-semigroup, we have the universal cove-

ring semigroup Q‘=<Q;AQ>, {see §3 and §7), and by T.7.3:

ovoiu ...ud™'veY,

0~
where

QV

m
Q'VQ M-,
is the universal envelope of Q.

Proposition 8.1. Let (Q;[ ]) be an (n,m)-semigroup. Then
the following conditions are equivalent:

(2) (@;[ ]) Ze an (n,m)-group;
(%) QV is a group.

Proof. (i) => (ii): Let a,...a . b1...bm+qu, and let

m+p

m+p kErGQ{S+1)k

m+p=sk+r for 0 €r <k. Let a€Q. Then for a, there

exists cTeQ™ such that [a™*P L c™]=b" (see T.5.8). This impli-
es that

a1aa...am+P

k-r

B : v
- a '01"‘Cm‘bm+1"'bm+q = b1bz"°bm+q in Q°.
Hence, the equations a-.x=b have solutions in 0", and the proof
that the equations x-a=b have solutions in gv, is symmetrical.

So, gv is a group.

(ii) => (i): Let afkeork, bTEQm be given, where m<rk <n.

Then, there exists c,...c

v s
m+peg , such that a,'...ark-c,,...cm+ =

P
=b,...b_ in Q@Y. P.3.3 implies that m =m+p+rk (modk), i.e. p=0.
P.7.1 implies that [afkcm]=bT. Hence the equations (akaT]sz,
have solutions in Q, andsfmmetrically,the equations [xTafk]=bT
have solutions in Q. This, together with P.5.5., implies that

S T
(Q;: [ ]‘ M) is v.v. group, which together with T.5.8. implies
that Q is a v.v. group. O
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The proofs of the following two corollaries follow directly
from P.8.1, P.3.3, C.7.6, T.5.8 and P.7.9.

Corollary 8.2. Let (Q;[ ]) be an (n,m)-group, and m <2k <m+k.

Then (Q -) 28 a normal subgroup of QV. Moreover, the factor

2k
group Q'/Q,, is a cyelic group of order k. I

Corollary 8.3.If @ is a v.v. group, then @ is a cancellati-
ve v.v. semigroup. O

Corollary 8.4. Let (Q;[ 1) be an (n,m)-semigroup, m Sk <m+k,
and t=tk-m. Then (Q;[ 1) is an (n,m)-group iff for each afth,
("1 4) is a group, where g*g:[gafg]. Moreover, each (Q";%) is

igsomorphic to (Qu; 5 ). 1}
Now we give the proof of P.2.8.

Proof of P.2.8. The implication (i) => (ii) follows from
the definition of v.v. group and C.8.3. The implications
(ii) => (i) and (iii) => (i) are obvious. The implication
(i) => (iii) follows from T.5.8 and C.8.3.

We note that P.7.9 is applicable for v.v. groups, because
the universal envelope of a v.v. group is a cancellative semi-

group.

Next we have the following propositions.

/ of an (n,m)-

Proposition 8.5. If # is an (n,m)--subgroup1
group @, then H" is a subsemigroup of &°, and &V is a subgroup

of @".

Proof. If a1...am+i=b1...b

P.7.9. implies that a, ...a

i in Q~, for au,bUeH, then

m+i=b1°"bm+i in H™ = )
Proposition 8.6. 15 g <8 an (n,m)-group and aﬁegi,

b1m*z€Qm+L, 1 <i <k, then for each 0 =j <%, there exists a uni-

que xf?EQm such that

R i e e S N i K o H G
1 ag 1 xm a3+s az 1 bm+1 v Q

Proof. Let c%‘ieok-i be an arbitrary element. Then the

eguation

)
i.e. _Hgo and H is an (n,m)-group with respect to the
(n,m)-operation of«Q.
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k=17 i k-i, m+i
(<] 1a3xTaj+1] = [¢T77T)

has a unique solution xTeQm. Now, the conclusion follows from
P.7.9. 0

As a consequence of the above propositions we have the
following:

Corollary 8.7. Let (Q;[ ]) be an (n,m)-group. Then, for
each aéq

-1
@ = "uad"y...uka'¢",
where ZQm:{%xT | xTe@m}. Moreover, the operation e on Q" ie
given by:
Tyeeel Y onely if r+s <m

(21...xr)'(y1...ys) =
P*S;pk—sz if m+pk Sp+s <m+(p+1)k,
where zT ig the unique element from Q" such that

_ r+s—-pk-m
x,...xpy1...ys = a 31...3m

(see P.8.6.), Z.e.
[(P+1Jk;m—r-szr s] : {g 3?]- 0

kPl |
Using P.7.5 and C.8.7 we obtain:

Corollary 8.8. Let (@;[ ]) be an (n,m)-group. Then @' is
igomorphic to (kaQm;*J where

(L,23)2(5,47) = (i+d,8%),
zT_is defined as in C.8.7, and i+j is in the group (Zk;+J.
Proof. C.8.7 implies that QY is isomorphic to (Zﬁme.*'}

where
Zy = (m,mtl, ... mk-1}, (i,X7)*7(5,y7) = (i®j,2M).

The conclusion follows from the fact that {zg}e) is isomorphic
to (zZ;;+). O :

Now we consider the question about the existence of a cove-
ring semigroup S for a given v.v. group:. Q, such that S is a
group. We note that the universal covering semigroup Q" is not
a group for m 22, but the answer to the above question is positive.
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Proposition 8.9. The universal cancellative covering semi-
group @~ (defined in §7.) for a v.v. group @ is isomorphic to
the universal envelope gv.

Proof. Suppose that S=(S;e) is an arbitrary covering semi-
group of Q. Let SV={a1-...°at | t2m, aveQ}. Then sV is an ideal
of §, and moreover, S' is a homomorphic image of QY. Hence §V
is a group. Now let S=Q~ be the universal cancellative covering
semigroup for Q. Let a€Q be a fixed element. Then by C.8.5.,

QV=0"uUaQ™u ...u X¥a'g™. Let beq and let j€fl,...,k-1} such that
k is a divisor of n+j-1. For [& 'b] there exists a unique pTeQ™
such that [ns‘b]=[n;j-1bT]. Hence

"3 = M., tn g7y dee. beadh,.. B
1f éxT=3yT in Q7, then i=j and x7=y" in Q~, and since Q is a
group, xT=y? in Q™. Now, since Q generates Q~ and each element
of Q is an image of an element of QV, it follows that Q7 is a

group. [

Corollary 8.10. I'f S is a cancellative covering semigroup
of a v.v. group, then S is a group. [

Next we give the following:

Corollary 8.11. If @ i8 a v.v. group, such that 1Ql=q <=,

then

(a) 1Q = 1a%qM1=24", 1€10,1,2,...,k-1);

vl
m+1

(b) 1Yl = k-q™; and

1]

(e) 1Q°| = q+q2+...+q" ' +k-q".

Proof. Follows from C.8.7. 0

Corollary 8.12. (Lagrange Theorem). Let H be an (n,m)-sub-
groupoid of an (n,m)-group @, and let 1Ql=q < =. Then |H|=p is
a divisor of q.

Proof. P.8.5 implies that HY is a subgroup of QY. Using
C.8.11 and Lagrange Theorem for groups, we have that k-pm is a
divisor of k-q™, which implies that p is a divisor of g. 0
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Now, we give a description of the universal covering semi-
group for a special kind of v.v. groups, by considering a few
examples.

Example 8.13. Let (Q;[ ]) be an (n,m)-group and m < tk <m+k.
Suppose that the subgroup g.m of QV has a neutral element equal

ik
to e for e€Q. Then
Lk ik m
L 2R ] - [ 85 o
for each x7eQ™. C.8.7 implies that the universal envelope QY

has the form
k-
QV = QmueQmu gt 1) e‘Qm,
and moreover, the multiplication on Q" is given by:

xfyf if r+s =m
xr.ys ;.-{
o k-t :
5[ e xfyf] if r+s 2m,

where 0 <t = r+s-m-pk <k.

Example 8.14. Let G be a group with a neutral element e€G.
Then (G;[ ]), where [xTyT]=(x1y1,...,xmym} is a (2m,m)-group;
see E.2.7. 1). Such (2m,m)-groups are called ,trivial" (2m,m)-

groups. In this case fk=m, and the multiplication in

G = GU...UuGUed"y...um'c™

is given by:
xTyS if r+s <m
1Y1
Pl
s + 2 s
e m[ e o xfyf] if r+s >m,
i .
FES [Me5xTyS] if r+s<m
erxl’:\.y? =
r+s-mrm=s_m_s
e° e x,y,] if r+s 2m,
+S rm~r-s s
xT ogy™ =i res[Me x; ey"] if r+s<m
1 1 +S~=mfp2m-r-s 5
re® 1'*.1[ e xfeyrf] if r+s 2m,

oo s
TESMeSxM e y™) if r+s<m

r m S m _{
e sey =
1 +s-mr2m= s
g rgs = i mesxTeyT] if r+s 2m,

where 0 =r, s <m.
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Example 8.15. Let (G;[ ]) be the (4,2)-group given in E.2.7.
3). Then G"=GUG3U0G?, and x-y=xy, x-(yz)=(xy)-z=0[0xyz],
(xy) - (zt)=[xyzt],, x-0yz=[x0yz], Oxy-.z=[0xyz], xy-0zt=0[yxzt],
Oxy-zt=0[xyzt] and Oxy.0zt=[yxzt].

Example 8.16. Let (G;[ ]) be an (n+l,n)-group. Then
G‘-GLJGﬁLuUGn and the multiplication on G* is given by:

.8 .
x,y, if rts<n

X ¥ ™
[xTy5] if r+s >n.
At the end of this section, we give a corresponding genera-
lization of Hesszu-Gluskin’s theorem for some types of v.v.
groups.

Theorem 8.17. Let (G;[ ]) be an (sm,m)-group. Then there
extst: a binary group (¢";e), an element c€G", and an automorph-

ism © of this group, such that for each a1,...,asea",

[ay...a,] = a,°06(a,)e... "9'5'—'3|"r:3_1)"Gs"1 (a )ee, (8.1)
where

ofc) = ¢ and 6° ' (b) = cebec™ ", for BEG™. (8.2)

Proof. Since (G;[ ]) is an (sm,m)-group, (G";g), where

gy X vymes) = [T, (8.3)

is an (s,l)-group. Then, Hosszu-Gluskin’s theorem implies that
there exist: a binary group (G‘; e), an element cec™ and an auto-
morphism ©-of (G™;e), satisfying (8.2) and

q(uf) = u,-e(uz)‘...ies_'{us)-c (8.4)

for each u €G". Now, (8.1) follows from (8.4) and (8.3). D
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§9. SOME CLASSES OF VECTOR VALUED GROUPS

In this section we consider some classes of v.v. groups,
touching upon existence problems for them also.

The investigation of (n,m)-groups pushes forward
naturally the cases n=2m and n=m+l, because for m=1 one obtains
the class of groups in both cases. Further on, we will assume
that m is a given positive integer such that m=>2.

Recall that any (2m,m)-group defined as in E.2.7. 1), is

trivial (2m,m)-groups.

Note that if G=(G;[ ]) is a (2m,m)-semigroup and if we de-
fine a (binary) operation e on G" by:

ey = LENN
to G. =

Proposition 9.1. 4 (2m,m)-semigroup G=(G;[ ]) is a (2m,m)-

group iff its associated semigroup (G";e) is a group.

In that case, the identity of the group (G";e) has a form
g, where e€G, and moreover the following equality in G

m

[.‘1‘.‘1: m m 5

1% Fia.

holds for every i€{0,1,...,m} and z7eG".

] ==

Proof. The first part of the proposition follows easily as
a consequence of C.8.4.

Let G=(G;[ ]) be a (2m,m)-group and let e? be the identity
of the associated group. If x,€G" and 0 <i <m, then:

im i m m A
[xjeTxT, ] = e?t[x,e,xi+1] =
i
- (T, M

[eTx7] = xT;

therefore
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T[T P | G m
[e,eTel] = ef = [eTe]],
which implies e,=e,=...=e (=e). O
As a direct consequence of P.9.1 we obtain:

Corollary 9.2. ret G=(G;[ ]) be a (2m,m)-group with the
identity e and let HS G. Then H is a subgroup of G ©ff A" is a
subgroup of the associated group, and in that case e€H. [l

(Here, the notion "a subgroup of a v.v. group" means "a

v.v. subgroup of a v.v. group”.)l

The existence of the identity e enables us to introduce the

notion of a normal subgroup of a (2m,m)-group as a kernel of a
homomorphism.
Proposition 9.3. If &€: G — G° i8 a homomorphism from the

(2m,m)-group G=(G;[ ]) to the (2m,m)-group G'=(G¢ ;[ ]°), then

H = Kert = {266 | €(z) = &’} = € '(e”)

i8 a subgroup of G with the following properties:

[x?_'meg] = [zTHm], (9.1)
m.my _ m,m L . m .my _ [m ,m

[58"] = [478"] <=> (vueﬁm)[xjﬂ 1= [yjH ] (9.2)
for every zv,yvea, ieﬂm.

(Here, e’ is the identity of G°, and [x:_13mx?] has the
usual meaning, i.e.

7= L=, m
[x, Emz?] = f[z? 1h1zg] | hTGHm].)

Proof. Denote by E the homomorphism from (G™;s) to (G’ ™;e)

induced by £, i.e.

m _ 0 o =
Elxy) =y, <=> (ViENm) b Yo E(xi).
Then

Kerf = H",

which implies that H" is a normal subgroup of the group (GM;e).
and by P.9.2, H is a subgroup of G; now, by the fact that ™
is a normal subgroup of Gm, one obtains that (9.1) is true.

Suppose that x7,y"eG™ are such that [xTH"]=[y7H"]. Then
E(xD=E(yT), i.e. £(x;)=E(y;) for every jeN,, which implies that
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