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m —
T(x,) =g(?j) for every jeN_. This implies that (9.2) is also
true. [J

Now suppose that H is a subgroup of the (2m,m)-group
G=(G;[ ]) with the properties (9.1) and (9.2). Then H™ is a
normal subgroup of the associated group (G™;e). Consider the
quotient group Gm/Hm and the subset G/H of GU/H™ defined by:

G/H = (3™ | xeqy. (9.3)

s m
To shorten the notation we will write X instead of xH™. There-
fore:
—_ — m
X =y iff xH™ = ya".

Consider the canonical mapping natH: X — X from G onto
G/H. We will show that:

Proposition 9.4. There existe a unique (n,m)-operation

[ ] on G/E sueh that naty is a homomorphism from (G;[ ]) to
(¢/a;[ ] ).

Proof. By the fact that nat, is a surjective mapping from

G onto G/H it follows that there exists at most one operation
[ ]~ with the demanded properties.

To prove that such an operation exists it is necessary on-
ly to see that (9.2) implies directly that the following impli-
cation is true:

- _= 2my_.m 2my _ L

(VieN_ ) x =y, and [x3"]=uT, [y, ]=v] => (9.4)

(VjeNm) uj=vj.

By (9.4) one obtains that a (2m,m)-operation [ ]~ on G/H is
well-defined by:
amy _ -m —2my . _ —m
[x37] = T => XM = u, (9.5)
and also that natg: (G;[ ]) — (G/H;[ ] ) is a homomorphism. [
By P.9.4 one obtains the following:

Proposition 9.5. If G6=(G;[ 1) is a (2m,m)-group with the
identity e, H i8 a subgroup of G with the properties (9.1) and
(9.2) and if (G/H;[ ] °)=G/H is defined as above, then:

(¢) G/H i8 a group with the identity e,

(i) nat, is a homomorphism, such that Kernat,=H. II

H
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62 CUPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

As a summary of the above results, we obtain the following:

Theorem 9.6. Let H be a subgroup of a (2m,m)-group G. Then
H i8 mormal in G Tff there exists a homomorphism E£: G — G~ such
that H=Kert. 0O

By the definition of G/H directly one obtains also the fol-
lowing result:

Proposition 9.7. If H is a normal subgroup in a (2m,m)=

group G, then H™ is a normal subgroup in (G";e) and the groups
(G"/H";.), ((G/H)™;e) are isomorphic.

In other words, me/Hm;-J ig the associated group of G/H. 0l

The following proposition for the trivial (2m,m)-groups is
true:

Proposition 9.8. Let G be a trivial (2m,m)-group induced

by a group (G;e). Then:

(i) The usual m-th Cartesian power of (G;®) is the asso-
eiated group of G.

(i) H is a normal subgroup of G iff H is a normal sub-
group of (Gse). [

The trivial (2m,m)-groups are not of a special interest.
However, it is desirable to have corresponding abstract descrip-
tions of this class of (2m,m)-groups, which are given by the
following proposition (proved in [5]):

Proposition 9.9. If G is a (2m,m)-group with the identity

e, then the following eonditions are equivalent:

() G is trivial.
(2i) There exist binary operations * ,*,,...,%, on G such
that

2m = m = - 2 =
[+37] = o} <=> (viom,) y=e 0 =y, ;

for every Z oYy
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V.V. GROUPOIDS, SEMIGROUPS AND GROUPS 63

(iZZ) For every z,y€0, :r:TE‘Gm and integers r,s, £E'Nm, r¥s

the following equalities hold:

A 1‘.-—1] %
[m e x1 e = x£z1 5

[7';1.1: mely mzr]s = e, for s #r. O
(We note also that there is no problem to formulate and
prove corresponding theorems for isomorphisms for the class of

(2m,m) -groups.)

Now we will consider the class of (m+l,m)-groups, where
mz22.

By- P.5.5, an (m+l,m)-semigroup G=(G;[ ]) induces am
(m+k,m)-semigroup for every k 22, and thus a corresponding
(2m,m) -semigroup. Moreover, G is an (m+l,m)-group iff it is a
(2m,m)-group. This implies that to any (m+l,m)-group G=t&:[ ]}
it is possible to join a corresponding associated group te‘;-)g
in this case, it is the group G’

We will show below that the (m+l,m)-groups can be defined
(like groups) by one (m+l,m)-operation, one unary and ome nulla—
ry operation.

Theorem 9.10. If 6=(G;[ ]) is an (m+1,m)-semigroup, then
the following statements are equivalent:

(i) G s an (m+1,m)-group.

(ii) There exists an element e€G and a transformatien k:

G — G on G such that:

[£¢27,]=2" (9.6)
[z 2] = [e =] ts.2)
[zh(z)h?(z)...K"(z)] = . (3.8)
m+1 _

h = 1z (8.3)

for every z€G, zhec", i€{0,1,...,m}.

Proof. Let G be an (m+l,m)-group. Then G induces a carres-
ponding (2m,m)-group. So, if e is the identity of that (2mm)-
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64 CUPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

group, then by P.9.1 one obtains that (9.6) holds, and clearly
(9.7) is a consequence of (9.6), and the cancellativity in G.

If x is a given element of G, then there exists a unique
y'eG™ such that [xy™]=€. Let us put y,=h(x). Using the fact
that € is the identity of (G™;e), and using also (9.6) and (9.7),
we obtain

o= [ = oM,
by which:

vy = [yTxy7] = [yTx]eyT,
i.e. [yTx]=g. By the last equality we have y_=h(y,)=h®(x). Simi-
larly one obtains that yi=h1(x] for every i, and also that

hm+’{x) = X.

Therefore, (i) => (ii).
Now suppose that the condition (ii) holds.

By (9.6) it follows that g is an identity of the semigroup
(G™;e). Also, by (9.8) one obtains that for every xTeGm:

m 2 m m m - In
[x,h(xm}h (%)« --h7 (x )h(x ). .hi(x _ )...h(x )...h (x,)]=e",

1
and this implies that (G™;e) is a group. 0O
(Note, that (9.9) is a consequence of (9.6) to (9.8)).

If G is an (m+l,m)-group, and e is the identity of the cor-

ty of G.

Proposition 9.11. Let G=(G;[ ]) be an (m+1,m)-group and e
be the identity of G. If for every x?ecm and gsome 1€1{0,...,m}
7 m
[:,exgé,] =z,
then 1GI=1.
Proof. The cancellativity of G and the fact that e is the
L m
identity of G, implies that [ey™]=yT for each yTeG. Now, ["&']=e

m=1 'm m=4 m+1 m=1 ‘m m=1 m=1 m
implies that e x =[ee % ]=[ e x] = la x = [ x e| =
m=1 m+1 m=q
= X e = X e,

for each x€G, i.e. IGI=1l. [J
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V.V. GROUPOIDS, SEMIGROUPS AND GROUPS 65

Proposition 9.12. If G is a nonempty set, then the follo-

wing statements are equivalent:

(1) There exzists an (m+1,m)-group G=(G;[ ]).
(i1) There exists a group (G';e) and a mapping £: & = T
from G into G", such that

(9.10)
for every xTeam.

(Clearly, evevy mapping £E: G — G with the property (9.10)
i8 injeetive.)

Proof. Let G=(G;[ ]) be an (m+1,m)-group and let (G™;e) be

the associated group of G. If we set §=[xg], where e is the iden-
tity of G, then we obtain that (9.10) holds. Thus: (i) => (ii).

Conversely, suppose that (GM;e) is a group and £: X+ X a
mapping from G into G™ such that (9.10) holds. If we set

[xg'] = ;o'sz-s.‘ . '.;Em'
then we obtain an (m+l,m)-group for which the given group (Gm;-)
is the associated group. []

The guestion for the existence of nontrivial (m+l,m)-groups co-
mes naturally.

Theorem 9.13. If G is an infinite set, then there exists

an (m+1,m)-group G=(G;[ ]).

Proof. This proposition is a consequence of the main re-
sult of the paper [14], by which if B is a nonempty set, then a
free (m+l,m)-group F_ (B)=(F (B);[ ]) with a basis B has the

—_—

cardinality
IF,(B) | = max{IBI, $§ }. O

(We note that in the mentioned paper [14] a satisfactory
combinatorial description of a free (m+l,m)-group ?m{B) is given.)

It remains the case when G is a finite set.

Theorem 9.14. If m22, then there is no nontrivial finite
(m+1,m)-group.
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66 CUPONA, CELAKOSKI, MARKOVSKI, DIMOVSKI

This proposition is a direct consequence of the following
result, which was proved by Prof. John Thompson (and he kindly
provided us with that proof):

Proposition 9.15. If (H;+) i8 a finite group such that the-
re exists a subset S of H with the properties:

8+8 = {z-y | =,y651 = H and 151%=|H]|, (9.11)
then |H|=1. p

Professor Thomson’s proof of P.9.15 is via the gorup alge-
bra C[H] over the field of complex numbers, Wedderburn’s theorem
for a decomposition of €[H], and characters of finite groups.1)

It is possible to generalize P.9.15. to:

Proposition 9.16. If (H;-) is a finite group and S€H such
that

= - - = m:
S§:ievt8 = fmyoeiivz, | 2,651 = H and 15] 1&1,

m
where m 22, then |H|=1. [J

The conclusion in T.9.14. comes easily as a consequence of
P.9.16. :
Indeed, let G=(G;[ ]) be a finite (m+l,m)-group. By P.9.12.,
m
if (G™;e) is the associated group of G and if s={[xe] | xeG},
where e is the identity of G, then
ISl = 161, ISI™ = 1G] = 1GI™ and S:...-5 = G™.
h—.fp—l—'
- : m
By P.9.16., if follows that IG"I=1, i.e. |GI=1.

This completes the proof of T.9.14.

We note also that, as a consequence of T.9.13, one obtains
the following generalization:

Corollary 9.17. If G i8 an infinite set and n,m,k are posi-
tive integers such that n~m=k 21, then there exzists an (n,m)-
group 6=(G;[ ]).

Proof. By T.9.13., there exists an (m+l,m)-group G=(G;[ ])
which by T.5.8. induces a corresponding (n,m)-group. []

1) s
ee p. 72.
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Next we are going to describe a method for produc-
tion of examples of (2m+s,m)-groups, s 21.

Let (G;+) be a group with a neutral element e. Suppose that
there exists a homomorphism * from the product group (Gm+s;-)
into the product group (G™;:) such that:

s ;
(1) (ex™*=xT,  (i1) x] Sekers => xI*Sx ekers.
We extend * to a homomorphism (denoted again by *) =*:
gtimts) __ -m by :
t(m+s) x _ , mts,x . 2(mts) t(mts) *
(x‘l )= (g 7 m+s+1 }""-{x(t-1)(m+s)+1) e

Next, we extend x: (U gtimts) _, ol i o A F

by : t21 AZ0

t(m+s)+p,* _ ,mts-p_p,* t(m+s)+p,*
(x ) = (e x7) -{xp+1
where t20, 0 <p <m+s.

The following theorem is proved in [10]:

Theorem 9.18. Let [ ]: . Ll defined by:
[s2™*] = (ezT)*(=M15)* = (z3"7O)*.

Then (G;[ 1) 18 a (2m+s,m)-group. 0

The v.v. group in E.2.7. 2) is obtained by the above proce-
dure. In this example, the homomorphism =*: ¢ ™ is given
by {xxT}*:(x1—x,...,xm-x).

Let us examine the universal covering semigroup for (G;[ ])

as above.

From the assumptions about (G;-) and %, it follows that the
neutral element in the group (G";.), where xT-yT=[x§'gyT] (see
m
c.8.4.), is of the form e. So,by E.8.13.,

G* = GU...uG"Uec®y...u"e '®,
and
Xiys if r+t<m
feye =qp .
e(mes—pryf)* if r+t >m,

where 0- <p =r+t-m-g(m+s) <m+s.
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We will prove the, following:

Proposition 9.19. If G6=(G;[ ]) e a (5,3)-group and if
1<1Gl < +=, then |G| is an even number.

Proof. Let (G;[ ]) be a (5,3)-group and for a€G, let
f(a)g(a)h(a) be the neutral element in the group (G”;«) (see
C.8.4.). It is easy to check out that f(f(a))=g(a), f(g(a))=h(a)
and f(h(a))=a, i.e. g=£f%*, h=f? and f“=1
only three possibilities:

G* Moreover, there are

a= f(a) = g(a) = h(a); or a = g(a) # £(a) = h{a)
or |{a,f(a),gla) h(a)}| = 4.

If for some a€G, a=f(a)=g(a)=h(a), then [3]x[a]= E‘]=[§]=;.
1f [3]=3, then
i a 3 3 s 36
[x2a] = x3*a = x(«[a] = [x3a]
implies that x>=[x3a]. Symmetrically, [axj]=x3. Now, for x;=axa,
[ax3])=[3xa] implies that x=a for each x€G, i.e. |GI=1. Hence,
if 1<1Gl <=, then [a] is an element of order 2 in (G>;#), which
implies that 2 is a divisor of |GI.

If |Gl < = and for some a€G, a#f(a), then there is a parti-
tion of G into (disjoint) subsets with 2 or 4 elements, which
implies that 2 is a divisor of |G|, i.e. |G| is an even number.[]

. The above proof shows that finite sets with an odd number
of elements (bigger than 1) do not admit a (5,3)-group structure.

We note that it is enough to consider the existence ques-
tions only for (n,m)-groups where n and m are relatively prime,
as the following propositions states.

Proposition 9.20. If there exists an (n,m)-group G=(G;[ ])
and if t 21, then there exists an (nt,mt)-group G°=(G;[ ]°) too.

Proof. If G=(G;[ ]) is an (n,m)-group, then G"=(G;[ ] "),
- t t
where [ ]”: G'° — G"" is defined by

t t £
[ayse ezl pens = Bogvyeoezgdeas

0<r<m-1, 1<ist, is an (nt,mtgroup. [J
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Proposition 9.21. If there exzists a (tn,tm)-group (G;[ ]),

then there exists an (n,m)-group (Gt;[ ]') too.

Proof. If (G;[ ]) is a (tn,tm)-group, then {Gt;[ ]J), where
[ 1 65® — (G5)™ is defined by

E_t Ent tk t
[x1y1“'21]i 5 [x1y1"'z1]i

is an (n,m)-group. [

§10. NOTES AND COMMENTS

The notion of vector valued operation is treated for the
first time, in our knowledge, in [22] (aside from the use of
vector valued functions in the analysis and its applications).
Namely, the paper [22] is concerned with the problem of cha-
racterization for some algebras of partial v.v. operations.
Similar questions are considered in [35], where a class of
algebras with countably many partial binary operations is exa-
mined and it is shown that every such algebra is a subalgebra
of an algebra of v.v. operations. Different questions connected
to the composition algebras, especially their completeness, are
treated in the extentive paper [17], which appeared several
years ago. (Here, if Op(A) is the set of v.v. operations on a
set A, ¢ is the usual composition and x the direct product of

attention is given to the case when F is a generating set of
the composition algebra £ .)

The definitions of v.v. groupoids and v.v. semigroups for
the first time are given in [34]. The notion of weak v.v. qua-
sigroups is given in [33], under the name "(n,m)-quasigroups",
while the notion of v.v. quasigroups, defined in §2, for the
first time is introduced in [2]. (Also, the notion of a partial
V.v. quasigroup is given there, but in a more general content.)
Several interpretations of v.v. quasigroups are given in [2],
where the most interesting is the geometric one. A review of
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the known results about v.v. guasigroups is given in [27] (in
this book). Therefore we will mention briefly here only that
V.v. groupoids, v.v. gquasigroups and their geometric interpre-
tations are treated in the papers: [2], [20], [21]), [23], [24],
{25], [26], [29], (30], (31], (32], [28].

The paper [4] is entirely concerned with the v.v. semi-
groups. The notion of v.v. group for the first time is intro-
duced in that paper. It is proved there Post Theorem for v.v.
semigroups, and also several other results connected tu ..is
theorem. The question about the existence of nontrivial v.v.
groups (i.e. v.v. groups with more than one element) is also
considered in [4]. Examples of nontrivial (sm,m)-groups are
given too, by using ordinary groups and a theorem (that, for
each m, the free (m+l,m)-group is nontrivial) is stated, which
implies that for each n >m, nontrivial (n,m)-groups do exist.
Although the above theorem is true, which follows from the
main result in [14], its proof given in [4] is not complete,
i.e. we do not know a direct proof that the identity x=y is
not a consequence of the axioms for (m+l,m)-groups. At the end
of [4], a list of problems is given, some of which are solved.
For example, in [11], a satisfactory combinatorial description
of free v.v. semigroups is given, and this made possible to
prove more general v.v. variants of Post and Cohn-~Rebane Theo-
rems, which is done in (6] and [7].

The result about the non-existence of nontrivial finite
(m+1,m)-groups came successively. Namely, at the beginning, in
[10], some non-existence conditions for (m+l,m)-groups were
obtained, which implied, for example, that the number of ele-
ments of a finite (3,2)-group had to be divisible by 6, and
later in [12] an elementary proof that (3,2)-groups with 6 and
12 elements do not exist was given. At this moment, we do not
have a general answer to the gquestion: when do nontrivial fini-
te (n,m)-groups exist, if m is not a divisor of n?

Besides this, the question about the existence of nontri-
vial v.v. groups in some classes of v.v. groups is of special
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interest. we note that [10] contains some answers to this ques-
tion. It is known that there are no nontrivial commutative
(n,m)-groups for m22 [4], but for some classes of v.v. groups
it is usefull to weaken the commutativity condition uch that
a large class of v.v. groups is obtained. Thus, in [15], (2m,m)-
groups whose associated group is commutative are examined and
examples of such "nontrivial" groups are obtained. Moreover,

it is shown in [15] that finite (4,2)- and (6,3)-groups whose
associated group is cyclic must be "trivial". The interesting
question about the existence of finite "nontrivial" (2m,m)-
groups with a prime number of elements, which is analogous to
the fact that a finite group with prime number of elements
must be cyclic, is still open.

Similarly as for the semigroups and groups, it is of in-
terest to consider and examine continuous v.v. semigroups and
*V.v. groups. It is shown that continuous (3,2)-groups over the
real numbers do not exist [28]. The question about some conti-

nuous v.v. groups is treated in [16].

We noted in the introduction that the presentation of se-
migroups is of use for the examination of v.v. groups, since
to each v.v. groupoid Q we associate its universal semigroup
Q" via a corresponding presentation. Here we have the similar
algorithmical problems as for the usual semigroups and groups
[40], [42], [43]. These problems are not examined in details
in this work but we note that a sufficiently effective reduc-
tion in the semigroup presentation (see page 17) gives an al-
gorithm for solving the word problem in this presentation.
Thus,if A= (A;F) is a "sufficiently effective" partial v.v.
algebra, then the semigroup that contains 3, in the proof of
Cohn-Rebane Theorem (page 19) is also "sufficiently effective".
We note that the construction of the free (n,m)-semigroups
(considered as poly-(n,m)-semigroups) in §6 is also effective.
It was mentioned in §6 (by E.6.4) that the given reduction in
the free (n,m)-groupoids B was not good, but it is possible to
alter the definition of reduced elements and to obtain an
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effective construction of free (n,m)-semigroups via free (n,m)-
groupoids.

In [9], presentations of v.v. semigroups are examined;
descriptions of free v.v. semigroups in some varieties (for
example, the variety of commutative v.v. semigroups) are obta-
ined; and corresponding Post Theorems for these varieties are
proven.

The general associative law is characterized by the fact
that I‘;l(f)l = 1, for each a (see page 29). This suggests a
generalization of v.v. semigroups to a more general class of
v.v. algebras, namely v.v. associatives. If F is a set of v.v.
operations on Q, then it is possible, in a similar manner, to
define sets ‘?n'm[F) of polynomial operations on Q. An algebra
(Q;F) is called a v.v. associative if |¥_ _(F)| < 1 for each

n,m=1. A special kind of v.v. associatives is considered in
[1].

A part of the results, stated and proved in this work,
are published earlier, mainly in the following papers: [34],
(4], [5], [10], [11], [22], [23], [7]. [8], [1]. In many cases,
new simpler proofs are given here. (For example, GAL is suppo-
sed in all of these papers, but an explicit proof is given for
the first time in this work.) In the main text, we usually do
not quote the source where a corresponding result is given for
the first time. On the other hand, many results are stated in
this work for the first time. They are: 1.1, 1.2; 2.1, 2.2,
2.8, 2,02, 2.3 3.3, 3.7% 4.22, 4.13% 5.1-5.4, 5.7-5.12% 6.4,
6.8-6.12; 7.5, 7.6, 7.9-7.14; 8.2, 8.4-8.16; 9.10, 9.11, 9.12,
9.14, 9.16, 9.19, 9,20, 9.21.

Finally, we make a note of a terminological (and histori-
cal) nature with respect to the terms "Post Theorem" and "Cohn-
Rebane Theorem". First, in his extentive work [41], Post proved
the following result (stated here in our terminology): "Every
(n,1)-group is an (n,1l)-subsemigroup of a group". Later on, in
several papers (see, for ex., [38]) there is a proof of the
Post Theorem for (n,l)-semigroups and also for some classes of
(n,1)-semigroups. Any result of this kind we call "Post Theorem".
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In the beginning of the sixties, the-Sovigt matematician
Rebane proved a result which (again in terms of this work)
could be stated in the following way: "If F is a set of fini-
tary operations on a set Q and if A is the set of semigroup
defining relations, defined by:

A= {(b,£a]) |b = £(a]), a ,beo},

then the presentation <QUF;A> is pure". In the meantime, a
similar result appeared in the monograph [36]. Results of this
kind are known usually as "Cohn-Rebane Theorems" ([46]). Other
vector valued variants of Post Theorems and Cohn-Rebane Theo-
rems are given in [9].

We give here Prof. John Thomson’s proof of P.9.15, in
the same form as it was provided to us.

"Let A be the group algebra H over the field of complex
numbers., Then by Wedderburn®s theorem, A=A,Q...0Ad, where

each Ai is a full matrix algebra of fi by fi matrices over C.
For each subset T of H, set [T] = 22t (this is an element of

tEeT
A). The hypothesis imply that [S]o[S]= ¥ g=N, say. Each ele-
g€H
a’ aiGAi N
i=l,...,d, are the irreducible

ment a in A is uniquely a=a +...+a and the maps

. - —
xi.H C, & traceﬁigi,
characters of H. Choose notation so that X‘=1H’ the trivial

character which assumes the value 1 at each group element.
Then it is a basic and easy result that Ni=0 if i >1. Then

[s]=[s]1+...+[s]d, and if i >1, then [s];=o, so that [s]i is
4 bY f; matrix for each i >1, whence xi([S])=0’
i >1. On the other hand, xi{[s] )= Exi(s). Hence

a nilpotent f

d s€ES
Ej)cifl)-xi{[s])=)(,(1)')(1'([S])'—‘c:a.z-ds=*::e;.r¢ili-'5.l g»
— k]
whereis: S=l if 168, 0 otherwise. This is so siuceilxiil)xi
k]
i

is the character of the regular representation of H, so vani-
shes at each element of H - {1} and has value cardH at the

identity element of H. So n=n’-51 g» Whence n=1."
L]
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commutative (n,m)-group, 13
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defining relations, 15

degree of a polynomial, 23; 27

degree of a word, 18
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free (n,m)-groupoid, 5

free (n,m)-semigroup, 37
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hierarchy, 5

identity of an (m+1,m)-group, 64
identity of a (2m,m)-group, 59

induced poly-(n,m)-groupoid,
left zero v.v. semigroup, 10

length (of an element), 20; 40

(n,m)~group, 11; 53
(n,m)~groupoid, 3
(n,m)~operation, 3
(n,m)-quasigroup, 8
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(n,m)~subgroup, 54
(n,m)~subgroupoid, 4
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group, 62

realization of (B;A) in §, 15

reduced element, 18; 39
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reducible element, 18

reducible word, 20

reduction, 17

restriction of a poly-(n,m)-
groupoid, 35

right zero v.v. semigroup, 10

semigroup determined by a
presentation, 15

semigroup presentation, 15

subgroup of a v.v. group, 60

trivial (2m,m)-group , 57; 59

trivial (m+1,m)-group, 65

universal covering, 48

universal envelope of a semi-
group, 47

universal semigroup, 19

v.v. group, 11; 53

v.v. groupoid, 3
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