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§0. INTRODUCTION

The aim of this paper is to develop a combinatorial theory
of vector valued (v.y.) semigroups via their presentations, and
to give a satisfactory description of free objects in some va-
rieties of v.v. semigroups. V.v. variants of Post and Cohn-Re-
bane theorems are obtained as applications of more general re-
sults.

In order this paper to be self-contained, we begin with a
few necessary definitions, notations and results used in the
main text, although they could be found in [2] (this volume).

The introduction concludes with a short description of the paper.

Let Q be a nonempty set and r a positive integer. The r-th
cartesian power of the set Q, denoted by QF, consists of the r-
tuples (a1,...,ar), where a€Q. We will use the following nota-

r : o

tions: a, for af when a ,=...=a_=a;

¢ @,..0a, 2 for {31{...,ar); a =

xi for xi...xj if i <j, and xi for the empty sequence if i >3j.

The set of all nonempty finite sequences of elements from Q will
be denoted by Q+, and Q+ together with the empty sequence (usu-
ally denoted by 1) will be denoted by Q*. In fact, Q' is a free
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semigroup, and Q* is a free monoid, with a basis Q, where the
operation is the usual concatenation of sequences. (Sometimes,
the elements of 0* will be called words.)

mapping d:Q* - N (called a dimension) is defined by: d(1)=0,
ry -
d(aj) =r, a €Q.
From now on, n,m,n-m=k will be positive integers. Let Q#¢.
v.v. operation), and Q=(Q;f) is called an (n,m)-groupoid. If,
in addition, the equation

n+k
n+1

n+k
j+n+a

£(£(@halts) = flalf(aliDa ) (0.1)

is satisfied for each a €Q, jéeN, , then Q is an (n,m)-semigroup
(shortly a v.v. semigroup).

m+sk (n,m)1} (n,m) m

Denote the set kJ Q -Q

s21

by Q . A mapping g:Q

m+rk

g(adg(p™r*) a3k )

. m+rkask ) (0.2)

& j
= g{a1b1 j+
is satisfied for each a ,b,€Q, r,s21, jemskL){O}, then Q is

To each (n,m)-groupoid Q=(Q;f) one can associate a poly-
(n,m) -groupoid g£'=(o;fﬁ ) where f¥ is defined by induction in
the following manner:

¥

(am+(s+1]k) =f(f* {aI:H-sk) m'!-(s+1)k} (0.3)

1 Cntsk+1
Conversely, to each poly=-(n,m)-groupoid Q=(Q;g) we can

e¥ (a?) = f(a?) ;o  E

associate an (n,m)-groupoid Qg =(Q;gy ) by gx (a?}=g(a?), i.e.
gy, 1is the restriction of g on Q". It is obvious that (g“ Yy =Q,
but in general (P, o #P.

In the case of (n,m)- and poly-(n,m)-semigroups we have
the following:

) (n,m)

If Xsﬁ‘ima nonepmty set, then by X we denote the union

U x

s=1
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Proposition 0.1. (a) An (n,m)-groupoid @ is an (n,m)-semi-

group iff gg is a poly—(n,m)-semigroup.

(b) A poly-(n,m)-groupoid P is a poly-(n,m)-semigroup iff
P, is an (n,m)-semigroup.

(e) If P is a poly-(n,m)-semigroup then (gi,):L =p. =B
(For the proof, see [2] p.p. 34-36.)

The notions of (n,m)- and poly-(n,m)-structures are easily
thought of as algebras with m n-ary and poly-n-ary operations
(called component or scalar operations). Namely, if (Q;f) is an
(n,m)- or a poly-(n,m)-groupoid, the component operations

f1,...,fm:Qn - Q or Q{n,m} - Q are defined by
m+rk, _ .m m+rk, _
f(a, hEiR ARE fi(a\‘l ) = bi' 1eNm,

where r=1 in the first case, and r 21 in the second one.

It is easy to interpret the condition (0.1) and (0.2) via
the corresponding component operations.

All of the notions such as: subalgebra, congruence, homo-
morphism, free object in the class of component (n,m)- or poly-
-(n,m)-algebras (i.e. algebras obtained from (n,m)- or poly-
(n,m) -groupoids as above) are considered well known. Using the
above notions the following ones can be obtained (without giving
their explicit definitions): an (n,m)- and a poly-(n,m)-sub-
groupoid, a congruence on an (n,m)- and a poly-(n,m)-groupoid,

and a homomorphism for (n,m)- and poly-(n,m)-groupoids.

Recall the construction of a free poly-(n,m)-groupoid gi-
ven in ((2], P.6.3). Let B#@ and:

= ] (n,m) =
B,=B, B_,,=B U N 8 ™™, F(B) —lg B, -

Define a poly-(n,m)-operation g on F(B) by

m+rk

(W™TE) = P <> (wieN ), v=(1,u]77) (0.4)

Proposition 0.2. F(B)=F(B);g) is a free poly-(n,m)-groupoid
with a basis B.
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Proof. Let Q=(Q;f) be an (n,m)-groupoid and £:B - Q a
mapping. Then there exists a unique extension £ of £ such that
E is a homomorphism from F(B) into Q. [J

We have already defined an integer valued function, namely

the dimension d:Q* - N. More such functions for F(B) and P(B)+
are defined and used in the main text. Naturally, in the defi-
nition of F(B) there is a function denoted by X and called
hierarchy, where x(u)=min{a | u€B } for u€F(B).
We define a norm on F(B), i.e. a mapping | |: FB)Y =N by
induction on X:
|b| = 0, for beB, (0.5)
a
|x| = £ [u,| for x=uj€e(F(B))%, (0.6)
V=1
| (i,x)| = 1+|x| for (i,x)€F(B). (0.7)

Sometimes in the text we will need an alternative definion
of a norm. Namely, instead of (0.5) or (0.7) we can take

|[b| = 1 for bes, (0:57)

| (i,x)| = i+|x| for (i,x)€F(B), {(0.77)

[(i,x)| = |x| for (i,x)eF(B), (0.7")
and instead of (0.6) we can take

x| = AE1 v131]uv[ for x=u?e{F(B))°. (0.6"7)

For the empty sequence 1, we always define |1|=0.

The norm used most often in the text is the one defined by
(0.5), (0.6) and (0.7). (So, from now on when we say norm, we
think of this one.)

A consize review of the results in this paper follows.

In 51 we define the notion of an (n,m)-semigroup determined
by a presentation <B;A> where AC F(B)?; it is the quotient
structure F(B)/4 where & is the least congruence on F(B) such
that AS % and F(B)/Z is an (n,m)-semigroup. Two presentations
<B;4A> and <B';A’> are called equivalent if F(B)/A = F(B')/%’,
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is called a proper presentation if (a,b)€B?() ¥ implies a=b. It
is shown that each presentation is equivalent to a proper one.

A procedure (in general not suffiéiently.effective) for determi-
ning &, for given <B;A>, is described. At the end of §1 several
simple examples are presented.

The question about a presentation <B;A> which determines
an (n,m)-semigroup 9=(Q;f) such that Q=F(B), is investigated
in §2., The answer to this question is via a retraction
y:F(B) = F(B) (called a reduction for <B;A>)which satisfies
several conditions. Next, we define reductions for the examples
from §1 and consider two more examples of presentations to-
gether with reductions. One of these examples, the case of A=f

gives a description of free v.v. semigroups.

In §3 we examine a special kind of presentations called
vector (n,m)-presentations. It is shown that each (n,m)-presen-
tation is equivalent to a vector one, but there are (n,m)-pre-
sentations which are not strongly equivalent with vector ones.

The notions of (n,m)-identities and vector - (n,m)-identi-
dies in the class of poly-(n,m)-groupoids (and so in the class
of (n,m)-semigroups as well) are introduced in §4. If 6 is a
set of (n,m)-identities, then by Var® we denote the variety of
(n,m)-semigroups which satisfy each identity from 8. Next we
give the notion of a presentation <B;A;8> in Varé and prove so-
me general results. In addition, it is shown that there are va-
rieties of (n,m)-semigroups which could not be determined by
vector (n,m)-identities.

In 55, §6 and 57 we consider only vector (n,m)-presentations.

We use the fact that each vector (n,m)-presentation <B;A;6>
induces a corresponding presentation <B;4;6> of a semigroup, and
investigate the question for a description of <B;4;6> via a
sequence of semigroups. This point of view is highly successful
under the condition (m) (see §5), since in this very case there

is a general method for producing a reduction (in most cases -

an effective reduction). As a consequence, the proofs of several
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results are made possible, such as the combinatorial descriptions
of the free objects in several varieties of (n,m)-semigroups, and
some v.v. variants of Post and Cohn-Rebane Theorems.

Section 8 ends with a commentary on the combinatorial the-
ory of v.v. groups. It is worth mentioning that until now a good
description of free v.v. groups is not known, and that in [6]
(this volume) a satisfactory description of free (m+l,m)-groups
is given.

§1. PRESENTATIONS OF VECTOR VALUED SEMIGROUPS

Let B be a nonempty set, and E(B)=F(B){n'm) be the free
poly-(n,m)-groupoid with a basis B (see §0). If A is a subset of
F(B)xF(B), i.e. a binary relation of F(B), let & be the least
congruence on F(B) such that AS A and F(B)/A is an (n,m)-semi-

a presentation) of F(B)/A. The notation <B;A> will have the

following three conotations: (i) an ordered pair of a set B and
a set A of (n,m)-defining relations on B; (ii) an (n,m)-semi-
group F(B)/3; (iii) the carrier F(B)/A of the (n,m)-semigroup
F(B)/A.

Let us give a more explicit description of the congruence 1.
First we define a relation —:
u FP— v iff (u,v)€a or u=(i,x’'(1l,y)...(m,y)x"), v=(i,x"yx")

(n,m)' x'x“eF(B)Sk for some s >1.

where 1eﬂm, yEF (B)
Assume that - is well defined, and define PX! as follows
u,veF(B) => (u ﬁil v <=> uv=(i,xu’'y), v=(i,xv'y), u’ Pt cgreiyl
Define a relation }— on F(B) by:
ub— v iff (@A20) u F— v.

Finally, let - be the symmetric extension of }— and = be
the reflexive and transitive extension of -. That is, u ~ v iff

Up—vor vi—u, and u = v iff there exist t 20, uo,u1,...,uteP(B)

such that u=u_, v=u, and U, t Y for any AeNt.
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Proposition 1.1. If u,v@F(B), then: (u,v)€8 iff u = v. O

The (n,m)-semigroup F(B)/A=<B;A> can be more abstractly
characterized by the notion of realizations of the pair (B,A)
in (n,m)-semigroups.

Assume that Q=(Q;f) is an (n,m)-semigroup, and £:b = b a
mapping from B into Q. By P.0.2, there is a unique homomorphism
E:E(B) - Q which is an extension of £. We say that £ is a rea-
Moreover, if £ is such that for every realization £':B - Q' of
(B,4) in an (n,m)-semigroup Q’=(Q’;f’) there exists a unique ho-
momorphism £:Q - Q' satisfying the equality £’=tE, then we say
that £ is a universal realization of (B,A).

It is clear that the following two statements hold.

Proposition 1.2. If E,n are universal realizations of (B,A)

in Q,P - respectively, then there exists a unique isomorphism
t:Q@ = P such that n=tt. [

Proposition 1.3. The natural mapping natbd:b — b2 is a
universal realization of (B,A) in F(B)/=. (Here, if u€F(B), we
denote by w® the = - equivalence class containing u, t.e.
ub={veF(B) |u = v}. Also, instead of B we write =. O

Because of the last two properties, from now on, we will
denote by <B;A> any (n,m)-semigroup Q such that there exists a
universal realization of (B,A) in Q.

We say that a presentation <B;A> is proper iff
(¥a,b€B)(a = b => a=b).
In this case we may assume that B is a subset of <B;A>.

Proposition 1.4. A presentation <B;A> is proper iff there

exists an injective realization of (B,A) in an (n,m)-semigroup. O

Proposition 1.5. If ASF(B)xF(B) is such that |u|.|v]| 21,
for every pair (u,v)6A, then the presentation <B;A> is proper. [

Consider some trivial exemples.
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Example 1.6. If A is such that A=F(B)xF(B), then <B;A> is
a one element (n,m)-semigroup.

Example 1.7. If a={(u,v)€F(B)xF(B) | |u]-|v| 21}, then
<B;A>=B U{o0}, where ogB, and f{c?} =0m, for any CVEBLJ{O}.

If o, is a subset of 5 such that:
(u,v)€, <=> (Fie€N )u = (i,x), v = (i,v), x,yer () (P
then:

<B;p,> = BU{o0,,0,,...,0.}

c €l{o,,...,0}, where BN {o,,...,0 }=0.

Example 1.8. If a={((i,b}),b,) |b €B, i€N }, then <B;4>=B
is the left zero (n,m)-semigroup on B, i.e. f(b?) =bT for any
b €B.

Example 1.9. Let 0=(Q;f) be an (n,m)-semigroup and
r(Q)~ F(Q)xF(Q) be defined as follows:

r(@ = (((1,a]),b)) [ £(a]) = b} in 9, ieN }.

Then, the identity transformation l:a —— a is a universal rea-
lization of (Q,r(Q)) in Q. Moreover, if P=(P;g) is an (n,m)-se-
migroup and g:a +—-£(a) is a mapping from Q in P, then £ is a
realization of (Q,r(Q)) in P iff £:0 - P is a homomorphism.
Thus Q=<Q;r'(Q)>. We say that r(Q) is the graph of Q and that
<Q;r(Q)> is the graphical presentation of Q.

Note that E.1.8 is a special case of E.1.9.

Proposition 1.10. The presentations in E.1.7, E.1.8 and

E.1.9 are proper, and if |B| 22 then the presentation in E.1.6
i8 not proper. [J

We say that two presentations <B;A> and <B’;A’> are equiva-
lent iff the corresponding (n,m)-semigroups are isomorphic, i.e.

if E(B)/E is isomorphic to E(B')/E'. Then we write <B;a>5<B';a'>.

Proposition 1.11. Every (n,m)-presentation is equivalent to

a proper (n,m)-presentation.

Proof. If <B;A>=Q, then <B;A> = <Q;T(Q)>. [
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Proposition 1.12. The presentations <B;A> and <B;A> are

strongly equivalent, O

Clearly, if two presentations are strongly equivalent then
they are equivalent as well.

At the end of this section we note the following. If <B;A>
is not a proper (n,m)-presentation, then there exists a proper
(n,m)-presentation <B’;A’> obtained as follows. Choose a unique
element b’ from b% B, for each b€B, and put B’={b’ | b€B}. Con-
struct A'C F(B'’)xF(B’) by replacing each appearence of b in
(u,v)€A with the unique corresponding element b’€B’. Then <B;A>
is equivalent to <B’;A’>, and <B’,A’> is a proper (n,m)-presen-
tation.

§2. REDUCTIONS

The (n,m)-semigroup F(B)/* = <B;A> is a "quotient structu-
re" and, it is usually desirable to find an (n,m)-semigroup iso-
morphic to F(B)/= whose carrier is a subset of F(B). This can be
achieved by a choice of one and only one element ¥(u) from each
*-equivalence class uA={v |u=v}. Or, equivalently, by a mapping
y:F(B) - F(B) with the following properties:

(i) (u,v)€es => y(u)=p(v);
(ii) ¢(i,x'(1,y)(2,y)...(m,y)x") = ¢(i,x"yx");
(iii) (i, x'wx") = v(i,x"v(w)x");
(iv) u = y(u);
(v) v = y;
for every u,v,w, (i,x'wx"),(i,x'(1,y)...(m,y)x")€EF(B).

A mapping ¢:F(B) - F(B) is said to be a reduction for
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Proposition 2.1. Let y be a reduction for <B;A> and let
Q=Y (F(B)). If an (n,m)-operation g is defined on Q by

WFBK . om o . . . _m+sk
glu, ) = v, <=> (Vzeﬂm)vi = v(i,u, 25

then @=(Q;g) is an (n,m)-semigroup and the restriction of ¥ on
B is a universal realization of (B,A) in Q. Therefore, Q=<B;A>.

Proof. First, Q=y(F(B)) implies that g is a well defined
(n,m)-operation on Q, and we may consider y as a surjective ho-
momorphism from F(B) onto Q such that & Ckery. If (u,v)ekery,
i.e. y(u)=y(v), then u = y(u)=y(v) = v, whence (u,v)€i. Thus,
kery=A, and therefore Q and F(B)/* are isomorphic. [J

Note that the condition (v) is a consequence of (i) - (iv).

A reduction y for <B;A> is called a proper one iff y(b)=b
for every be€B.

Proposition 2.2. 4 presentation <B;A> 78 proper iff it ad-

mits a proper reduction. [

In general, there exist many reductions for a presentation
<B;A>. Usually, we look for a reduction which satisfies some con-
ditions of "effectivness".

Let us consider E.1.6 to E.1.9.

First, if u, is an arbitrary element of F(B), and if we put
¥(u)=u, for all u€F(B), then we obtain a reduction for <B;A>,
where A=F (B)xF(B).

Let <B;A> and <B;j4,> be as in E.1.7, and let u,€F(B)\B,
xieF(B){n'm) for every i€N be fixed. Define two mappings
¥,¥,:F(B) = F(B) as follows:

¥(b) = ¢ _(b) = b for every beB,
v(i,x) =u,, v (1,x)=(1,x,;), for every (i,x)€F(B)\B.
Then, ¥ is a reduction for <B;A>, and ¥, is a reduction for <B;A >.

If <B;A> is as in E.1.8, then we can define a reduction ¢
by induction on the norm in the following manner: ¥(b)=b for

every b€B, and v{u)=w(ui}, for every u=(i,uT+Sk)eF(B)\B. More
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generally,. if 0=(Q;f) is an (n,m)-semigroup then a reduction for
the graphical presentation <Q;I'(Q)> of Q (E.1.9) can be defined
as follows. First, ¢(b)=b, for every bEQ. Assume that
u=(i,u™*%K)er(Q)\0, and that ¢(v)eQ is well defined for every
VEF (B) such that |v| < |u|. Then y(u) is defined by:

v(u) = fi(a':l+5k),

where av=¢(uv}.
Note that we do not have any particular use of the corres-
ponding reductions in the above examples, as we know wery well

their structure. However, in the next two examples the corres-
ponding reductions are of substantial use.

Example 2.3. Let B#@, and A=@. In this case <B;@§> is the
free (n,m)-semigroup with a basis B.

A reduction ¢§:F(B) - F(B) will be defined by induction on
the norm as follows.

(0) (¥beB)y(b) = b.

Assume that u=(i,x)€F(B)\B and that ¢ (v)EF(B) is well de-
fined for every v€F(B) such that |v| < |u|. Moreover, assume that
the following condition is satisfied:

yiv) #v=> |v(v)| <|v]. (2.1)
if x=uT+Sk, u“eF(B), then vA=${ul} is well-defined, and
thus v={i,v?+5k)eF{B). If there exists a A such that v,#u,, then

|v| < |u|. consequently, we can define y(u) by:
(1) p(u) = plv).

If w(u1)=uk for every 2 and if x=x'(1,y)}(2,y)...(m,y)x",
where x’,x"€F(B), (v,y)€F(B), and x’ has the least possible di-
mension then we define ¢(u) by:

(2) gp(u) = y(i,x"yx").
And if ¥ (u) could not be defined by (1) or (2) then we put
(3) ¢(u) = u.
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Clearly, if ¥(u) is defined by (1) or (2) then we have
[w(u)| < |(u)| and this implies that y:F(B) = F(B) is a well-de-
fined mapping. Moreover, (2.1) holds for every Vv€F(B).

By induction on the norm it can be checked that (1)-(v) are
satisfied, i.e., that ¥ is a reduction for <B;@>. (see [5], [2]).

We also note that we have a good description of S(B)=¢(F(B)).

Namely, u€sS(B), i.e. u is reduced, iff u€B or u=(1,uT+5k

)Jwhere
u €s(B) for every v and there is no jeNsk such that uj+1=(l,y),
for every A€N . Moreover, if u is a given element of F(B) then

V(u) is determined in a finite number of steps.

Further on we will always denote the above reduction ¥ by
¥, Thus, S(B)=(S(B);f) is a free (n,m)-semigroup with a basis B,
where f is defined by: '

m+sk

£ (u" m+sk

) = vy <=> (VieN )v, = vo(i,uy ).
In the case m=1 we have the following well known result.

Proposition 2.4. The (n,1)-semigroup S(B)=(S(B);f) where

s(B) = {ueB® |dtu) = 1 + sk, 8 21}, and

n, -
fluy) = Uglge st

i8 a free (n,1)-semigroup, t.e. a free n-semigroup with a basis

B. 0O

Proposition 2.5. Let AT F(B)xF(B) and

By = LV (u)s¥y(v)) | (u,v)€A}.

Then <B;A> and <B;0,> are strongly equivalent and <B;A,> i8 a

reduced presentation. [

From now on we will usually deal with reduced (n,m)-presen-
tations.

Example 2.6. Let B be a nonempty set, m23 and let A be
defined by:

A= {(u,v) |u=(1,x), v=(2,x)EF(B)}.
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We will define a reduction ¥ for <B;A> in the same way as
in E.2.3. Namely, assume that (0), (1), (2) and (3) are as in
E.2.3, and:

(1"') “’(fo) o "(Iix).

In (2) it is assumed that x=x'(1,y)(2,y)(3,¥)...(m,y)x". The
proof that (1-), (0), (1), (2) and (3) define a reduction for
<B;A> is by an induction on a norm defined by (0.5), (0.6) and
(0.77) (see §0).

Note that in E.2.6 it is possible to take m=2, but then
for the definition of a reduction one more step is needed, that
is

(i, x"(1,y)yx") = ¢(i,x"y(1,y)x"),
and in the proof that ¢ is indeed a reduction we need a norm de-
fined by (0.5"), (0.6’) and (0.7’) (see §0).

Another remark about E.2.6 is that it is possible to take
A= {(u,v) |“ = (i,x), v= (j,x), u,ver(B)},

for 1£i<j<m. The cases 1<i<j<mand 1<i<j<m are the sa-
me as the case i=1, j=2, m=23, and the case i=1, j=m, m22 is
the same as the case i=1, j=m=2.

§3. VECTOR (n,m)-PRESENTATIONS

In the next part of the paper we will usually deal with a
special kind of (n,m)-relations which will be called "vector
(n,m)-relations”.

Assume that B is a nonempty set and A a subset of B'xB* such
that for every (a%,b%)er we have m<q<p, and g =p =m (mod k).
Then we say that A is a set of vector (n,m)-relations on B. (No-
te that the assumption g <p is not essential.)

We can associate a set Ay of (n,m)-relations to a set A of
vector (n,m)-relations in the following way.

Firstly, the preceeding notation is modified. Namely, be-
low (i,u}) will be another sign for u,. Thus, u€F(B) iff
u=(i,u§’). where i€N , u €F(B), m<p, p =m(mod k).
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Now, if rcB*xBY is a set of vector (n,m)-relations, then
Ay is defined by:

Ay = ((u,v) |u=(1,a]), v=(1,b69), (aFf,pD)en, ien .
If 0=(Q;f) is an (n,m)-semigroup and £:B = Q is a mapping,

Proposition 3.1. Let A be a set of vector (n,m)-relations

en B, and @=(Q;f) be an (n,m)-semigroup. Then:

(i) A mapping E:B = Q i8 a realisation of (B,A) in @ iff
= P 1 q el
ffa‘J—f(E?) for every (a’,b])EN where c=E(c).
(ZZ2) <B;A>=Q iff there is a universal realization T of (B,A\)
tn Q.- [

Proposition 3.2. Let AS F(B)xF(B) be a set of (n,m)-relati-
ons on B with the following properties:

If (u,v)éA and ufB (or vgB) then u:(i,af} (v=(€,b?)) where
iaﬂm, a,,b,6B, m<q<p, q =p =m(mod k), and for every jemm,
(w,v*)eh, where w>=(j,ab), v*=(j,b9).

Define a subset A" of B'xB™ by:
A :{rﬂ,g) | ta,p)€D, a,be€B} 'J
V ((a5,6%) | (viem )((i,d5),(i,0%))€s, msq<p, p>m}.
Then a% 18 a set of veector (n,m)-relations such that (ﬁ”&,:ﬁ. O

If ASF(B)xF(B) is such that A=Ay for a set A of vector
(n,m)-relations on B, then we also say that <B;A> is a vector
(n,m)-presentation. Moreover, no distinction is being made bet-
ween the two (n,m)-presentations, <B;A>, <B;A>.

Proposition 3.3. Every (n,m)-presentation is equivalent to

a vecetor (n,m)-presentation.

Proof. If <B;A>=Q=(Q;f), then <B;A> and <Q;r(Q)> are equi-
valent, and, moreover, I'(Q)=Ay, where:
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A= {(a],b]) [ £(a}) =bT in Q}. DO

It is natural to ask for ay (n,m)-presentation which is not
strongly equivalent to a vector (n,m)-presentation.

Proposition 3.4. The presentation <B;A> given in E.2.6 is

not strongly equivalent te a veetor (m,m)-presentation.

Proof. It is sufficient to show that there does not exist
a vector (n,m)-presentation A on B such that A=Ry. Namely, if
(aP,b%)eB*xB" is a vector (n,m)-relation on B such that aP#bJ,
then it can be easily seen that

(zien ) ((1i,a%),(1,07))¢8. O

As we have noticed in §2, if <B;A> is an (n,m)-presentation
and if (u,v)€A, we can assume that u and v are reduced. And, if
m=1 then u€F(B) is reduced iff u€B or u=-{1,ar‘::‘!'SIk

a €B. The last assertion implies the following:

) where s =1,

Propisition 3.5. Every (n,1)-presentation is strongly equi-

valent to a veetor (n,1)-presentation. [J

Further on we will always assume that n,m and k are given
positive integers such that n-m=k, m=2. We will also assume that
B is a nonempty set and A a set of vector (n,m)-relations on B.
Then we can also consider A as a set of vector (2,1)-relations
on B. This is the reason behind the use of different notations.
Namely, we denote by <B;/\> the corresponding (n,m)-presentation,
and by <B;A> the same presentation but now considered as a (2,1)-
presentation. Thus, <B;A> is an (n,m)-semigroup, and <B;A> is a
semigroup.

Proposition 3.6. Let <B;A> be a vector (n,m)-presentation,

where m=22, and let }—, -, A be relations in B” defined as
follows.

ub— v iff umsu, wlu,, vu,viu,, (w,v’)EA, R“GB*;

u ~viff ul—vor v i— u;

uldy 1ff there exist t 20, uo,...,ut€B+ such that u=u_,

VUL, Uy_, v Uy for any XéN_.
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Then é i8 a congruence on B such that B+/é = <B; k>,
Moreover:

(£) ueB*, d(u) <m => (u 2 v <=> u=v)

(ii) u } v => d(uw) = d(v) (modk). O

It follows from (i) that we can assume that BUB2U....s™ "
is a subset of B+/-;A_=<B;A>. In general, two different elements
u,v of B™ can define the same element in <B;A>, i.e.

A
u=v, u# v.

Let <B;A>, n,m,k and 2 be as above. If ueB', then the set
{d(v) |u 2 ¢} is denotea by d(u). Clearly,

u 2 v => d(u) = d(v)

and therefore if we put H(u")ﬂ_i(u) we get that for every xe€<B;A>
d(x) is a well defined set of positive integers. (Here ur‘={v]u§v}.)

Proposition 3.7. If z6<B;A> and if a 2m for some a€d(zx)
then B 2m for every B€d(xz) and moreover: B,y6d(x) => B =y(mod k). O

Proposition 3.8. Let <B;A> be a vector (n,m)-presentation
and E:c V= ¢ be a realization of (B,A) in an (n,m)-semigroup

P=(P;g). If av,bleb‘, r,8 20 are such that aT+rk a bT+8k, then
g@'r) = g@7rek),
m+rk

Proof. Let u=a, 3 Fbr:nsk' E=5T+rk, v=b, Rk

i ’ ’ *
If u ~ v then v=v,u'v,, v=v,v'v,, where v,,v,€B* and

(u’,v’)eAr or (v’',u’)€Ar; thus g(u’)=g(v’). This implies that

g(u) = g(v,u’v,y) = g(v,g(u’)v,)

g(v,g(¥v)v,) = g(v,v'v,)
= g(v).

If uo,u1,....uteB+ are such that t 22 and

then

g(u) = g(u,) = g(u,) =...= g(u,) =g(v). O
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§4. PRESENTATIONS IN VARIETIES OF VECTOR VALUED SEMIGROUPS

A class of (n,m)-semigroups is said to be a variety of (n,m)-
semigroups if it has an axiom system which is a set of identities.

First we give a more precise definition of an identity in
the class of poly-(n,m)-groupoids.

Denote by N the set of nonnegative integers and consider the
free poly-(n,m)-groupoid F(N) with a basis N. The elements of
F(N) will be denoted by p,0,T,e.. .

Let 0=(Q;f) be a poly-(n,m)-groupoid. Every element

DGF(Nt)CZF(N}

define a t-ary operation pg on Q as follows.

7 =3 (0 (F = s S,
(1y If p—]ENt then p—{a,)—aj.

il = m+sk o [P
(ii) If e=(i,p, ") and p3(a;)=b
then
m+sk

t, _
o2(ah) = £, (775,
We note that if t <g and oGF(Nt) then p€F(N_) and thus p
defines a g-ary operation D'Q on Q as well. Clearly, we have
D'Q(a?) = agtaf)
for any a €0Q. Further on, we ommit the upperscript, i.e. we wri-
te p{af} instead of pg{af).
Let p,w€F(N ). We say that a poly-(n,m)-groupoid Q satis-
Q = (o,u),
5
p(af] = w{af) for any aEth.
The reduction $°:F(N} - F(N) is defined as in the general

case. By induction on the norm it can be easily shown that:

Proposition 4.1. If @ s an (n,m)-semigroup and p€F(N) then
Q@ = (ps¥,(p0)). 0O
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and ¢, (p)=p. Since we are interested only in poly-(n,m)-groupo-
ids which are (n,m)-semigroups, from now on we consider only
reduced (n,m)-identities.

Proposition 4.2. If (p,w) Z8 a reduced (n,m)-identity and

Q@ = (p,w) for every (n,m)-semigroup @, then p=uw.

Proof. If B is a nonempy set and p#w then the free (n,m)-
semigroup S(B) with a basis B does not satisfy the (n,m)-identi-
ty (p,w). O

(We note that the conclusion of the proof holds in the case
m=1 only if we assume that |B| >2. Namely the free (n,1)-semi-
group with a free generator is commutative.)

If 6 F(N\{0})xF(N\ {0}) then we say that 8 is a set of (n,m)-

by 9.

Let B be a nonempty set and let peF(Nt), uEEF{B)t. Then
n{uE)EF{B), because p induces a t-ary operation on F(B). If 6 is
a set of (n,m)-identities then we put:

8(F(B)) = {(p{uf), m(uE]) | (p,uw)ee, p,WEF (N.), ufepta)t, teN}t.

Proposition 4.3, <B;08(F(B))> is a free object in Var® with

a basis B.

Proof. If A=8(F(B)) then % is the least congruence on F(B)
such that E(B)/EGVare. )

If A is a set of (n,m)-relations on B and 8 is a set of
(n,m)-identities then the (n,m)-semigroup <B;A V8 (F(B))> will
be denoted by <B;£;B>. This (n,m)-semigroup can be characterized
in the following way:

Proposition 4.4. @=(Q;f)=<B;A;8> iff the following condi-
tions are satisfied:

(i) @€Vard;
(i) There is a realization & of (B,A) in @ such that for
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any realization £’ of (B,A) in an (n,m)-semigroup Q'€Vart there

T8 a unique homomorphism §:Q = @' such that ti=t'. 0[O

ties iff <N:;8> is a vector (n,m)-presentation,

Vector (n,m)-identities can be defined directly, as well.
Namely, let p=m+sk, g=m+rk, where r,s 20, and let (i?,j?)eN+xN+
We say that an (n,m)-semigroup Q=(Q;f) satisfies the vector
(n m)-identity (ip,jq}, and write Q k= {11,jq), iff for every
a eQ we have f(b“) f(cq), where t=max{i ,jl} and b ay s ck_aj ’

v,A v A
for any v,). From now on we assume that P2g.

Proposition 4.5. If 7 # j7 and if Q&= (i",i") then
[l = 1. O

that V—Vars. Also, <B;A;8> is a vector (n,m)—presentations iff
<B;A> and <N;8> are vector (n,m)-presentations.

Let us consider some examples.

Example 4.6. If there exists an (i7,37)€e such that iTy§®
then Vars= () (n,m)=( is the least variety of (n,m)-semigroups,
and Q=(Q;f)€)) iff |Q|=1. Therefore for every B and A,<B;A;6>
is a one element (n,m)-semigroup.

From now on we assume that Vare#() . Therefore, we can also
assume that in 6 there are no identities of the form (i,,] ) KR

In the case 6={(if,j%)} we write var (i¥,37) ana <B;s; 3 (1B, 30>
instead of Var{(ig,j?)} and <B;A;{{i8,j?)}>, respectively.

Example 4.7. Let i =v for each VEN . Then Var(i?,i?)= Lz
is the variety of left zero (n,m)-semigroups, i.e., (Q;f)€Lz
b5 ic oBE ¢ m+Sk) a for any a €Q, s 20. (See E.1.8.) Any (n,m)-semi-
group g—{Q,f)eLZ is a free object in LZ with a basis Q. If
<B;a;(i?,i?)> is a vector (n,m)-presentation in LZ, then it de-
termines the left zero (n,m)-semigroup on B/z where = is the
least equivalence on B such that
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P pd =2 =
(a7 ,b7) el (Yieﬁm], a; b, .
More generaly, let ASF(B)xF(B) and let us define a mapping
y:F(B) = B by induction on norm in the following way:
v (b)=b for every bEB

¥(1,u™%K)=y (), for every u €F(B), ieN , s21.

Then, if = is the least equivalence in B such that
(u,v)€r => ¢ (u) = p(v),

we obtain that <B;4;(i],iT)> is the left zero (n,m)-semigroup
on B/=,

Example 4.8. Let 1m0, G =y for any uENn. Then, Var{i?,j?}=

We recall that an (n,m)-semigroup Q=(Q;f) is a constant one & i
there exists a 07€Q™ such that f(a})= O] for any a €Q. Then we
also have f{a?+3k}= OT for any s 21, a €Q. As in the first two
examples it is easy to give a description of an (n,m)-semigroup
<B;A; (17,37)>, where ACF(B)xF(B). Let { 0,, 0,,..., O} be a
set disjoint with B and let B =BU{ 0,,..., om}, 0,# 04 if
i#j. Define a subset A  of B xB_  by:

4, = {(a,b) | (a,b)ea nB?}

U 0;a) | a€B and (a,u)€A or (u,a)€s for some
uw=(i,x)€Er(B)}
U {( 0y Oj) | (u,v)ear for some u=(i,x), v=(j,y)€F(B)}.

Let = be the least equivalence in B, containing 4 . If c€B, then
we denote by C the »-equivalence class containing c. Then
<B;A;(i?,j?)> is the constant (®,m)-semigroup (B /=;f) defined

by £(c))= OF.
We note that in E.4.6 we do not need any construction of

F(B), and the same is true in the other two examples iff A is a
set of vector (n,m)-relations on B.

Each one of the varieties considered above is an example
of vector variety of (n,m)-semigroups, and certainly the class
of all (n,m)-semigroups is such a variety. Below we give an
example of a variety which is not a vector variety.
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