Математички Билтен 13 (XXXIX) 1989 (5-14) Скопје, Југославија

MULTIDIMENSIONAL ASSOCIATIVES

G. Čupona, N. Celakoski

 $\frac{Abstract}{let\ F_m}$ be a set of positive integers. For every that

 $(\forall f \in F_m) f : A^{m+k} f \rightarrow A^m, 1)$

where $k_f > 0$. Denote by F the set $\bigcup \{F_m \mid meM\}$.

The vector valued algebra (A;F) is said to be an associative if the general associative law holds. In two previous papers ([1] and [2]) some results of associatives concerning the case |M|=1 are obtained, and here we make corresponding investigations assuming that M is an arbitrary nonempty set of positive integers.

§1. Polynomial operations

Let A be a nonempty set, and let Op(A) be the set of vector valued operations on A, i.e.

$$Op(A) = \{f:A^n \to A^m \mid n,m \ge 1\}.$$

If $f:A^n\to A^m$, then we write $\delta f=n$, $\rho f=m$, $(f=n-m \text{ (or }\delta(f)=n \text{ etc.}$ when parenthesis are more convenient), and we say that n,m, n-m are the <u>length</u>, <u>dimension</u>, <u>index</u> of f-respectively.

Let F be a nonempty subset of Op(A) with the following property:

$$(\forall f \in F) ((f = \delta f - \circ f > 0).$$
 (1.1)

We define a set of operations $\mathcal{O}(F) \subseteq Op(A)$, which will be called the <u>set of polynomials</u> generated by F, in the following way:

$$\mathcal{P}(F) = \bigcup \{ F_{\alpha} \mid \alpha \geq 1 \}, \qquad (1.2)$$

where:

$$F_1 = F_1$$

¹⁾ Ar is the r-th Cartesian power of A.

$$\begin{aligned} \mathbf{F}_{\alpha+1} &= \mathbf{F}_{\alpha} \cup \{\mathbf{g}(\mathbf{g}_{1} \times \ldots \times \mathbf{g}_{p}) \mid \mathbf{g} \mathbf{e} \mathbf{F}_{\alpha}, \mathbf{g}_{\nu} \mathbf{e} \mathbf{F}_{\alpha} \cup \{\mathbf{1}_{A}\}, \delta \gamma - \sum_{\nu=1}^{p} \rho \mathbf{g}_{\nu}\}^{2} \} \\ \text{It can be easily shown that:} \end{aligned}$$

P.1.1.
$$\mathcal{P}(\mathcal{P}(F)) = \mathcal{P}(F)$$
.

It is desirable to have a corresponding description of the sets $\rho\left(\mathcal{P}(F)\right)$, $\iota\left(\mathcal{P}\left(F\right)\right)^{3}$.

First we have:

P.1.2.
$$\rho(\mathcal{P}(F)) = \rho(F)$$
.

Denote the set ρ (F) by:

$$M = \{m_1, m_2, ...\} = \{m_{\lambda} \mid \lambda \in \Lambda\},$$
 (1.3)

where m $_{_{\text{V}}}<$ m $_{_{\text{V}+1}}$, and Λ is the set of positive integers or $\Lambda=\{1,2,\ldots,t\}$. We assume that $|\Lambda|\geq 2$, for the case $\Lambda=\{1\}$ is considered in [2] and [4].

Denote by F_{λ} $(\mathcal{P}_{\lambda}(F))$ the set of elements feF (fe $\mathcal{P}(F)$) such that $\rho f=m_{\lambda}$ and put:

$$\iota(\mathbf{F}_{\lambda}) = \mathbf{I}_{\lambda}, \ \iota(\mathbf{F}) = \mathbf{I}, \ \iota(\mathcal{P}_{\lambda}(\mathbf{F})) = \mathbf{K}_{\lambda}, \ \iota(\mathcal{P}(\mathbf{F})) = \mathbf{K}$$
 (1.4) Clearly:

$$\underline{P.1.3}$$
. I= $U\{I_{\lambda} \mid \lambda \in \Lambda\}$, K= $U\{K_{\lambda} \mid \lambda \in \Lambda\}$.

By a usual induction it can be shown that:

<u>P.1.4</u>. K is an additive semigroup of positive integers generated by I, and, for every $\lambda \in \Lambda$, K_1 is a subsemigroup of K. \blacklozenge

Assume now that $\mu, \nu \in \Lambda$ and $k_{\nu} \in K_{\nu}$ are such that $m_{\nu} + k_{\nu} \geq m_{\mu}$, and let k_{μ} be an arbitrary element of K_{μ} . Then, there exist fe $\mathcal{P}_{\nu}(\mathbf{F})$, ge $\mathcal{P}_{\mu}(\mathbf{F})$ such that $\mathbf{f} = \mathbf{k}_{\nu}$, $\mathbf{g} = \mathbf{k}_{\mu}$ and

$$\mathbf{h} = \mathbf{f}(\mathbf{g} \underbrace{\times \mathbf{1} \times \dots \times \mathbf{1}}_{\mathbf{w}_{\nu} + \mathbf{k}_{\nu} - \mathbf{m}_{\mu}}) \in \mathcal{Q}_{\nu}(\mathbf{F}), \quad \mathbf{h} = \mathbf{k}_{\nu} + \mathbf{k}_{\mu}.$$

Composition and direct products of operations have the usual meanings; $l_A=1$ is the identity transformation of A (see for ex. [4;123-124]).

If G is a set of operations on A, and τ is a mapping from G into a set B, then $\tau(G) = \{\tau(g) \mid g \in G\}$.

This implies the following property of the collection $\{K_{\lambda} \mid \lambda \in \Lambda\}$:

 $\underline{\text{P.1.5}}.$ If v,µEA, k_EK_ are such that k_+m_ \geq m_µ, then k_+K__ \subseteq K__. \blacklozenge

Now we will give a satisfactory description of the collection of semigroups {K $_{\lambda}$ | $\lambda \text{eA}\}$.

P.1.6. Let a collection of sets of positive integers $\{I_{\nu,\alpha} \mid \lambda \in \Lambda, \alpha \geq 0\}$ be defined as follows:

$$\mathbf{I}_{\mathsf{v},\mathsf{o}} = \mathbf{I}_{\mathsf{v}}, \quad \mathbf{I}_{\mathsf{v},\mathsf{a}+1} = \mathbf{I}_{\mathsf{v},\mathsf{a}} \cup \overline{\mathbf{I}}_{\mathsf{v},\mathsf{a}},$$

where

$$\overline{\mathbf{I}}_{\nu,\alpha} = \{\mathbf{i}_{\nu} + \mathbf{i}_{\lambda} \mid \mathbf{i}_{\nu} \in \mathbf{I}_{\nu,\alpha}, \quad \mathbf{i}_{\lambda} \in \mathbf{I}_{\lambda}, \quad \mathbf{m}_{\nu} + \mathbf{i}_{\lambda} \geq \mathbf{m}_{\lambda}, \quad \lambda \in \Lambda\}.$$

Then:

$$K_{v} = \bigcup \{I_{v,\alpha} \mid \alpha \geq 0\}.$$

If $F \subseteq Op(A)$, then F induces a vector valued algebra $\mathcal{A} = (A;F)$ with a carrier A. Then $\mathcal{O}(\mathcal{A}) = (A;\mathcal{O}(F))$ is the corresponding polynomial algebra. It is clear that:

P.1.7. If $C \subseteq A$, $C \neq \emptyset$, then:

C is a subalgebra of A iff

C is a subalgebra of $\mathcal{G}(\neg t)$. •

Let A' be a set and $F' \subseteq Op(A')$. A homomorphism from $\mathcal A$ into $\mathcal A' = (A';F')$ is a pair of mappings $\zeta:A \to A'$, $\psi:F \to F'$ such that ψ is surjective and:

 $(\forall f \in F) (\delta f = \delta (\psi(f)), \rho f = \rho (\psi(f))),$

 $(\forall a, \in A, f \in F) (\zeta(f(a_1^n)) = f'(\overline{a_1^n})),$

where $\zeta(c) = \overline{c}$, $\psi(f) = f'$, and $\zeta(b_1^m) = \overline{b}_1^m$.

P.1.8. Every homomorphism (ζ,ψ) from (A;F) into (A';F') induces a unique homomorphism (ζ,ψ) from (A; $\mathcal{P}(F)$) into (A'; $\mathcal{P}(F')$).

§2. Associatives

As in the previous section, we will assume that $A\neq\emptyset$ and $F\subseteq Op(A)$, $F\neq\emptyset$, is such that $\mathcal{L}f>0$, i.e. $\delta f>\rho f$, for every feF.

We say that F is an associative on A iff the following condition is satisfied:

$$f, g \in \mathcal{P}(F)$$
, $\delta f = \delta g$, $\rho f = \rho g \Longrightarrow f = g$. (2.1)

Let K, $\{K, | \lambda \in \Lambda\}$ and M= $\{m, | \lambda \in \Lambda\}$ be defined as in the previous section. By P.1.1 one obtains:

P.2.1. F is an associative on A iff $\mathcal{P}(F)$ is an associative on A. .

According to this proposition, we will assume further on that

$$Q(F) = F. (2.2)$$

Therefore, for every $k_1 \in K_1$, $\lambda \in \Lambda \setminus \{0\}$, there exists a unique $(k_{\lambda}, m_{\lambda}) = k_{\lambda} + m_{\lambda} + A$ (where $K_{o} = \{0\}$, $m_{o} = 1$, $f^{(o,1)} = 1_{A}$). This enables us, for every $\lambda \in \Lambda$, to define a unique mapping $(m_{\lambda}) {K_{\lambda} + m_{\lambda} \choose f} {K_{\lambda} + m_{\lambda} \choose f} {M_{\lambda} + m_{\lambda} \choose f}$

$$(m_{\lambda}) K_{\lambda} + m_{\lambda} m_{\lambda} + A$$

$$(\forall x \in A^{\lambda+m_{\lambda}}) f^{(m_{\lambda})}(x) = f^{(k_{\lambda}, m_{\lambda})}(x).$$

Thus one obtains a set of mappings
$$G = \{f : A \xrightarrow{K_{\lambda} + m_{\lambda}} A \xrightarrow{m_{\lambda}} | \lambda \in \Lambda \}$$
 (2.3)

with the following property:

And conversely:

If a family of mappings (2.3) has the property (2.4) and $f^{(k_{\lambda},m_{\lambda})}=f^{(m_{\lambda})}\begin{vmatrix}k_{\lambda}+m_{\lambda}\\ A\end{vmatrix},$

$$f^{(k_{\lambda},m_{\lambda})} = f^{(m_{\lambda})} |_{A}^{k_{\lambda}+m_{\lambda}},$$

then the set

$$F = \{f^{(k_{\lambda}, m_{\lambda})} \mid \lambda e \Lambda, k_{\lambda} e K_{\lambda}\}$$
 (2.5)

is an associative on A.

We note that if P is a set of positive integers on a set A, then $A^P = \bigcup \{A^P \mid peP\}$. (Thus, here, A^P has not the usual meaning - the set of all mappings from P into A.)

⁵⁾ If $f:B \to D$, $g:C \to D$, then $f \in g$ iff $B \subseteq C$ and $(\forall x \in B)$ f(x)=g(x), i.e. f is the restriction of g on B.

Note that, by induction, it is easy to show that the condition (2.4) can be changed with the following special (weaker) condition:

$$\alpha + m_{\lambda} + \beta \in K_{\lambda} + m_{\lambda} \implies f^{(m_{\mu})} (1^{\alpha} \times f^{(m_{\mu})} \times 1^{\beta}) \subseteq f^{(m_{\mu})}. \tag{2.6}$$

Further on we will always consider the class of F-associatives as a class of mappings (2.3), which satisfy (2.4), where K, $\{K_{\lambda} \mid \lambda \in \Lambda\}$, M have the above mentioned properties. Instead of "F-associative", we will write " $\{K_{\lambda} \mid \lambda \in \Lambda\}$; M)-associative", and we will say that $\phi = (K_{\lambda} \mid \lambda \in \Lambda)$; M) is the type of the associative. Also we will write

$$\begin{bmatrix} k_{\lambda}^{+m_{\lambda}} \end{bmatrix}^{(\lambda)}$$
 instead of $f^{(m_{\lambda})}(a_{1}^{k_{\lambda}^{+m_{\lambda}}})$.

Assume that A and A' are the carriers of two associatives of the same type ϕ . A mapping $\zeta: c \mapsto \overline{c}$ from A into A' is a homomorphism iff:

$$\begin{bmatrix} a_1^{k_{\lambda}+m_{\lambda}} \end{bmatrix}^{(\lambda)} = b_1^{m_{\lambda}} \implies \begin{bmatrix} \overline{a}_1^{k_{\lambda}+m_{\lambda}} \end{bmatrix}^{(\lambda)} = \overline{b}_1^{m_{\lambda}}. \quad (2.7)$$

It can be easily seen that this definition of homomorphism is compatible with the usual definition given in §1.

§3. Free associatives

The notion of a "free associative with a basis B" has the usual meaning. So we will not state here the corresponding explicit definition, but we will give a construction of free associatives.

Let B be a nonempty set and $\Phi=(K;\{K_{\stackrel{}{\lambda}}\mid \lambda\in \Lambda\};M)$ a type of associatives, M={m_1,m_2,...}, m_{\stackrel{}{\lambda}}< m_{\stackrel{}{\lambda}+1}. Denote

$$m_1 + \ldots + m_{\lambda}$$
 by \overline{m}_{λ} , {1,2,...,t} by N_t , $\overline{m}_0 = 0$, $N_0 = \emptyset$.

Define a sequence of sets (B $_{\alpha}$ $|\alpha\geq$ 0) as follows: B $_{o}=B$ and

$$B_{\alpha+1} = B_{\alpha} \cup C_{\alpha}, \tag{3.1}$$

where

$$C_{\alpha} = \bigcup \{ (N_{\overline{m}_{\lambda}} \setminus N_{\overline{m}_{\lambda-1}}) \times R_{\alpha, \lambda} \mid \lambda \in \Lambda \}.$$
 (3.2)

 $R_{o,\lambda} = (B_o)^{K_{\lambda} + m_{\lambda}}. \tag{3.3}$

Assume that B_α is well defined. Then (as usually) we denote by B_α^+ the free semigroup with a basis B and by $B_\alpha^\star=B_\alpha^+\cup\{1\}$ the free monoid with a basis B. An element

$$u = (\overline{m}_{\lambda} + 1, y) (\overline{m}_{\lambda} + 2, y) \dots (\overline{m}_{\lambda+1}, y) eB_{\alpha}^{+}$$
(3.4)

is called an elementary reduction, and an element ceB_α^+ is said to be reducible iff

$$x = x'ux''$$

where x',x"eB* and u is an elementary reduction. And, xeB* is said to be reduced if it is not reducible. Then R* is the set of all the reduced elements of B* $_{\alpha}^{+}$ $_{\lambda}$.

Thus, $R_{\alpha,\lambda}$ is a well defined subset of $B_{\alpha}^{m_{\lambda}+K_{\lambda}}$ for every $\alpha \geq 1$, $\lambda \in \Lambda$. Moreover, if $x \in B_{\gamma}$, then $x \in R_{\gamma,\lambda}$ iff $x \in R_{\gamma+1,\lambda}$.

Denote the set $\bigcup \{B_{\alpha} \mid \alpha \geq 0\}$ by \overline{B} .

If $x \in \overline{B}^+$, then we say that $x \in \overline{B}$ is <u>reduced</u> if $x \in B_{\alpha}^+$ and x is reduced in B_{α}^+ . Denote the set of the reduced elements of \overline{B}^+ by R. Thus, $R = U\{R_{\alpha} \mid \alpha \geq 0\}$, where R_{α} is the set of reduced elements of B_{α}^+ .

The concepts of hierarchy % in \overline{B} and norme $| \ | \$ in \overline{B}^+ are defined as follows:

$$\psi_{i}(u) = min\{\alpha \mid ueB_{\alpha}\};$$
 $|u| = 0 \iff ueB^{+},$
 $|(i,x)| = 1 + |x|, |xy| = |x| + |y|.$

Now we will define a mapping

$$\psi: \overline{B}^+ \to R$$

in the following way ((i) and (ii)):

(i)
$$x \in R \implies \psi(x) = x$$
.

Let $x \in \overline{B}^+ \setminus R$ and let $\psi(y) \in R$ be defined for every $y \in \overline{B}^+$ such that |y| < |x|, and then

$$\psi(y) \neq y \iff |\psi(y)| < |y|.$$
 (3.5)

Let x=x'ux", where u is an elementary reduction of the form (3.4), and x' is reduced (or x'=1). Then |x'yx"| < |x|, and us $\psi(x'yx")$ is well defined. Then we define $\psi(x)$ by:

(ii)
$$\psi(x) = \psi(x'yx'')$$
.

Then we have:

$$|\psi(x)| = |\psi(x'yx'')| \le |x'yx''| < |x|,$$

and this implies that $\psi:\overline{B}^+\to R$ is a well defined mapping such that (3.5) is satisfied.

Let us establish some properties of the mapping ψ .

P.3.1. If
$$x \in \overline{B}^+$$
 and $dm(x) \in m_x + K_y$, then $dm(\psi(x)) \in m_x + K_y$.

<u>Proof.</u> Let $\psi(x)$ be defined by (ii). Then, $dm(x)=dm(x'x'')+dm_{\lambda+1}$

$$dm(x'yx") = dm(x'x") + dmy$$
.

The fact that $(\overline{m}_{\lambda}+i,y)\in\overline{B}$ $(1\leq i\leq m_{\lambda+1})$ implies that $\dim y=k_{\lambda+1}+m_{\lambda+1}$ for some $k_{\lambda+1}\in K_{\lambda+1}$. But $\dim x\in m_{\nu}+K_{\nu}$ implies that $\dim x=m_{\nu}+k_{\nu}$ for some $\nu\in \Lambda$. Thus we have:

 $m_{\lambda} + k_{\lambda} = dm(x'x'') + m_{\lambda+1}$, and therefore

 $m_{\nu} + k_{\nu} \ge m_{\lambda+1}$, which implies that

$$k_{v} + K_{\lambda+1} \subseteq K_{v}$$
.

Finally, we obtain

$$\begin{split} \text{dm}(x'yx'') &= & \text{dm}(x'x'') + \text{dm}(y) &= & \text{dm}(x'x'') + k_{\lambda+1} + m_{\lambda+1} &= \\ &= & \text{m}_{\nu} + k_{\nu} + k_{\lambda+1} \in \text{m}_{\nu} + K_{\nu}. \end{split}$$

Then, by an induction on norms, we obtain that

$$dm(\psi(x)) = dm(\psi(x'yx''))em_y+K_y$$
.

⁶⁾ If $x \in \overline{B}^{\alpha} \subset \overline{B}^{+}$, then $dm(x) = \alpha = dmx$.

P.3.2. $(\forall x \in \overline{B}^+, y \in \overline{B}^+) \psi(xy) = \psi(\psi(x)y)$.

<u>P.3.3</u>. If x=x'ux'', x', $x''\in \overline{B}^*$, and u is an elementary reduction of the form (3.4), then

$$\psi(x) = \psi(x'yx").$$

<u>Proof.</u> If x'=1 or $x' \in \mathbb{R}$, then the above equality holds by (ii), and if $x \neq 1$, $x \notin \mathbb{R}$, then we can apply <u>P.3.2</u> and an induction on norms. \blacklozenge

P.3.4. $(\forall x', x'' \in \overline{B}^*, x \in \overline{B}^+) \psi (x'xx'') = \psi (x'\psi(x)x'')$.

Proof. We can assume that $\psi(x)\neq x$, and apply P.3.3. \diamond

Now, we will define a collection of mappings

 $\{[]^{\lambda}: \overline{B}^{m_{\lambda}+K_{\lambda}} \rightarrow \overline{B}^{m_{\lambda}} \mid \lambda \in \Lambda\}.$

Namely, assume that $\lambda \in \Lambda$ and $x \in \overline{B}^{m_{\lambda} + K_{\lambda}}$. Then, by P.3.1, $\psi(x) \in \overline{B}^{m_{\lambda} + K_{\lambda}}$, and thus $z_i = (\overline{m}_{\lambda-1} + i, \psi(x)) \in \overline{B}$, for every $i \in N_m$. Then we put

$$[x]^{\lambda} = z_{1}^{m_{\lambda}}. \tag{3.6}$$

To show that $(\overline{B};\{[\]^\lambda\mid\lambda\in\Lambda\})$ is a $(K;\{K_\lambda\mid\lambda\in\Lambda\};\ \{m_\lambda\mid\lambda\in\Lambda\}-$ associative, we have to show that

$$[x'[x]^{\lambda} x"]^{\lambda} = [x'xx"]^{\lambda}, \qquad (3.7)$$

for every pair $\nu,\lambda\in\Lambda$, and $x',y,x''\in\overline{B}^*$ such that the left hand side is well defined.

Namely, first we have that $x \in \overline{\mathbb{B}}^{m_{\lambda} + K_{\lambda}}$ and

$$\left[\mathbf{x}\right]^{\vee} = \left(\overline{\mathbf{m}}_{\mathbf{v}-1} + 1, \psi\left(\mathbf{x}\right)\right) \dots \left(\overline{\mathbf{m}}_{\mathbf{v}-1} + \mathbf{m}_{\mathbf{v}}, \psi\left(\mathbf{x}\right)\right).$$

By $\underline{P.3.4}$ we have $\psi(x'[x]^{\vee}x")=\psi(x'xx")$, and this implies that (3.7) is satisfied.

Thus, $(\overline{B};\{[\]^{\lambda}\ |\ \lambda\in\Lambda\})$ is an associative. By induction on hierarchy, it can be easily seen that B is a generating subset of this associative.

Assume that $(Q;\{[]^{\lambda} \mid \lambda \in \Lambda\})$ is an associative of the same type and $\zeta:B \to Q$ an arbitrary mapping. Define a sequence of mappings $\{\zeta_\alpha:B_\alpha\to Q\}$ as follows.

First, we put $\zeta_0 = \zeta$. Assume that $\zeta_\alpha : B_\alpha \to Q$ is well defined. Let $v \in B_{\alpha+1} \setminus B_\alpha$. Then there exist $\lambda + 1 \in \Lambda$ and $i \in N_{\lambda+1}$ such that $v = (\overline{m}_{\lambda} + i, x)$, where $x \in R_{\lambda+1}$, α . Thus, $x = u_1 u_2 \dots u_{m_{\lambda+1}} + k_{\lambda+1}$, for some $u_j \in B_\alpha$. Then $\zeta_\alpha(u_j) \in Q$ is well defined. Let

$$\left[\left[\zeta_{\alpha}(\mathbf{u}_{1}) \dots \left(\zeta_{\alpha}(\mathbf{u}_{\mathbf{m}_{\lambda+1} + \mathbf{k}_{\lambda+1}}) \right] = \mathbf{c}_{1}^{\mathbf{m}_{\lambda+1}}. \right]$$

Then we put

$$\zeta_{\alpha+1}(v) = c_i$$

and $\zeta_{\alpha+1}(w) = \zeta_{\alpha}(w)$, for every $w \in B_{\alpha}$.

Define by ζ the uniquelly determined mapping $\psi:\overline{B}$ + Q which is an extension of ζ_α , for every α \geq 0.

By induction it can be shown that

$$\psi: (\overline{B}; \{[]^{\lambda} | \lambda \in \lambda\}) \rightarrow (Q; \{[]^{\lambda} | \lambda \in \Lambda\})$$

is a homomorphism, and that will complete the proof of the following

Theorem 3.5. (Q;{[] $^{\lambda}$ | λ e Λ }) is a free (K;{K $_{\lambda}$ | λ e Λ }; {m, | λ e Λ }) associative with a basis B. ||

REFERENCES

- [1] G.Čupona: Vector valued semigroups, Semigroup Forum, Vol. 26 (1983), 65-74
- [2] N.Celakoski, B.Janeva: <u>Vector valued associatives</u>. Proc. Conf. "Algebra and Logic", Cetinje 1986, 15-21
- [3] G.Čupona, N.Celakoski, S.Markovski, D.Dimovski: <u>Vector valued groupoids</u>, <u>semigroups and groups</u>, "Vector valued semigroups and groups and groups", Maced. Acad. Sci. and Arts, (1988),
- [4] N.Celakoski, S.Markovski, B.Janeva: Some classes of vector valued associatives, "Vector valued semigroups and groups", Maced. Acad. Sci. and Arts, (1988), 123-140
- [5] D.Dimovski: Free vector valued semigroups, Proc. Conf. "Algebra and Logic", Cetinje 1986, 55-62

многудимензионални асоцијативи

Г. Чупона, Н. Целакоски

Резиме

Нека M е множество позитивни цели броеви и, за секој mЄM, нека F_{m} е множество векторско вредносни операции на едно множество A, така што

 $(\forall fer_m) f: A^{m+k}f \rightarrow A^m,$

каде што $k_f > 0$. (Притоа, A^r означува r-ти декартов степен на множеството A.) Да го означиме со E множеството E мемE.

Векторско вредносната алгебра (A;F) се вика асоцијатив ако важи општиот асоцијативен закон. Во два поранешни труда ([1]) и [2]) се добиени некои резултати за асоцијативи што се однесуваат на случајот |M|=1, а овде се вршат соодветни испитувања земајќи M да е произволно непразно множество позитивни цели броеви.

Природно-математички факултет Машински факултет - Скопје