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ON A DUAL PAIR OF LP-PROBLEMS

D. L. Karcicka

The solution of the linear complementarity problem obtained in [1]
is used for solving a dual pair of LP-problems.

We use the following notational conventions. Let N denote the set
of integers {1,2,..., n>2}. If TCN, then I=N—1I The identity
matrix of order k is denoted by E®, A matrix whose elements are all one

is denoted by E. Given an nxn-matrix 4 and subsets 7, J of N, let A;; denote
the submatrix obtained form A by deleting all the rows corresponding to
I and all the columns corresponding to J. Instead of A4;; we write simply

Arif I =J,

(4); if I={i}, J=N,

(4 if 1 =N, J={j},

(A if T={i], J={j}.

Similarly, if x is an n-vector, then x; denotes the subvector whose compo-
nents are x;, i = /. We denote by M the nxn matrix whose elements are

asjéN: I=TL‘(_])

1) ={
Tl —LjeEN iR

where 7 is a given permutation on N, and a is a given real greater than n—2
Given a subset 7 of N with k£ (0 < k< n) indices, let B be the matrix

s_[Mi 0
MI_I Em—k)

There are two cases when B is nonsingular.

4%
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Case L. If = (j) €1, j€ 1, then My is of the same type as M. So, if
k # a + 1, then M; is a nonsingular matrix,
a+2—k, i€l j=m(i)
1, i€l jeI—{x()}

(a+ 1) (@+1—k) (M), ={ i Jcl

and it can easily be found that

M1 0
M B = |
— - E  Ewm—k)
a+1—k

Case II. If there exists an index /€ I such that
=&l and = ()EL jET—{I)
then there exists an index m < I such that
(M) =—11...1].

Also M is nonsingular, and for i, j & 1

—(@+2—k), i=lj=m
—1 , i=1j#*m
(@+1) My ={—1 , iEI—{l}), j=m
1 s iel—{l}, j= =)
0 , in any other case.

Again we can easily find

B — M1 0 i
S M_II MI_I E{n—k)

where
(—@+1—k, i==@),j=m
—1 ,i==n(),jcI—{m
(M_I_I Mf_l){] — ( ) J< { }
0 , in any other case
Now we consider the dual pair of LP-problems
(P) min { pz| g+ Mz=0, z=0}

(D) max {—vq| p—vM =0, v=0)
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where p, g are given n-vectors, and z, v are the n-vectors of variables. (We
notice that the dual pair (P), (D) is equivalent to the more general dual pair

(P) min {p’ z'| ¢’ + DMF 2/ =0, z' = 0}
) max {—v'¢'|p'—v DMF =0, v =0}

where D and F are given positive diagonal matrices. Indeed, by the substi-
tutions z = F—1z', v=1v' D~ g = Dq', p =p' F the pair (P'), (D) be-
comes (P), (D)).

It is obvious that if g =>0 and p=0, then z =0, v =0 is a pair of
optimum solutions to (P) and (D), respectively.

Suppose that ¢ > 0 and p >0 (if g=0and p>0, or p=>0 and
g > 0, then we immediately have a feasible initial basis to (P), or (D), and
we can make the conclusions as below discussing either (D), or (P) only).

Let the indices r;, ;€ N, i =1,2 be defined as follows:
gy, = Mmax {qs}, Pr, = min {py},
JEN JEN
I].:Tr—l(r]_)s 12=TC(1'2),
and denote
si=Yag+@+1—n g, sa=3p+@+1—np,
JEN JEN
Introducing the n-vectors w, u of nonnegative slack vaariables

,ﬁ.:q.&-j{:;(}, u:p_,__.‘-“fi()

in (P) and (D), respectively. and applying the theorems 1, 2 [1] for the linear
complementarity problems

(1) w=gqg+ M:z
w, z=0
wlz =0,
) uT = pT — MT yT
u, v=0
u vl =0

we obtain the following statements.
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() If s;, = 0, i =1, 2, then for any a > n— 2 both (P) and (D) have

AA
optimum solutions z, v, respectively.

a) Forn—2<a<n—1 z can be found by the revised simplex

method starting with the basis — M of (1). Alternatively, we can find V by
the revised simplex method starting with the basis

M, 0
(©)

T —
M L5 Ewm—Fk)

of (2), where I, (k = card (/) is determined applying the following algo-
rithm:
Step 0. Initialize v =0, I = N— {l,}, I =1,, s)=1s, and test ry=I",

0.1 If yes, then Iy= I™, k=n—I1, and M;, in (3) is of the same type
as M; in the case I; stop!

0.2 If no, go to step 1.
Step 1. Set v =v + [, find s = s~ —p, ,,+ p,, and test s < 0.

1.1 If yes, then I,=I®1, k =n—v, and M, in (3) is of the same
type as M; in the case II; stop!

1.2 If no, set J™ = Jo—b — {= (I®*1)} and go to step 2.
Step 2. Test ry == (/D).

2.1 If yes, then I,=1I%, k =n—v—1, and M;, in (3) is of the
same type as M; in the case I; stop!

2.2 If no, set I = = (I®DL) and go to step 1.

b) For a>n—1 v can be found by the revised simplex method

starting with the basis M7 of (2). Alternatively, we can find z by the revised
simplex method starting with the basis

@ [—M" 0 ]

— M LI Emn—k)

of (1), where I, (k=card ([,)) is determined applying the following algorithm:
Step 0. Initialize v=0, IM = N, r™ =r,, M =]}, s®= s, and go to step. 1.
Step 1. Set Jo+h = [ — {[™} and test r® £ [,

1.1 If yes, then I,= I¢+Y, k=n—v—1 and M, in (4) is of the same
type as M, in the case II; stop!
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1.2 If no, go to step 2.
Step 2. Set v =v + 1, find g )= max {gq;}, I™ ==n"1(r™),
JEI®

s = Z g3+ (@+v+1—n) qand test s < 0.
2.1 If yes, then I,=I™, k=n—v—I1, and M}, in (4) is of the same
type as M; in the case I; stop;
2.2 If no, go to step 1.

c¢) For a =n—1 we can find z by the revised simplex method star-

ting with a basis obtained as in (i), b). Alternatively, we can find v by the
revised simplex method starting with a basis obtained as in (i), a).

(i) If 5, <0, i=I, 2, then

a) For n—2 < a<n—1 (P) has no feasible solution, (D) has a
feasible solution, but its objective function is unbounded in the direction of
maximization; v=pM—14 A (— M—Y),, A > 0, is an infinite feasible edge
along which the objective function strictly increases.

b) For @ =n—1 both (P) and (D) fail to have feasible solutions.

¢) For a > n—1 (D) has no feaible solution, (P) has a feasible so-
lution, but its objective function is unbounded in the direction of minimi-
zation; z=—M—1g+ A (M—Y)2, A >0, is an infinite edge along which
the objective function strictly decreases.

(iii) If 5, < 0 and s, > 0, then

a) For n—2 <a <n—1 (D) has a feasible solution, but its obje-
ctive function is unbounded in the direction of maximization; the end point
v =[w,, o] of an infinite feasible edge

—(}lI_I)fl fn—2<a<n— 1,

y=v+rt, » >0, where t={ )
m...11ifa=n—1

along which the objective function strictly increases can be found pivoting
on (3) in (2), where I, is iictermined as in (i) a).

b) For a >n—1 z=— M~ g is an optimum solution of (P), and
v = pM—1 is an optimum solution of (D).

(iv) If 5, > 0 and s, <0, then

a) For n—2 <a<n—1 again Z=—M g is an optimum so-

lution of (P), and y = p M1 is an optimum solution of (D).
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b) For a = n—1 (P) has a feasible solution, but its objective fun-
ction is unbounded in the direction of minimization; the end point

_ [ E;,]
zZ =
o,

(M—Y=, a>n—I1
of an infinite feasible edge z=7Z +Af, A=>0, where 1 =

, a=n—I

-

1

along which the objective function strictly decreases can be found pivoting
on (4) in (1), where I, is determined as in (i) b).
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3A ITAP 3AEMHO AVAJHH JII-3ATAYH

M. JI. Kapuuura
PeszumMme

PemerueTo Ha JHMHEAPDHHOT NPOOJEM HAa KOMILIEMEHTAPHOCT [0-
OueHo Bo [l] ce XKOpHCTH 3a pelUaBame Hap 3aeMHO JAyaJHH JIIT-3agaun.



