ON A DUAL PAIR OF LP-PROBLEMS

D. L. Karčicka

The solution of the linear complementarity problem obtained in [1] is used for solving a dual pair of LP-problems.

We use the following notational conventions. Let N denote the set of integers $\{1, 2, \ldots, n \ge 2\}$. If $I \subseteq N$, then I = N - I. The identity matrix of order k is denoted by $E^{(k)}$. A matrix whose elements are all one is denoted by E. Given an nxn-matrix A and subsets I, J of N, let A_{IJ} denote the submatrix obtained form A by deleting all the rows corresponding to I and all the columns corresponding to J. Instead of A_{IJ} we write simply

$$A_I$$
 if $I = J$,
 $(A)_i$ if $I = \{i\}$, $J = N$,
 $(A)^J$ if $I = N$, $J = \{j\}$,
 $(A)_{ij}$ if $I = \{i\}$, $J = \{j\}$.

Similarly, if x is an n-vector, then x_I denotes the subvector whose components are x_i , $i \in I$. We denote by M the nxn matrix whose elements are

$$(M)_{ij} = \begin{cases} a, j \in \mathbb{N}, & i = \pi(j) \\ -1, & j \in \mathbb{N}, & i \neq \pi(j) \end{cases}$$

where π is a given permutation on N, and a is a given real greater than n-2Given a subset I of N with k $(0 \le k \le n)$ indices, let B be the matrix

$$B = \begin{bmatrix} M_I & 0 \\ M_{\underline{I}\underline{I}} & E^{(n-k)} \end{bmatrix}$$

There are two cases when B is nonsingular.

Case I. If $\pi(j) \in I$, $j \in I$, then M_I is of the same type as M. So, if $k \neq a+1$, then M_I is a nonsingular matrix,

$$(a+1)(a+1-k)(M_I^{-1})_{ij} = \begin{cases} a+2-k, & i \in I, j = \pi(i) \\ 1, & i \in I, j \in I - \{\pi(i)\} \end{cases}, i, j \in I,$$

and it can easily be found that

(1)
$$B^{-1} = \begin{bmatrix} M_I^{-1} & 0 \\ -\frac{1}{a+1-k} E & E^{(n-k)} \end{bmatrix}$$

Case II. If there exists an index $l \in I$ such that

$$\pi(l) \notin I$$
 and $\pi(j) \in I$, $j \in I - \{l\}$

then there exists an index $m \in I$ such that

$$(M_I)_m = -[1 \dots 1].$$

Also M_I is nonsingular, and for $i, j \in I$

$$(a+1) \ (M_I^{-1})_{ij} = \begin{cases} -(a+2-k), & i=l, j=m \\ -1, & i=l, j\neq m \\ -1, & i\in I-\{l\}, j=m \\ 1, & i\in I-\{l\}, j=\pi \ (i) \\ 0, & \text{in any other case.} \end{cases}$$

Again we can easily find

$$B^{-1} = \begin{bmatrix} M_I^{-1} & 0 \\ -M_{II}M_I^{-1} & E^{(n-k)} \end{bmatrix},$$

where

$$(M_{\underline{I}\,\underline{I}}\,M_{\underline{I}}^{-1})_{ij} = \begin{cases} -(a+1-k), & i=\pi\ (l), \ j=m \\ -1 & , \ i=\pi\ (l), \ j\in I-\{m\} \\ 1 & , \ i\in \underline{I}-\{\pi\ (l)\}, \ j=m \\ 0 & , \ \text{in any other case} \end{cases}$$

Now we consider the dual pair of LP-problems

(P)
$$\min \{ pz \mid q + Mz \ge 0, z \ge 0 \}$$

(D)
$$\max \{-vq \mid p-vM \ge 0, v \ge 0\}$$

where p, q are given n-vectors, and z, v are the n-vectors of variables. (We notice that the dual pair (P), (D) is equivalent to the more general dual pair

(P')
$$\min \{ p' \ z' | \ q' + DMF \ z' \ge 0, \ z' \ge 0 \}$$

(D')
$$\max \left\{ -v' \ q' \ | \ p' - v' \ DMF \ge 0, \ v' \ge 0 \right\}$$

where D and F are given positive diagonal matrices. Indeed, by the substitutions $z = F^{-1}z'$, $v = v'D^{-1}$, q = Dq', p = p'F the pair (P'), (D') becomes (P), (D)).

It is obvious that if $q \ge 0$ and $p \ge 0$, then z = 0, v = 0 is a pair of optimum solutions to (P) and (D), respectively.

Suppose that $q \ge 0$ and $p \ge 0$ (if $q \ge 0$ and $p \ge 0$, or $p \ge 0$ and $q \ge 0$, then we immediately have a feasible initial basis to (P), or (D), and we can make the conclusions as below discussing either (D), or (P) only).

Let the indices r_i , $l_i \in N$, i = 1, 2 be defined as follows:

$$q_{r_1} = \max_{j \in N} \{q_j\}, \qquad p_{r_2} = \min_{j \in N} \{p_j\},$$
 $j \in N$ $l_1 = \pi^{-1}(r_1), \qquad l_2 = \pi(r_2),$

and denote

$$s_1 = \sum_{j \in N} q_j + (a+1-n) \ q_{r_1}, \quad s_2 = \sum_{j \in N} p_j + (a+1-n) \ p_{r_2}$$

Introducing the n-vectors w, u of nonnegative slack vaariables

$$w = q + Mz \ge 0$$
, $u = p - v M \ge 0$

in (P) and (D), respectively, and applying the theorems 1, 2 [1] for the linear complementarity problems

(1)
$$w = q + Mz$$
$$w, z \ge 0$$
$$w^{T} z = 0,$$

(2)
$$u^{T} = p^{T} - M^{T} v^{T}$$
$$u, v \ge 0$$
$$u v^{T} = 0$$

we obtain the following statements.

- (i) If $s_i \ge 0$, i = 1, 2, then for any a > n 2 both (P) and (D) have optimum solutions \hat{z} , \hat{v} , respectively.
- a) For n-2 < a < n-1 \hat{z} can be found by the revised simplex method starting with the basis -M of (1). Alternatively, we can find \hat{v} by the revised simplex method starting with the basis

$$\begin{bmatrix} M_{I_2}^T & 0 \\ M_{I_2I_2}^T & E^{(n-k)} \end{bmatrix}$$

of (2), where I_2 (k= card (I_2)) is determined applying the following algorithm:

Step 0. Initialize v = 0, $I^{(v)} = N - \{l_2\}$, $I^{(v)} = l_2$, $I^{(v)} = I_2$ and test $I_2 = I^{(v)}$.

0.1 If yes, then $I_2 = I^{(1)}$, k=n-1, and M_{I_2} in (3) is of the same type as M_I in the case I; stop!

0.2 If no, go to step 1.

Step 1. Set v = v + 1, find $s^{(v)} = s^{(v-1)} - p_{l(v)} + p_{r_2}$ and test $s^{(v)} \le 0$.

1.1 If yes, then $I_2 = I^{(\nu-1)}$, $k = n - \nu$, and M_{I_2} in (3) is of the same type as M_I in the case II; stop!

1.2 If no, set $I^{(v)} = I^{(v-1)} - \{\pi(I^{(v-1)})\}$ and go to step 2.

Step 2. Test $r_2 = \pi (l^{(V-1)})$.

2.1 If yes, then $I_2 = I^{(r)}$, k = n - v - 1, and M_{I_2} in (3) is of the same type as M_I in the case I; stop!

2.2 If no, set $l^{(v)} = \pi (l^{(v-1)})$ and go to step 1.

b) For a > n - 1 \hat{v} can be found by the revised simplex method starting with the basis M^T of (2). Alternatively, we can find \hat{z} by the revised simplex method starting with the basis

(4)
$$\begin{bmatrix} -M_{I_1} & 0 \\ -M_{I_1 I_1} & E^{(n-k)} \end{bmatrix}$$

of (1), where I_1 (k=card (I_1)) is determined applying the following algorithm: Step 0. Initialize $\nu = 0$, $I^{(\nu)} = N$, $r^{(\nu)} = r_1$, $l^{(\nu)} = l_1$, $s^{(\nu)} = s_1$ and go to step. 1. Step 1. Set $I^{(\nu+1)} = I^{(\nu)} - \{l^{(\nu)}\}$ and test $r^{(\nu)} \neq l^{(\nu)}$.

1.1 If yes, then $I_1 = I^{(v+1)}$, k=n-v-1 and M_{I_1} in (4) is of the same type as M_I in the case II; stop!

1.2 If no, go to step 2.

Step 2. Set
$$v = v + 1$$
, find $q_{r(v)} = \max_{j \in I(v)} \{q_j\}, \ l^{(v)} = \pi^{-1}(r^{(v)}),$

$$s^{(v)} = \sum_{j \in I^{(v)}} q_j + (a + v + 1 - n) \ q_{r^{(v)}}$$
 and test $s^{(v)} \le 0$.

- 2.1 If yes, then $I_1 = I^{(v)}$, k = n v 1, and M_{I_1} in (4) is of the same type as M_I in the case I; stop;
 - 2.2 If no, go to step 1.
- c) For a = n 1 we can find \hat{z} by the revised simplex method starting with a basis obtained as in (i), b). Alternatively, we can find \hat{v} by the revised simplex method starting with a basis obtained as in (i), a).
 - (ii) If $s_i < 0$, i=1, 2, then
- a) For n-2 < a < n-1 (P) has no feasible solution, (D) has a feasible solution, but its objective function is unbounded in the direction of maximization; $v=pM^{-1}+\lambda$ ($-M^{-1}$)_{l_1}, $\lambda \ge 0$, is an infinite feasible edge along which the objective function strictly increases.
 - b) For a = n 1 both (P) and (D) fail to have feasible solutions.
- c) For a > n-1 (D) has no feaible solution, (P) has a feasible solution, but its objective function is unbounded in the direction of minimization; $z=-M^{-1}q+\lambda (M^{-1})^{l_2}$, $\lambda \ge 0$, is an infinite edge along which the objective function strictly decreases.
 - (iii) If $s_1 < 0$ and $s_2 \ge 0$, then
- a) For $n-2 < a \le n-1$ (D) has a feasible solution, but its objective function is unbounded in the direction of maximization; the end point $\overline{v} = [\overline{v_{I_2}}, o_{I_1}]$ of an infinite feasible edge

$$v = v + \lambda t$$
, $\lambda \ge 0$, where $t = \begin{cases} -(M^{-1})_{l_1} & \text{if } n-2 < a < n-1, \\ [1 \dots 1] & \text{if } a = n-1 \end{cases}$

along which the objective function strictly increases can be found pivoting on (3) in (2), where I_2 is determined as in (i) a).

- b) For a > n 1 $\hat{z} = -M^{-1} q$ is an optimum solution of (P), and $\hat{v} = pM^{-1}$ is an optimum solution of (D).
 - (iv) If $s_1 \geqslant 0$ and $s_2 < 0$, then
- a) For n-2 < a < n-1 again $\hat{z} = -M^{-1}q$ is an optimum solution of (P), and $\hat{v} = p M^{-1}$ is an optimum solution of (D).

b) For $a \ge n-1$ (P) has a feasible solution, but its objective function is unbounded in the direction of minimization; the end point

$$\overline{z} = \begin{bmatrix} \overline{z}_{I_1} \\ o_{I_1} \end{bmatrix}$$
 of an infinite feasible edge $z = \overline{z} + \lambda t$, $\lambda \geqslant 0$, where $t = \begin{cases} (M^{-1})^{l_2}, \ a > n - 1 \\ \vdots \\ 1 \end{cases}$, $a = n - 1$

along which the objective function strictly decreases can be found pivoting on (4) in (1), where I_1 is determined as in (i) b).

REFERENCES

- D. L. Karčicka: On the linear complementarity problem for matrices of Leontief type, Annuaire de la Faculté des sciences de l'Université de Skopje, T 25—26 (1975)/76), S. A.
- [2] O. L. Mangasarian: Linear complementarity problems solvable by a single linear program, Mathematical Programming, V 10 (1976) No 2.

ЗА ПАР ЗАЕМНО ДУАЛНИ ЛП-ЗАДАЧИ

Д. Л. Карчицка

Резиме

Решението на линеарниот проблем на комплементарност добиено во [1] се користи за решавање пар заемно дуални ЛП-задачи.