Математички Билтен . Кинта 3—4 (XXIX—XXX), 1979—1980, (35—44) Скопје — Југославија

ON IDEALS IN REGULAR n-SEMIGROUPS

Wiesław A. Dudek aud Izabela Groźdińska

In this paper we introduce a new definition of regular n-semigroups and prove some theorems about special elements in that structure. Most attention has been paid to some idealth-coretic aspects. We prove also that every ideal of a regular and commutative (m, n)-ring is a radical ideal.

1. Regular n-semigroups

Let f be an n-ary operation in a set G. Let us denote

$$f(x_1,\ldots,x_n)=f(x_1^n),$$

$$f(x_1,\ldots,x_k, x_{k+1},\ldots,x_{k+s},x_{k+s+1},\ldots,x_n)=f(x_1^k, x_1^k,x_{k+s+1}^n)$$

whenever $x_{k+1} = x_{k+2} = \dots = x_{k+s} = x$ (x_i^j is the empty symbol for j < i also x is the empty symbol).

We shall use terminology and notations of papers [4] and [2].

An *n*-semigroup $\langle G, f \rangle$ is called regular [6], if

(1)
$$(\forall a \in G) (\exists x_2, ..., x_{2n-2} \in G) f_{(2)} (a, x_{2,n}^{n-} a) = a.$$

An ordinary regular semigroup is a special case of a regural n-semigroup, namely for n=2.

In the sequel we consider only *n*-semigroups (*n*-groups) where n > 2.

3

It is clear that the condition (1) implies

(2)
$$(\forall a \in G) \ (\exists z_2, z_3, \ldots, z_{n-1} \in G) \ f(a, z_2^{n-1}, a) = a.$$

A non-empty subset $B_j \subset G$ is called an j-ideal of the n-semigroup < G, f >, if $x_j \in B_j$ implies $f(x_1, \ldots, x_j, \ldots, x_n) \in B_j$ for all $x_1, \ldots, \ldots, x_{j-1}, x_{j+1}, \ldots, x_n \in G$ and fixed $1 \le j \le n$.

An j-ideal for each j=1, 2, ..., n is simply called an ideal. The set

$$(a)_{l} = \{f(x_{1}^{l-1}, a, x_{l+1}^{u}) : x_{l} \in G\} \cup \{a\}$$

is called a principial j-ideal generatep by an element $a \in G$.

Theorem 1. In an *n*-semigroup $\langle G, f \rangle$ the next conditions are equivalent:

- (i) $\langle G, f \rangle$ is regular,
- (ii) $\bigcap_{j=1}^n B_j \subset f(B_1, B_{n-1}, B_{n-2}, \ldots, B_2, B_n)$ for all j-ideals B_j ,
- (iii) $\bigcap_{j=1}^{n} (a_j)_j \subset f((a_1)_1, (a_2)_{n-1}, \ldots, (a_{n-1})_2, (a_n)_n)$ for all $a_1, a_2, \ldots, a_n \in G$,
- (iv) $\int_{j=1}^{n} (a)_j \subset f((a)_1, (a)_{n-1}, \ldots, (a)_3, (a)_2, (a)_n)$ for each $a \in G$.

Proof. (i) \rightarrow (ii) If $a \in \bigcap_{j=1}^{n} B_j$ and $\langle G, f \rangle$ is regular, then there exists

 $z_2, \ldots, z_{n-1} \in G$ such that

$$a = f(a, z_2^{n-1}, a) = f(f(a, z_2^{n-1}, a), z_2^{n-1}, a) = \dots =$$

$$= f(f(a, z_2^{n-1}, a), f(z_2^{n-1}, a, z_2), f(z_3^{n-1}, a z_2^3), \dots,$$

$$\dots, f(z_{n-1}, a, z_2^{n-1}), f(a z_2^{n-1}, a))$$

$$\in f(B_1, B_{n-1}, B_{n-2}, \dots, B_3, B_2, B_n),$$

since $f(a, z_2^{n-1}, a) \in B_1 \cap B_n$ and $f(z_i^{n-1}, a, z_2^i) \in B_{n-i+1}$.

(ii) \Rightarrow (iii) \Rightarrow (iv) Obvious,

(iv) \Rightarrow (i) For all $a \in G$ We have $a \in \bigcap_{j=1}^{n} (a)_j$. Hence, for each $a \in G$ there exists elements $b_i \in (a)_i$ such that

(3)
$$a=f(b_1, b_{n-1}, b_{n-2}, \ldots, b_2, b_2, b_n).$$

If $b_i \in (a)_i$, then $b_i = a$ or

(4)
$$b_i = f(x_{i1}^{il-1}, a, x_{il+1}^{in})$$
 for some $x_{ij} \in G$.
But if $b_i = a$, then

(5)
$$b_i = a = f(b_1, b_{n-1}, \dots, b_{i+1}, a, b_{i-1}, \dots, b_2, b_n).$$
In view of associative law and (3), (4), (5) we have $a = f(f(a, x_{12}^{1n}), \dots, f(x_{n1}^{nn-1}, a)) = f_{(2)}(a, x_{12}^{1n-1}, f_{(n-1)}(x_{1n}, \dots, x_{n1}), x_{n2}^{nn-1}, a),$

which completes the proof of our Theorem.

In this same manner as (i) \rightarrow (ii) we prove:

COROLLARY. If $\langle G, f \rangle$ is a regular n-semigroup, then

$$\bigcap_{j=1}^{n} B_{j} \subset f(B_{n}, B_{n-1}, B_{n-2}, \ldots, B_{n}, B_{n}) \text{ for all } j\text{-ideals } B_{j}.$$

Theorem 2.An *n*-semigroup $\langle G, f \rangle$ is regurlar if and only if every ideal of G is an idempotent ideal, i. e. B = f(B, ..., B) for every ideal B.

Proof, Puting $B=B_1=B_2=\ldots=B_n$ in Theorem 1 (ii), we have $B\subset f(B,\ldots,B)$. But B is an ideal, hence $f(B,\ldots,B)\subset B$. Therefore regularity implies $B=f(B,\ldots,B)$ for all ideals B.

Conversely, if all B_j are j-ideals in an n-semigroup $\langle G, f \rangle$, then $\bigcap_{j=1}^n B_j$ is an ideal su h that $\bigcap_{j=1}^n B_j \subset B_j$ for each $j=1, 2, \ldots, n$.

This imlies that

$$\bigcap_{j=1}^{n} B_{j} = f\left(\bigcap_{j=1}^{n} B_{j}, \ldots, \bigcap_{j=1}^{n} B_{j}\right) \subset f\left(B_{1}, B_{n-1}, \ldots, B_{2}, B_{n}\right)$$

i. e. < G, f > is regular.

An *n*-semigroup < G. f > is called regular in the sense of Sicson, if

(6)
$$\left\{ \begin{array}{l} (\forall \ a \in G) \ (\forall \ i, \ j=1, \ 2, \ldots, \ n) \ (\exists x_{ij} \in G) \\ a = f \ (f \ (a, \ x_{12}^{1n}), \ f \ (x_{21}, \ a, \ x_{23}^{2n}), \ldots, \ f \ (x_{n1}^{nn-1}, \ a) \right. \end{array} \right.$$

Theorem 3. (Sioson [7]. If $\langle G, f \rangle$ is an *n*-semigroup, then next conditions are equivalent;

(i)
$$\langle G, f \rangle$$
 satisfies (6),

(ii)
$$f(B_1, B_2, \ldots, B_n) = \bigcap_{j=1}^n B_j$$
 for all j-ideals B_j ,

(iii)
$$f((a_1)_1, (a_2)_2, \ldots, (a_n)_n) = \bigcap_{i=1}^n (a_i)_i$$
 for all $a_1, \ldots, a_n \in G$,

(iv
$$f(a)_1, (a)_2, \ldots, (a)_n = \bigcap_{j=1}^n (a)_j$$
 for all $a \in G$,

(v) every ideal is idempotent.

F. M. Sioson proved the condition (v) only for commutative *n-semi*groups. It is also true for *non-commutative n-semigroups*.

The proof is anologous as Theorem 2.

From above results immediately follows

Theorem 4. For an *n*-semigroup $\langle G, f \rangle$, conditions (1), (2), (6) and

(7)
$$(\forall a \in G) (\exists y_2, \ldots, y_n \in G) f_{(2)}(a, y_2, a, y_3, a, \ldots, a, y_n, a) = a$$

(8)
$$(\forall a \in G) (\exists x_1, \ldots, x_k \in G) \begin{cases} f(a, x_1, a, \ldots, a, x_k, a) = a & \text{if } n = 2k+1 \\ f(a, x_1, x_2, a, x_3, a, \ldots, a, x_k, a) = a & \text{if } n = 2k \end{cases}$$

are equivalent.

2. n-groups

An *n-group* is an *n*-semigroup $\langle G, f \rangle$ possesing the additional property that for each $a_0, a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \in G$, a unique solution in the indeterminate x_i exists for the equation

(9)
$$f(a_1^{i-1} x_i, a_{i+1}^n) = a_0,$$

for each $i=1, 2, \ldots, n$.

It is worth while to note that it suffices only to postulate the exiexistence of a solution of (9) at the places i=1 and i=n or at the one place i other than 1 and n. Then, one can prove uniqueness of the solution of (9) for all $i=1, 2, \ldots, n$.

Theorem 5. An *n*-semigroup $\langle G, f \rangle$ is an *n*-group if and only if, for some $k=1, 2, \ldots, n-2$

$$\begin{cases} \forall a_1, \ldots, a_k \in G) \ (\exists x_{k+1}, \ldots, x_{n-1}, y_{k+1}, \ldots, y_{n-1} \in G) \ (\forall b \in G) \\ f(a_1^k, x_{k+1}^{n-1}, b) = f(b, y_{k+1}^{n-1}, a_1^k) = b. \end{cases}$$

N. Celakoski proved in [1] a special case of this theorem. The proof in [1] is more complicated.

Proof. If $\langle G, f \rangle$ is an *n*-group, then for all $a, a_1, \ldots, a_k, b \in G$ there exists $x_{k+1}, \ldots, x_{n-1}, z_2, \ldots, z_n \in G$ such that $f(a_1^k, x_{k+1}^{n-1}, a) = a$ and $b = f(a, z_2^n)$. Hence

$$b = f(a, z_2^n) = f(f(a_1^k, x_{k+1}^{n-1}, a), z_2^n) = f(a_1^k, x_{k+1}^{n-1}, f(a, z_2^n)) = f(a_1^k, x_{k+1}^{n-1}, b)$$
 for every $b \in G$.

Similarly, we obtain the second part of (10).

On the other hand, if (10) is true, then we shall show a solution of the equation $f(z_2^n, z) = z_0$ for arbitrary $z_0, z_2, \ldots, z_n \in G$.

Put

$$z=f_{(n-2)}(a_{n2}^{nk}, x_{n-k+1}^{n-n-1}, \ldots, a_{3}^{2}, x_{3-n+1}^{3-n-1}, a_{2-2}^{2}, x_{2-k+1}^{2-n-1}, z_{0})$$

where $f(z_i, a_{i-2}^{i-k}, x_{i-k+1}^{i-n-1}, b) = b$ for all $b \in G$, we get

$$f(z_{2}^{n}, z) = f_{(n-1)}(z_{2}^{n}, a_{n}^{n} \frac{k}{2}, x_{n}^{n} \frac{k-1}{k+1}, \dots, a_{2}^{2} \frac{k}{2}, x_{2}^{2} \frac{k-1}{k+1}, z_{0}) =$$

$$= f_{(n-2)}(z_{2}^{n-1}, f(z_{n}, a_{n}^{n} \frac{k}{2}, x_{n}^{n} \frac{k-1}{k+1}, a_{n-1} \frac{k}{2}), a_{n-1}^{n-1} \frac{k}{3}, x_{n-1}^{n-1} \frac{k-1}{k+1}, \dots, z_{0}) =$$

$$= \dots = f(z_{2}, a_{2}^{2} \frac{k}{2}, x_{2}^{2} \frac{k-1}{k+1}, z_{0}) = z_{0}.$$

In this same manner we can verify that the element

$$z'=f_{(n-2)}(z_0, y_n^{n-1}, a_{n+1}^{n-1}, a_{n+1}^{n-k-1}, \dots, y_{3k+1}^{3k-1}, a_{3k+1}^{3k-1}, y_{2k+1}^{2n-1}, a_{2k+1}^{2k-1})$$

where $f(b, y_i^{l}, a_{i+1}^{l}, a_i^{l}, a_{i+1}^{l}, z_i) = b$ for each $b \in G$, is a solution of the equation $f(z', z_2^n) = z_0$, which completes the proof.

As an immediate consequence we obtain

Theorem 6. A regular n-semigroup is an n-group if and only if, it is cancellative.

Pfoof. The first part is trivial. To prove the second part we assume that $\langle G, f \rangle$ is regular and cancellative. Then

$$f(b,x_3^n,a) = f(b,x_3^n,f(a,x_3^n,a)) = f_{(3)}(b,x_3^n,a,x_3^n,a)$$

for all $b \in G$ and some $x_3, \ldots, x_n \in G$ such that $a = f(a, x_3^n, a)$.

Gancellativity implies that $b=f(b, x_3^n, a)$ for all $b \in G$.

Similarly we obtain $b=f(a,x_3^n,b)$.

Since all autodistributive and cancellative n-semiroups are regular 131, then we have

COROLLARY. An autodistributive n-semigroup is an n-group if and only if it is cancellative.

3. Idemotents in regular n-semigroups

Elements $x_1, \ldots, x_n \in G$ are regular conjugates if $f(x_i^n, x_2^i) = x_i$ for each $i=2, 3, \ldots, n$. An element x_i is called regular conjugate with the sequence $x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$. An *n*-semigroup is regular if and only if for every element x there exists the sequence regular conjugates with x. O. W. Kolesnikov proved [6] that an *n*-semigroup is inverse if and only if all elements regular conjugates with given the sequence are identical. Hence each regular and cancellative *n*-semigroup i inverse.

Direct computation show that

COROLLARY. If y_2, y_3, \ldots, y_n and $y_2, y_3, \ldots, y_{n-1}, a$, are regular conjugates, then $y_2, \ldots, y_{n-1}, f(a, y_2^n)$ and $y_3, \ldots, y_{n-1}, f(y_n, y_2^{n-1}, a)$ as are regular conjugates.

Idemotents of *n*-semigroups, for $n \ge 3$, have properties different from a binary case. For example: there exists *n*-groups which have several idempotents but there exists also *n*-groups without idempotents. An idempotent of an *n*-group is not necessarily an identity element. Moreover, for every no there exists an *n*-group (an (m,n)—ring) such that all elements are identities [3]. There exists also cyclic *n*-groups without idempotents [3].

It is well known that, if a and b are idempotents of a binary inverse semigroup, then ab is an idempotent and ab=ba. In the n-ary case, where $n \ge 3$, it is not true. Indeed, if < G, f > is a 3-group derived from a group S_4 , then

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}, c = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$$

are idempotents, $f(a,b,c) \neq f(c,b,a)$ and f(a,b,c) is not an idempotent. But we can prove

Theorem 7. If $b = f(b, x_3^n, b)$ for some x_3, \ldots, x_n , and b is an idempotent, then $f(x_1^n, b, b, x_3^{l-1})$ is an idempotent for all $3 \le i \le n+1$.

Conversely, if $f(x_i^n, b, b, x_3^{i-1})$ is an idempotent for some l and $b = f(b, x_3^n, b)$, where $\langle G, f \rangle$ is a cancellative n-semigroup, then b is an idempotent.

4. Regular (m,n)-rings

An algebraic structure $\langle R; g, f \rangle$ is called an (m,n)-ring, if

- (i) $\langle R,g \rangle$ is a commutative *m*-group,
- (ii) $\langle R,f \rangle$ is an *n*-semigroup,
- (iii) multiplication f is distributive with respect to g, i. e.

$$(11) \begin{cases} (\forall x_1,\ldots, x_{i-1}, x_{i+1},\ldots, x_n \in G) \ (\forall y_1,\ldots, y_m \in G) \ (\forall 1 \leq i \leq n) \\ f(x_1^{i-1}, g(y_1^m), x_{i+1}^n) = g(f(x_1^{i-1}, y_1, x_{i+1}^n),\ldots, f(x_1^{i-1}, y_m, x_{i+1}^n)). \end{cases}$$

An (m,n)-ring $\langle R; g, f \rangle$ is regular, if $\langle R, f \rangle$ is regular.

An element $x \in R$ is called an additive idempotent, if it is an idempotent in $\langle R,g \rangle$.

It is easily verified that if an (m,n)-ring $\langle R; g, f \rangle$ has at least one additive idempotent, then the set of these elements forms an ideal. Each ideal of this (m,n)-ring contains at least one such idempotent. If an (m,n)-ring is cancellative, then R has not additive idempotents, or R has only one such idempotent, or $\langle R, g \rangle$ is an idempotent m-group [3].

Now we prove useful

Theorem 8. Every ideal of a regular commutative (m, n)-ring is a radical ideal, i. e. every ideal A is the form

$$\sqrt{A} = \{a \in R : a < k > \in A \text{. for some natural } k\}.$$

Proof. It is clear that $A \subset \sqrt{A}$. Now we prove that $\sqrt{A} \subset A$.

A simple induction show that if $a \in R \setminus A$, then we have $a^{(s)} =$

f(s) $\binom{(s,(n-1)+1)}{a} \notin A$ for all natural s. Indeed, if $a^{<1>} \in A$, then regularity and commutativity implies that

 $a = f_{(2)}(a, x_1, a, \ldots, a, x_n, a) = f(f(a, \ldots, a), x_2^n) \in A \text{ for some } x_2, \ldots, x_n$ what is impossible.

Assume that $a^{\langle s_1 \rangle}$,..., $a^{\langle s_1 \rangle} \notin A$ and $s_1 \geqslant s_i$ for i = 2, ..., n. Than for some $y_1, ..., y_n \in R$ we have

$$a^{\langle S_1 \rangle} = f_{\langle 2 \rangle} (a^{\langle S_1 \rangle}, y_2, a^{\langle S_1 \rangle}, \dots, a^{\langle S_1 \rangle}, y_n, a^{\langle S_1 \rangle}) =$$

$$= f(f(a^{\langle S_1 \rangle}, \dots, a^{\langle S_1 \rangle}), y^n)$$

=
$$f(f(a^{\langle S_1 \rangle}, a^{\langle S_2 \rangle}, ..., a^{\langle S_n \rangle}), f(a^{\langle p \rangle}, a^{\langle n-s \rangle}, a, ..., a, y_2), y_3^n),$$

where $p = ns_1 - (s_1 + s_2 + ... + s_n) - (n-2)$

Now, if
$$f(a^{\langle S_1 \rangle}, a^{\langle S_2 \rangle}, \ldots, a^{\langle S_n \rangle}) \in A$$
, then $a^{\langle S \rangle} \in A$, too_•

This contradiction completes the proof.

GOROLLARY. If $a \in R$ is not an additive idempotent of a regular commutative (m, n)-ring $\langle R; g, f \rangle$, then $a^{\langle S \rangle}$, is not an additive idempotent for all natural S.

COROLLARY. [7] A regular commutative n-semigroup with a zero has not nilpotent elements.

REFERENCES

- [1] CELAKOSKI N,: "On some axiom systems for n-groups"; Математички Билтен Книга 1 (XXVII), Скопје 1977. р. 5-14.
- [2] GROMBEZ G.: .,On (n, m)-rings"; Abhand. Math. Sem. Univ. Hamburg, 37 (1972), p 180-199.
- [3] DUDEK W. A.: "Autodistributive n-groups"; Comm. Math. Prace Matem., in print.
- [4] DUDEK W. A.: "Remarks on n-gnoups"; Demonstratio Math., in print.
- [5] DUDEK W. A., GLAZEK K. and GLEICHGEWICHT B.: "A note on the axioms of n-groups": Coll. Math. Soc. J. Bolyai, Esztergom 1977.
- [6] КОЛЕСНИКОВ О. В.: "Инверсные *п*-полугруппы"; Comm. Math. Prace Matem., in print.
- [7] SIOSON F. M.; "On regular algebraic systems; Proc. Japan Acad., 39 (1963) p. 283-286.

О ИДЕАЛАХ В РЕГУЛЯРНЫХ п-ПОЛУГРУППАХ

Wiesław A. Dudek, Izabela Grożd zińska

Резюме

В этой работе пользуемся записью и определениями работ [4] и [2]. Мы обобщаем понятие регулярных полугрупп на n-арный случай (n > 2) и доказываем, что определения (1), (2), (6), (7), (8) эквивалентны.

Мнжество $(a)_f = \{f(x_1^{j-1}, a, x_{j+1}^n) : x_k \in G\} \cup \{a\}$ называется главным *j*-идеалом n-полугруппы < G, f> порожденным элементом $a \in G$.

Теорема 1. Для n-полугруппы < G, f> следующие свойства эквивалентны:

- (i) $\langle G, f \rangle$ регулярная,
- (ii) $\bigcap_{j=1}^n B_j \subset f(B_1, B_{n-1}, B_{n-2}, \ldots, B_2, B_n)$ для всех j-идеалов B_j ,
- (iii) $\bigcap_{j=1}^n (a_j)_j \subset f((a_1), (a_2)_{n-1}, (a_3)_{n-2}, \ldots, (a_{n-1})_2, (a_n)_n)$ для всех a_1 , $a_2, \ldots, a_n \in G$,
- (iv) $\bigcap_{j=1}^{n} (a)_j \subset f((a)_1 \ (a)_{n-1}, \ (a)_{n-2}, \ldots, \ (a)_2, \ (a)_n)$ для любого $a \in G$.

Теоорема 2. Все идеалы *n*-полугруппы идемпотентны тогда и толко тогда, когда она регулярная.

Если в n-полугруппе < G, f> уравнение (9) разрешимо однозначно для любых a_0 , $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \in G$ и для любого i=1, $2, \ldots, n$, то она называется n-группой.

Методом из работ [4], [5] можно доказать, что:

Теорема 5. n-полугрушна является n-грушной тогда и толко тогда, когда условие (10) исполнено для некоторого $k=1, 2, \ldots, n-2$.

Из этого вытекает что любая регулярная и сократимая n-полугруппа будет n-группой. Да е все автодистрибутивные [3] исократимые n-полугруппы являются n-группами,

Теорема Целякоского [1] является частичным случаем нашей теоремы.

Идемпотенты регулярных n-полугрупп (n>2 имеют несколько отличных свойств чем в бинарном случае.

Алгебра < R; g, f > называется pегулярным (m, n)-кольцом, если исполнены следующие свойства:

- (i) < R, g > коммутативная m-группа,
- (ii) < R, f> регулярная n-полугруппа,
- (iii) **исполнено** (11).

Теорема 8. всякий идеал A регулярного коммутативного (m, n)-кольца имеет вид $\{a \in R : f_{(k)} \ (a, \ldots, a) \in A$ для некоторого натурального $k\}$,

Из этого следует что $f_{(k)}$ (a,\ldots,a) не будет адлитивным идемпотентом для никакого к, если $a\in R$ не будет таким идемпотентом. Регулярная коммутативная n-полугруппа с нулем не имеет нильпотенных элементов.