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NEW COUNTERPARTS OF SOME INEQUALITIES
FOR ENTROPY AND MUTUAL INFORMATION

S. S. Dragomir*, Y. J. Cho** and Y. K. Choi**

Abstract

_ In this paper; by the use of a new analytic inequality hich
counterparts arithmetic mean-geometric mean’s classical inequality,
we point out some new results for entropy and mutual information.

1. Introduction

Suppose that X 1is a discrete random variable whose range
R = {zy,...,x,} is finite. Let p; = P{X = z;}, ¢ =1,...,r and assume
that p; > 0 for all ¢ € {1,...,r}. Define the b-entropy of X by

r
‘ 1
Hb(X):: E p,-logb ;, (11)
i=1 '

where b > 1. The following theorem is well known in the literature and
concerns the maximum possible value for Hy(X) in terms of the size of the
range R [3, p. 17]:

Theorem 1.1. Let X have values in R = {z1,...,2,}. Then
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0 < Hy(X)<log,r. - (1.2)

Furthermore, Hy(X) = zﬁ’ pi = 1 for some i and Hy(X) = log,r iff
pi=1/r for alli€ {1,..

In the recent paper [1], S. S. Dragomir and C. J. Goh proved the
following inequality for log,-mapping [1, Proposition 6.3):

Lemma 1.2. Let Ek € (0 oo) and pk > 0 ‘with Zpk =1, Then
. k=1 7 -

0 < log, (ZPkfk) Zpklogbfk < 21 b z dle) (E, &), (1.3)
- \k=1

The equality holds simultaneously in both inequalities iff &, = -+ = &,.

They have applied this lemma for the b-entropy mapping and obtained
the following counterpart of (1.2):

Theorem 1.3. Let X be defined as above. Then

0<log,r— Hy(X) < [sz—l]-“:l— Z (i —p;)*. (14)

1<i<i<r

Furthermore, the equality holds. szmultaneously in all the above ineqalities
iff pi = 1/rf0r alli=1,2,.

The following corollary gives a tighter lower bound to the entropy when
the outcomes of X are close to uniformity.

Corollary 1.4. Let € > 0 be given and X be as above with

Ipi — ps| < %1n b /2

151?2?2 Pi =Pl = 'r(r 1)

Then we have ' e
0<log,r— Hy(X)<ce. ~(L5)

For other results concerning conditional entropy, mutual information,
conditional mutual information etc., see the recent papers [1, 2] where fur-
‘ther references are given.
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2. A New Counterpart Inequality

We shall start with the following lemma which is interesting in itself
too:

Lemma 2.1. Let §; € [m,0) wherem >0 and px >0 (k=1,...,n)

with Zpk = 1. Then we have the'inequality:
k=1 .

n n 1 n 77j v
0 < log, (Zpk£k> - ;pklogb & < i Zpi i - ijfj - (2.1)

k=1 i=1 j=1
Furtherfnore, the equality holds in all inequalities simultaneously iff

b= =t

Proof. By Lagrange’s theorem we find we find for every z,y € [m, c0)
an element 7 between = and y so that

1
log, z —logy y = - 5 (@ =)
As n > m, we deduce
- < - .
log, = — logyy] < —— |+~ vl (22)

for all z,y € [m,00). If we choose y = £ and z = ijﬁj in the above
Jj=1
inequality (2.2), then we have

1
< - .
“mlnb (23)

log,, (Z ijj) —log &;
J=1

> piti - &
=1

for all i € {1,...,n}. If we multiply (2.3) with p; > 0 and summing over ¢
to 1 at n, then we derive:

> pi|log, (ij£j> — log, &
i=1 j=1

1 n
< - .
“mlnb Z;p'

& - pij| -
! ji=1
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Using the triangle inequality, we have

n n . n
> pi[log, (Zw&) —log, &i| > [log, (ijfj) Zl’t log, &i| =
i=1 j=1 .

i=1 i=1

= log, (ijfj) — pilogy & > 0
Jj=1 i=1

and the inequality (2.1) is proved. The case of equality is obvious.

Corollary 2.2. With the above assumptions over £, we have the
inequality: . :

1
03108b< Z€k> ——Zlogb&c mlnb s

Zf:

(2.4)

Remark 2.3. It is well known in theory of inequalities that the fol-
lowing inequality between the arithmetic mean and geometric mean holds:

An(p,x) 2 Gn(pvw) (A - G)
where "
An(p,z): = Zpi:c; (: arithmetic mean),
i=1

Gn(p,z): = H z?"  (: geometric mean)
i=1

()
and p; > 0 with Zpi =land z; > 0(i =1,...,n). Using inequality (2.1),

i=1
we obtain
n
k=1
0<In n < Ezpi Ti ija:] ’
Hxl_’i =1 =1
i
i=1

s < exp l:; Ay (p, z “VA'n.(pa x)):l s (2.5)
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which is a counterpart result for (A-G).

3. Some Counterpart Inequalities for Entrory
and Joint Entrory

Suppose that X is a discrete random variable whose range
R = {z1,...,2,} is finite. Let p; = P{X = z;}, ¢ = 1,...,r, and as-
sume that p; > 0 for all ¢ € {1,...,r}.

The following counterpart result for (1.2) holds:

Theorem 3.1. Let py:= max{p, | i=1,...,7}. Then we have the
inequality: ‘

1

r .

TPu

< - < =
0<log,r— Hy(X) < lnb

(3.1)

Furthermore, the equality holds szmultaneously is both inequalities iff
pi=1/r for allz—{l SThH

Proof. If we choose in Lemma 1.1, m = 1/py and & = ./p;
(¢=1,...,r), we have

r
0<logbr—H,,(X)< Zp,l | III:‘ZZI

and the mequahty (3.1) is proved

Remark 3.2. If we don’t know the maximal proba,blhty Py then we
can only state that

r

1

0<log,r - Hy(X)< 7— p - = o (3.2)

In b

which is weaker than (31)
Corollary 3.3. Lete > 0 be given. If we assume that
elnbd.
2Py
forallie {1,...,r}, then we have the estimation: » ‘
0<log,r— Hy(X)<c¢. (3.3)

For a pair of random variables X and Y with the ranges {z1,...,2,}
and {y1,...,¥s}, respectively, the joint entropy of X and Y is defined by
[3, p. 25]):

Bp
E

i

H(X,Y) =Y p(s;)logy ——

Y

p(z )
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where ‘
p(z,y):=Prob{X =z, Y'= y}, zef{l,...,r}, ye{l,...,s}.

In the recent paper [2] it is proved the followmg result:
Theorem 3.4. With the above assumptions, we have

0 < logy(rs) = Hy(X,Y) < 522 3 3 (0le9) — plw,0))" . (3.4

T,¥ u,v

The eqality holds in both inequalities simultanebusly iff p(z,y) = 1/rs for
all z,y.

Corollary 3.5. Let € > 0 be given. If

2¢ lnb
T, u,v)| <
(z’y) ax  [p(2,9) - pu, v)) -

then we hdve the estimation:
0 < logy(rs) — Hy(X,Y) <.

Using Lemma 2.1, we can state and prove the following theorem:

Theorem 3.6. Suppose that

pu = max{p(z,9) | 2 € {L,...,7}, y € {L,...,}}.

Then we have the counterpart inequality:

Pyrs ‘1
0 < logy(rs) — Hy(X,Y) < ™ ; Ip(m,y)—- ;;. . | (3.5)

Furthermore, the equality holds szmultaneously in both inequalities iff |
p(z,y) = 1/rs for all (z,y)..

Proof. If, in Lemma 2.1, we choose m = 1/py, & = 1/p(z,y),
p(w ), we deduce '

0 gy () - BB 1) € lﬁ"bzp(z,y)lp( 5=

< pu’l‘&

L1
’y) = rs
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and the estimation (3.5) is obtained.
Corollary 3.7. Let ¢ > 0 be given. If we have

1

p(xv y) - ',;;

elnb

<=
~ puris?

for all (z,y), then we have the estimation:

0 <log,(rs)— Hy(X,Y)<c¢.

4. Some Counterpart Inequalities for Conditional
"Entropy

For a pair random variables X and Y, the conditional entropy of X
given Y is defined by (3, p. 22]:

, 1
H(X|Y)= z,y)l ——
b( I ) Z,;p( y) Ogy p(z | y)
where ‘
p(z,y):=Prob{X =z Y =y}
and

‘ :=Pro =z|Y = =M
p(e | y):=Prob{X =z |Y =y} o)

One can interpret the conditional entropy as the amount of uncertainty
remaining about X after Y has been observed.

In the paper [2] S. S. Dragomir and C. J. Goh have proved the follow-
ing theorem:

Theorem 4.1. Let X and Y be two discrete random variables and the
range of X has r elements. Then we have the inequality:

0<logyr— Hy(X |Y) <

< 515 2 Y s el 8) - P | )

x’y u’v

(4.1)

The following corollary also holds:
Corollary 4.2. With the above assumptions and if A

vV2eln b
max |p(z |y) - plu| v)l <—.

(z.9),(u,v) o
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for every € > 0, then we have the estimation:
0<log,r— Hy(X|Y)<e.

Using Lemma 2.1, we can prove the following different counterpart
result:

Theorem 4.3. Under the assumptions of Theorem 4.1 and if

Puemax{p(z | y) | z € {1,...,7}, y € {1,...,8}}, then we have the esti-
mation:

0 < log,r - Ho(X | Y) < Zp(y)

el-2]. @

Proof. We have

Hy(X |Y) =) p(z,y)log, m <) p(s,y)log, p]():iy;)°
z,y z,y ’

Applying Lemma 2.1 for

. _ () L .1
pr=p(z,y), &= p(z,y) P($ l y) Py’
we have
0 < log, (Zp( z,y) I(D(yg)/)> Zp(:v,y) gb< fa(:y;)) <
5 Py P(v)
< —pr( =) pz,y)

= —Izib > 1p(y) - ple, y)r| =

= 5 oto) e 1)

and the estimation (4.2) is obtained.
The following corollary also holds:
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Corollary 4.4. With the above assumptions and if

1] elnd
T - = < ==
pe | y) oy

max
(z,9)

= )
T

then w have the estimation:
0<log,r—Hy(X|Y)<Le.
The following result concerning conditional entropy is well known in

the literature and can be obtained by applying Jensen’s inequality:

Theorem 4.5. Let X, Y and Z be discrete random variables with
finite ranges. Then we have

-

Hy(X |Y) < Hy(Z) + (logy ), (43)

where Hy(Z): = Zp(z) log,, ;Elz)- is the usual entropy of Z, and we hove
—

A(Z):=) agy(2),

Y
where
- p(z,y,2)
p(zly)

In the paper [1], S. 5. Dragomir and C. J. Goh proved the following
counterpart of (4.3):

azy:=p(y)p(z | z,y):=

Theorem 4.6. With the above assumtions we have:

0< H,,(Z) + E(log, A) — Hy(X | Y) <

< 2 ln b Z p(z) Z Zawy(z)auv(z)(p(m | y) = p(u | v))

T,y u,v

(4.4)

The following corollary is important in applications:

Corollary 4.7. Under the same assumptzons, let € > 0 be given. If,
in addition,

2eIn b
max|p(z | y) - p(u | v)| </ =7

then we have

0 < Hy(Z)+ E(log, A) — Hy(X | Y) < ¢,
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(4
where M: = E ((zz))
Furthermore we shall apply Lemma 2.1 to obtain another type of the
converse for the inequa]jty (4.3).

Theorem 4.8. With the assumptions of Theorem 4.5 and if
Py = max{(z | y) | = € {1,...,7}, y € {1,...,5}}, then we have the
inequality: :
0 < Hy(2) + E(logy A) — Hy(Z | Y) <

p(z y’z)7
- ln b Z p(2)

z,Y,2

(4.5)

P2 g,
paly A )"

Proof. If in Lemma 2.1, we repalce px by p(z,y,2)/p(z) and & by
1/p(z | y) 2 1/P,,, we have

p(z,y,2) 1 C I 1
05 log, (Z p(z) w|y)) D (p(w|y))5

pz,y,2) | _1 p(u,v,2) 1
lnb ~ p2)  |p(=]y) ; p(z) p(u|v)

for each z. Multiplying the above inequality with p(z) and summing over
z, we have

0< }:p(z)logb oy T PR, (\; ”fj(‘;y;j))

- 2 ooy, Gar) <

p(e,y,2) | _p(2) p(u,v,2)| _
= ln b g: p(z) |p(z|y) Z p(ulv)
pz,y,2) |_p(z)
Y Z WD |pery  A®

and the inequality (4.5)‘1s obtained.
Corollary 4.9. If the range of z has n elements and

p(z) elnbd
wely) A< s

max
T,Y,Z
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for every'e > 0, then we have the estimation

0 < Hy(Z)+ E(log, A) - Hy(X |¥)<e. " (4.6)

Proof. As, for all z, we have

p(z,y,2) _
seps.,
then ‘
p(z,y,2) p(Z) & p(z,y,2) _
inh Z W0 iy 7<% ””Z,;, p(z)

and the estimation (4.6) is proved.

5. Some New Counterparts Results for Mutual
Information

Consider the mutual 1nformat1on between two randomvariables X and
Y defined by

L(X,Y): = ZP(" y)log, [,Tffc)—p%]

= Hy(X)- Hy(X |Y) =
= Hy(X)+ Hy(Y) — Hy(X,Y).
The following theorem concérning the mutual information is known in

- the literature [3, p.25):

Theorem 5.1. For any pair of dzscrete random variables X andY , we
have I,(X;Y) > 0. Moreover, I,(X;Y) =0 iff X and Y are mdependent

The followmg converse of the above inequality and its corollary have
been established in [1]:

Theorem 5.2. Given a pair of discrete random variables X and Y,
we have

0<L(X;Y) <

1 U, v z, | 2 (5.1)
= Tmb ; ;” =)r)pw)p(o) (pl()'ft)p(')’)‘ B plzi)p?(/z)/)) '
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The identities hold in both inequalities iff X and Y are independent.
Corollary 5.3. With the above qssumptions and if

p(u,v) (:c y)
(wz0) p(u)p(v)  p(z)(y) <V2hnb

then ‘
0< (X, Y)<¢

for every e > 0.
Now, we are able to prove some new counterpart inequalities by the
use of Lemma 2.1 proved above.

Theorem 5.4. With the above assumptions and if

T = maxd P(&:9)
T = {p(w)p(y)

then we have the inequality:

ze{l,...,r}, ye{l,...,s}} ,

25,3) _ 1] L5

I,
0< I(X;Y) < = ;;p(“’)p(y) (z)p(y)

The equality holds szmultaneously in both inequalities iff X and Y are in-
dependent.

Proof. We choose, in Lemma 2.1, p; = p(z,y) and
& = p(2)p(y)/p(z,y) > 1/1,, for all z,y. Thus we have

0 <= log, (ZP(“’ y)pl()( Z)(y)) Zp(z, o g"p;(:(:ng)—

T . p(z)p(y) p(w)p(v)| _
_<. ln_b;;p(w’y) p(w,y) Z ( u, ) (u ,v)

Iy p(z)p(y) _
= l‘n—gg’;g’(way) W—.l =

pz,y) 1‘
p(w)P(y) '

Zp( p(y)

'Fina.lly, the following corollary holds:
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Corollary 5.5. With the above assumptions and if

p(zy) | einb
P(@)p(v) 1‘ =T,

, 5.3
(z,y) (5-3)

then
0 S Ib(XaY) S €,

for every e > 0.
Remark 5.6. A sufficient condition for (5.3) to be fulfilled is

p(z,y)
p(z)p(y) 1\91“

for all z,y € {1,...,7} x {1,...,8}.
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