Математички Билтен 24 (L) 2000 (23-36) Скопје, Македонија

NEW COUNTERPARTS OF SOME INEQUALITIES FOR ENTROPY AND MUTUAL INFORMATION

S. S. Dragomir*, Y. J. Cho** and Y. K. Choi**

Abstract

In this paper, by the use of a new analytic inequality which counterparts arithmetic mean-geometric mean's classical inequality, we point out some new results for entropy and mutual information.

1. Introduction

Suppose that X is a discrete random variable whose range $R = \{x_1, \ldots, x_r\}$ is finite. Let $p_i = P\{X = x_i\}, i = 1, \ldots, r$ and assume that $p_i > 0$ for all $i \in \{1, \ldots, r\}$. Define the b-entropy of X by

$$H_b(X) := \sum_{i=1}^r p_i \log_b \frac{1}{p_i},$$
 (1.1)

where b > 1. The following theorem is well known in the literature and concerns the maximum possible value for $H_b(X)$ in terms of the size of the range R [3, p. 17]:

Theorem 1.1. Let X have values in $R = \{x_1, \ldots, x_r\}$. Then

AMS Subject Classification 26D15, 99A20

$$0 \le H_b(X) \le \log_b r \,. \tag{1.2}$$

Furthermore, $H_b(X) = 0$ iff $p_i = 1$ for some i and $H_b(X) = \log_b r$ iff $p_i = 1/r$ for all $i \in \{1, ..., r\}$.

In the recent paper [1], S. S. Dragomir and C. J. Goh proved the following inequality for \log_b -mapping [1, Proposition 6.3]:

Lemma 1.2. Let
$$\xi_k \in (0,\infty)$$
 and $p_k > 0$ with $\sum_{k=1}^n p_k = 1$. Then

$$0 \le \log_b \left(\sum_{k=1}^n p_k \xi_k \right) - \sum_{k=1}^n p_k \log_b \xi_k \le \frac{1}{2 \ln b} \sum_{i,j=1}^n \frac{p_i p_j}{\xi_i \xi_j} (\xi_i - \xi_j)^2. \quad (1.3)$$

The equality holds simultaneously in both inequalities iff $\xi_1 = \cdots = \xi_n$.

They have applied this lemma for the b-entropy mapping and obtained the following counterpart of (1.2):

Theorem 1.3. Let X be defined as above. Then

$$0 \le \log_b r - H_b(X) \le \frac{1}{\ln b} \left[r \sum_{i=1}^r p_i^2 - 1 \right] = \frac{1}{\ln b} \sum_{1 \le i < j \le r} (p_i - p_j)^2 . \quad (1.4)$$

Furthermore, the equality holds simultaneously in all the above inequalities iff $p_i = 1/r$ for all i = 1, 2, ..., r.

The following corollary gives a tighter lower bound to the entropy when the outcomes of X are close to uniformity.

Corollary 1.4. Let $\varepsilon > 0$ be given and X be as above with

$$\max_{1 \le i < j \le r} |p_i - p_j| \le \left[\frac{2\varepsilon \ln b}{r(r-1)} \right]^{1/2}.$$

Then we have

$$0 \le \log_b r - H_b(X) \le \varepsilon. \tag{1.5}$$

For other results concerning conditional entropy, mutual information, conditional mutual information etc., see the recent papers [1, 2] where further references are given.

2. A New Counterpart Inequality

We shall start with the following lemma which is interesting in itself too:

Lemma 2.1. Let $\xi_k \in [m, \infty)$ where m > 0 and $p_k \ge 0$ (k = 1, ..., n) with $\sum_{k=1}^{n} p_k = 1$. Then we have the inequality:

$$0 \le \log_b \left(\sum_{k=1}^n p_k \xi_k \right) - \sum_{k=1}^n p_k \log_b \xi_k \le \frac{1}{m \ln b} \sum_{i=1}^n p_i \left| \xi_i - \sum_{j=1}^n p_j \xi_j \right| . (2.1)$$

Furthermore, the equality holds in all inequalities simultaneously iff $\xi_1 = \cdots = \xi_n$.

Proof. By Lagrange's theorem we find we find for every $x,y\in[m,\infty)$ an element η between x and y so that

$$\log_b x - \log_b y = \frac{1}{n \ln b} (x - y).$$

As $\eta \geq m$, we deduce

$$|\log_b x - \log_b y| \le \frac{1}{m \ln b} |x - y| \tag{2.2}$$

for all $x, y \in [m, \infty)$. If we choose $y = \xi_i$ and $x = \sum_{j=1}^n p_j \xi_j$ in the above inequality (2.2), then we have

$$\left|\log_b\left(\sum_{j=1}^n p_j \xi_j\right) - \log_b \xi_i\right| \le \frac{1}{m \ln b} \left|\sum_{j=1}^n p_j \xi_j - \xi_i\right| \tag{2.3}$$

for all $i \in \{1, ..., n\}$. If we multiply (2.3) with $p_i \ge 0$ and summing over i to 1 at n, then we derive:

$$\left|\sum_{i=1}^n p_i \left| \log_b \left(\sum_{j=1}^n p_j \xi_j \right) - \log_b \xi_i \right| \le \frac{1}{m \ln b} \sum_{i=1}^n p_i \left| \xi_i - \sum_{j=1}^n p_j \xi_j \right|.$$

Using the triangle inequality, we have

$$\left| \sum_{i=1}^{n} p_i \left| \log_b \left(\sum_{j=1}^{n} p_j \xi_j \right) - \log_b \xi_i \right| \ge \left| \log_b \left(\sum_{j=1}^{n} p_j \xi_j \right) - \sum_{i=1}^{n} p_i \log_b \xi_i \right| =$$

$$= \log_b \left(\sum_{j=1}^{n} p_j \xi_j \right) - \sum_{i=1}^{n} p_i \log_b \xi_i \ge 0$$

and the inequality (2.1) is proved. The case of equality is obvious.

Corollary 2.2. With the above assumptions over ξ_k , we have the inequality:

$$0 \le \log_b \left(\frac{1}{n} \sum_{k=1}^n \xi_k \right) - \frac{1}{n} \sum_{k=1}^n \log_b \xi_k \le \frac{1}{m \ln b} \frac{1}{n} \sum_{i=1}^n \left| \xi_i - \frac{1}{n} \sum_{j=1}^n \xi_j \right| . \tag{2.4}$$

Remark 2.3. It is well known in theory of inequalities that the following inequality between the arithmetic mean and geometric mean holds:

$$A_n(p,x) \ge G_n(p,x)$$
 (A – G)

where

$$A_n(p,x) := \sum_{i=1}^n p_i x_i$$
 (: arithmetic mean),

$$G_n(p,x)$$
: = $\prod_{i=1}^n x_i^{p_i}$ (: geometric mean)

and $p_i \ge 0$ with $\sum_{i=1}^n p_i = 1$ and $x_i > 0$ (i = 1, ..., n). Using inequality (2.1), we obtain

$$0 \le \ln \left(\frac{\sum_{k=1}^n p_k x_k}{\prod_{i=1}^n x_i^{p_i}} \right) \le \frac{1}{m} \sum_{i=1}^n p_i \left| x_i - \sum_{j=1}^n p_j x_j \right|,$$

which is equivalent with

$$1 \le \frac{A_n(o,x)}{G_n(p,x)} \le \exp\left[\frac{1}{m} A_n(p,x-A_n(p,x))\right], \qquad (2.5)$$

which is a counterpart result for (A-G).

3. Some Counterpart Inequalities for Entrory and Joint Entrory

Suppose that X is a discrete random variable whose range $R = \{x_1, \ldots, x_r\}$ is finite. Let $p_i = P\{X = x_i\}, i = 1, \ldots, r$, and assume that $p_i > 0$ for all $i \in \{1, \ldots, r\}$.

The following counterpart result for (1.2) holds:

Theorem 3.1. Let $p_M := \max\{p_i \mid i = 1, ..., r\}$. Then we have the inequality:

$$0 \le \log_b r - H_b(X) \le \frac{r p_M}{\ln b} \sum_{i=1}^r \left| p_i - \frac{1}{r} \right|. \tag{3.1}$$

Furthermore, the equality holds simultaneously is both inequalities iff $p_i = 1/r$ for all $i = \{1, ..., r\}$.

Proof. If we choose in Lemma 1.1, $m = 1/p_M$ and $\xi_i = 1/p_i$ (i = 1, ..., r), we have

$$0 \leq \log_b r - H_b(X) \leq \frac{p_{\scriptscriptstyle M}}{\ln b} \sum_{i=1}^r p_i \left| \frac{1}{p_i} - r \right| = \frac{r p_{\scriptscriptstyle M}}{\ln b} \sum_{i=1}^r \left| p_i - \frac{1}{r} \right|$$

and the inequality (3.1) is proved.

Remark 3.2. If we don't know the maximal probability p_M , then we can only state that

$$0 \le \log_b r - H_b(X) \le \frac{r}{\ln b} \sum_{i=1}^r \left| p_i - \frac{1}{r} \right|, \tag{3.2}$$

which is weaker than (3.1).

Corollary 3.3. Let $\varepsilon > 0$ be given. If we assume that

$$\left|p_i - \frac{1}{r}\right| \leq \frac{\varepsilon \ln b}{r^2 p_M}$$

for all $i \in \{1, ..., r\}$, then we have the estimation:

$$0 \le \log_b r - H_b(X) \le \varepsilon. \tag{3.3}$$

For a pair of random variables X and Y with the ranges $\{x_1, \ldots, x_r\}$ and $\{y_1, \ldots, y_s\}$, respectively, the joint entropy of X and Y is defined by [3, p. 25]:

$$H_b(X,Y) = \sum_{x,y} p(x,y) \log_b \frac{1}{p(x,y)}$$

where

$$p(x,y) := \text{Prob}\{X = x, Y = y\}, \quad x \in \{1,\ldots,r\}, \quad y \in \{1,\ldots,s\}.$$

In the recent paper [2] it is proved the following result:

Theorem 3.4. With the above assumptions, we have

$$0 \le \log_b(rs) - H_b(X,Y) \le \frac{1}{2 \ln b} \sum_{x,y} \sum_{u,v} (p(x,y) - p(u,v))^2. \tag{3.4}$$

The equality holds in both inequalities simultaneously iff p(x,y) = 1/rs for all x, y.

Corollary 3.5. Let $\varepsilon > 0$ be given. If

$$\max_{(x,y),(u,v)} |p(x,y) - p(u,v)| \leq \sqrt{\frac{2\varepsilon \, \ln \, b}{rs}} \, .$$

then we have the estimation:

$$0 \leq \log_b(rs) - H_b(X,Y) \leq \varepsilon$$
.

Using Lemma 2.1, we can state and prove the following theorem:

Theorem 3.6. Suppose that

$$p_M = \max\{p(x,y) \mid x \in \{1,\ldots,r\}, y \in \{1,\ldots,s\}\}.$$

Then we have the counterpart inequality:

$$0 \le \log_b(rs) - H_b(X, Y) \le \frac{P_M rs}{\ln b} \sum_{x, y} \left| p(x, y) - \frac{1}{rs} \right| . \tag{3.5}$$

Furthermore, the equality holds simultaneously in both inequalities iff p(x,y) = 1/rs for all (x,y).

Proof. If, in Lemma 2.1, we choose $m = 1/p_M$, $\xi_i = 1/p(x,y)$, $p_i = p(x,y)$, we deduce

$$0 \leq \log_b(rs) - H_b(X,Y) \leq \frac{p_M}{\ln b} \sum_{x,y} p(x,y) \left| \frac{1}{p(x,y)} - rs \right| \leq \frac{p_M rs}{\ln b} \sum_{x,y} \left| p(x,y) - \frac{1}{rs} \right|$$

and the estimation (3.5) is obtained.

Corollary 3.7. Let $\varepsilon > 0$ be given. If we have

$$\left| p(x,y) - \frac{1}{rs} \right| \le \frac{\varepsilon \ln b}{p_M r^2 s^2}$$

for all (x, y), then we have the estimation:

$$0 \leq \log_b(rs) - H_b(X,Y) \leq \varepsilon$$
.

4. Some Counterpart Inequalities for Conditional Entropy

For a pair random variables X and Y, the conditional entropy of X given Y is defined by [3, p. 22]:

$$H_b(X | Y) = \sum_{x,y} p(x,y) \log_b \frac{1}{p(x | y)},$$

where

$$p(x, y) := \text{Prob}\{X = x \mid Y = y\}$$

and

$$p(x \mid y) := \text{Prob}\{X = x \mid Y = y\} = \frac{p(x, y)}{p(y)}.$$

One can interpret the conditional entropy as the amount of uncertainty remaining about X after Y has been observed.

In the paper [2], S. S. Dragomir and C. J. Goh have proved the following theorem:

Theorem 4.1. Let X and Y be two discrete random variables and the range of X has r elements. Then we have the inequality:

$$0 \le \log_b r - H_b(X \mid Y) \le$$

$$\le \frac{1}{2 \ln b} \sum_{x,y} \sum_{u,v} p(y) p(v) (p(x \mid y) - p(u \mid v))^2.$$
(4.1)

The following corollary also holds:

Corollary 4.2. With the above assumptions and if

$$\max_{(x,y),(u,v)} |p(x \mid y) - p(u \mid v)| < \frac{\sqrt{2\varepsilon \ln b}}{r}.$$

for every $\varepsilon > 0$, then we have the estimation:

$$0 \leq \log_b r - H_b(X \mid Y) \leq \varepsilon.$$

Using Lemma 2.1, we can prove the following different counterpart result:

Theorem 4.3. Under the assumptions of Theorem 4.1 and if \overline{p}_{M} : $\max\{p(x \mid y) \mid x \in \{1, ..., r\}, y \in \{1, ..., s\}\}$, then we have the estimation:

$$0 \le \log_b r - H_b(X \mid Y) \le \frac{r\overline{p}_M}{\ln b} \sum_{x,y} p(y) \left| p(x \mid y) - \frac{1}{r} \right|. \tag{4.2}$$

Proof. We have

$$H_b(X \mid Y) = \sum_{x,y} p(x,y) \log_b \frac{1}{p(x \mid y)} \le \sum_{x,y} p(x,y) \log_b \frac{p(y)}{p(x,y)}.$$

Applying Lemma 2.1 for

$$p_k = p(x,y), \quad \xi_k = \frac{p(y)}{p(x,y)} = \frac{1}{p(x \mid y)} \ge \frac{1}{\overline{p}_k},$$

we have

$$0 \leq \log_b \left(\sum_{x,y} p(x,y) \frac{p(y)}{p(x,y)} \right) - \sum_{x,y} p(x,y) \log_b \left(\frac{p(y)}{p(x,y)} \right) \leq$$

$$\leq \frac{\overline{p}_M}{\ln b} \sum_{x,y} p(x,y) \left| \frac{p(y)}{p(x,y)} - \sum_{u,v} p(u,v) \frac{p(v)}{p(u,v)} \right| =$$

$$= \frac{\overline{p}_M}{\ln b} \sum_{x,y} |p(y) - p(x,y)r| =$$

$$= \frac{r\overline{p}_M}{\ln b} \sum_{x,y} p(y) \left| p(x \mid y) - \frac{1}{r} \right|$$

and the estimation (4.2) is obtained.

The following corollary also holds:

Corollary 4.4. With the above assumptions and if

$$\max_{(x,y)} \left| p(x \mid y) - \frac{1}{r} \right| \leq \frac{\varepsilon \ln \, b}{r^2 \overline{p}_{\scriptscriptstyle M}} \,,$$

then w have the estimation:

$$0 \leq \log_b r - H_b(X \mid Y) \leq \varepsilon.$$

The following result concerning conditional entropy is well known in the literature and can be obtained by applying Jensen's inequality:

Theorem 4.5. Let X, Y and Z be discrete random variables with finite ranges. Then we have

$$H_b(X \mid Y) \le H_b(Z) + (\log_b A), \qquad (4.3)$$

where $H_b(Z) := \sum p(z) \log_b \frac{1}{p(z)}$ is the usual entropy of Z, and we have

$$A(Z) := \sum_{x,y} \alpha_{xy}(z),$$

where

$$\alpha_{xy} := p(y)p(z \mid x, y) := \frac{p(x, y, z)}{p(x \mid y)}.$$

In the paper [1], S. S. Dragomir and C. J. Goh proved the following counterpart of (4.3):

Theorem 4.6. With the above assumtions we have:

$$0 \le H_b(Z) + E(\log_b A) - H_b(X \mid Y) \le$$

$$\le \frac{1}{2 \ln b} \sum_{x} \frac{1}{p(z)} \sum_{x, y} \sum_{x, y} \alpha_{xy}(z) \alpha_{uv}(z) (p(x \mid y) - p(u \mid v))^2.$$
(4.4)

The following corollary is important in applications:

Corollary 4.7. Under the same assumptions, let $\varepsilon > 0$ be given. If, in addition,

$$\max |p(x \mid y) - p(u \mid v)| \le \sqrt{\frac{2\varepsilon \ln b}{M}},$$

then we have

$$0 \le H_b(Z) + E(\log_b A) - H_b(X \mid Y) \le \varepsilon$$

where
$$M:=\sum_{z}\frac{\left[A(z)\right]^{2}}{p(z)}$$
.

Furthermore, we shall apply Lemma 2.1 to obtain another type of the converse for the inequality (4.3).

Theorem 4.8. With the assumptions of Theorem 4.5 and if $\overline{p}_M = \max\{(x \mid y) \mid x \in \{1, ..., r\}, y \in \{1, ..., s\}\}$, then we have the inequality:

$$0 \leq H_b(z) + E(\log_b A) - H_b(Z \mid Y) \leq$$

$$\leq \frac{\overline{p}_M}{\ln b} \sum_{x,y,z} \frac{p(x,y,z)}{p(z)} \left| \frac{p(z)}{p(x \mid y)} - A(z) \right|. \tag{4.5}$$

Proof. If in Lemma 2.1, we repalse p_k by p(x,y,z)/p(z) and ξ_k by $1/p(x\mid y)\geq 1/\overline{p}_M$, we have

$$\begin{split} &0 \leq \log_b \left(\sum_{x,y} \frac{p(x,y,z)}{p(z)} \, \frac{1}{p(x\mid y)} \right) - \sum_{x,y} \frac{p(x,y,z)}{p(z)} \, \log_b \left(\frac{1}{p(x\mid y)} \right) \leq \\ &\leq \frac{\overline{p}_{\scriptscriptstyle M}}{\ln b} \sum_{x,y} \frac{p(x,y,z)}{p(z)} \, \left| \frac{1}{p(x\mid y)} - \sum_{u,v} \frac{p(u,v,z)}{p(z)} \, \frac{1}{p(u\mid v)} \right| \end{split}$$

for each z. Multiplying the above inequality with p(z) and summing over z, we have

$$\begin{split} 0 &\leq \sum_{z} p(z) \log_{b} \frac{1}{p(z)} + \sum_{z} p(z) \log_{b} \left(\sum_{x,y} \frac{p(x,y,z)}{p(x,y)} \right) - \\ &- \sum_{x,y,z} p(x,y,z) \log_{b} \left(\frac{1}{p(x\mid y)} \right) \leq \\ &\leq \frac{\overline{p}_{M}}{\ln b} \sum_{x,y,z} \frac{p(x,y,z)}{p(z)} \left| \frac{p(z)}{p(x\mid y)} - \sum_{u,v} \frac{p(u,v,z)}{p(u\mid v)} \right| = \\ &= \frac{\overline{p}_{M}}{\ln b} \sum_{x,y,z} \frac{p(x,y,z)}{p(z)} \left| \frac{p(z)}{p(x\mid y)} - A(z) \right| \end{split}$$

and the inequality (4.5) is obtained.

Corollary 4.9. If the range of z has n elements and

$$\max_{x,y,z} \left| \frac{p(z)}{p(x \mid y)} - A(z) \right| \le \frac{\varepsilon \ln b}{n \, \overline{p}_M}$$

for every $\varepsilon > 0$, then we have the estimation

$$0 \le H_b(Z) + E(\log_b A) - H_b(X \mid Y) \le \varepsilon. \tag{4.6}$$

Proof. As, for all z, we have

$$\sum_{x,y} \frac{p(x,y,z)}{p(z)} = 1$$

then

$$\frac{\overline{p}_{\scriptscriptstyle M}}{\ln\,b} \sum_{x,y,z} \frac{p(x,y,z)}{p(z)} \, \left| \frac{p(z)}{p(x\mid y)} - A(z) \right| \leq \frac{\varepsilon}{n\,\overline{p}_{\scriptscriptstyle M}}\,\overline{p}_{\scriptscriptstyle M} \sum_{x,y,z} \frac{p(x,y,z)}{p(z)} = \varepsilon$$

and the estimation (4.6) is proved.

5. Some New Counterparts Results for Mutual Information

Consider the mutual information between two random variables X and Y defined by

$$I_b(X,Y) := \sum_{x,y} p(x,y) \log_b \left[\frac{p(x,y)}{p(x) p(y)} \right] =$$

$$= H_b(X) - H_b(X \mid Y) =$$

$$= H_b(X) + H_b(Y) - H_b(X,Y).$$

The following theorem concerning the mutual information is known in the literature [3, p. 25]:

Theorem 5.1. For any pair of discrete random variables X and Y, we have $I_b(X;Y) \ge 0$. Moreover, $I_b(X;Y) = 0$ iff X and Y are independent.

The following converse of the above inequality and its corollary have been established in [1]:

Theorem 5.2. Given a pair of discrete random variables X and Y, we have

$$0 \leq I_b(X;Y) \leq$$

$$\leq \frac{1}{2 \ln b} \sum_{x,y} \sum_{y,y} p(x) p(y) p(y) p(y) \left(\frac{p(u,v)}{p(u)p(v)} - \frac{p(x,y)}{p(x)p(y)} \right)^{2}. \tag{5.1}$$

The identities hold in both inequalities iff X and Y are independent.

Corollary 5.3. With the above assumptions and if

$$\max_{(u,v),(x,y)} \left| \frac{p(u,v)}{p(u)p(v)} - \frac{p(x,y)}{p(x)(y)} \right| \leq \sqrt{2\varepsilon \ln b},$$

then

$$0 \le I_b(X,Y) \le \varepsilon$$

for every $\varepsilon > 0$.

Now, we are able to prove some new counterpart inequalities by the use of Lemma 2.1 proved above.

Theorem 5.4. With the above assumptions and if

$$\overline{I}_{\mathsf{M}} := \max \left\{ \left. \frac{p(x,y)}{p(x)p(y)} \, \right| \, x \in \left\{1,\ldots,r\right\}, \, y \in \left\{1,\ldots,s\right\} \right\},\,$$

then we have the inequality:

$$0 \le I_b(X;Y) \le \frac{\overline{I}_M}{\ln b} \sum_{x,y} p(x)p(y) \left| \frac{p(x,y)}{p(x)p(y)} - 1 \right|. \tag{5.2}$$

The equality holds simultaneously in both inequalities iff X and Y are independent.

Proof. We choose, in Lemma 2.1, $p_k = p(x, y)$ and $\xi_k = p(x)p(y)/p(x, y) \ge 1/\overline{I}_M$ for all x, y. Thus we have

$$0 \leq = \log_b \left(\sum_{x,y} p(x,y) \frac{p(x)p(y)}{p(x,y)} \right) - \sum_{x,y} p(x,y) \log_b \frac{p(x)p(y)}{p(x,y)} \leq$$

$$\leq \frac{\overline{I}_M}{\ln b} \sum_{x,y} p(x,y) \left| \frac{p(x)p(y)}{p(x,y)} - \sum_{u,v} p(u,v) \frac{p(u)p(v)}{p(u,v)} \right| =$$

$$= \frac{\overline{I}_M}{\ln b} \sum_{x,y} p(x,y) \left| \frac{p(x)p(y)}{p(x,y)} - 1 \right| =$$

$$= \frac{\overline{I}_M}{\ln b} \sum_{x,y} p(x)p(y) \left| \frac{p(x,y)}{p(x)p(y)} - 1 \right|.$$

Finally, the following corollary holds:

Corollary 5.5. With the above assumptions and if

$$\max_{(x,y)} \left| \frac{p(x,y)}{p(x)p(y)} - 1 \right| \le \frac{\varepsilon \ln b}{\overline{I}_M}, \tag{5.3}$$

then

$$0 \leq I_b(X,Y) \leq \varepsilon,$$

for every $\varepsilon > 0$.

Remark 5.6. A sufficient condition for (5.3) to be fulfilled is

$$\left|\frac{p(x,y)}{p(x)p(y)} - 1\right| \le \varepsilon \ln b$$

for all $x, y \in \{1, ..., r\} \times \{1, ..., s\}$.

References

- [1] S. S. Dragomir and C. J. Goh: A counterpart of Jensen's discrete inequality for differentiable mappings and applications in information theory, Math. Comput. Modelling 27, 1-11 (1996).
- [2] S. S. Dragomir and C. J. Goh: Further counterparts of some inequalities in information theory, submitted for publication.
- [3] R. S. Mceliece: The Theory of Information and Coding, Addison-Wesley, Publishing Company (1977).

НОВИ СОЗНАНИЈА ЗА НЕКОИ НЕРАВЕНСТВА НА ЕНТРОПИЈА И ВЗАЕМНА ИНФОРМАЦИЈА

S. S. Dragomir*, Y. J. Cho** u Y. K. Choi**

Резиме

Во оваа работа употребувајќи аналитички неравенства, коишто се нови сознанија за класичните неравенства меѓу аритметичката и геометриската средина, добиваме нови резултати за ентропијата и взаемната информација.

- * Department of Mathematics and Computer Sciences, Victoria University P. O. Box 17728 Melbourne, Victoria 8001 AUSTRALIA
- ** Department of Mathematics, Gyongsang National University, Chinju 660-701 KOREA