SEMIGROUPS IN WHICH SOME LEFT IDEAL IS A GROUP Γομ. 36ορ. ΠΜΦ Cκοπje, 14 (1963), 15–17

In this note we give a structural theorem for semigroups containing a left ideal which is a group. This theorem is a generalization of the main results of the papers [2], [3] and [4]

Theorem. Some left ideal of a semigroup S is a group if and only if S is isomorphic to a semigroup $G \times JUP = [G, J, P, \varphi, \xi]$, where

- (i) G is a group, P is a partial semigroup¹) (which may be empty), J is a non-empty set and $G \times J_{\Omega} P = \emptyset$;
- (ii) $\varphi: p \to p \varphi$ is a homomorphism from P into G and $\xi: p \to \xi_p$ a homomorphism from P into T_f^2) such that $\xi_p \xi_q$ is a constant if the product pq is not defined in P:
 - (iii) the product of two elements of the set $G \times JUP$ is defined by:
 - (1) (x,i)(y,j) = (xy,j), (2) $(x,i)p = (xp\varphi,i\xi_p)$, (3) $p(x,i) = (p\varphi x,i)$,
- (4) pq = r in P = pq = r in $G \times JUP$, and (5) $pq \in P = pq = (p\varphi q\varphi, i\xi_p \xi_q)$, where $x, y \in G, p, q, r \in P$, $i, j \in L$

Proof. If G, J, P, φ and ξ satisfy the conditions (i) and (ii) and if an operation is defined in $G \times J U P$ by (iii), then it can be easily seen that $G \times J U P = -[G, J, P; \varphi, \xi]$ is a semigroup and if $G_l = \{(x, i); x \in G\}$ then $\{G_i; i \in J\}$ is a collection of left ideals which are groups isomorphic to G.

Suppose now that S is a semigroup in which some left ideal G_t is a group. Then G_i is a minimal left ideal and therefore (see, for example, [1]) $\{G_is; s \in S\}$ is the collection of all minimal left ideals of S.

The element s may not belong to G_i s but we can chose an $r \in G_i$ s such that $r \in G_i$ $r = G_i$ s; thus we may assume $s \in G_i$ s and then s = us for some $u \in G_i$. Let $x_i y \in G_i$ s and $x = x_1$ s, $y = y_1$ s where $x_1, y_1 \in G_i$; if e is the identity element of G_i then $se \in G_i$ and $se = x_1^{-1} y_1 u z_1^{-1}$ for some $z_1 \in G_i$. From s = us it follows xz = y where $z = z_1$ $s \in G_i$ s. Thus $x \in G_i$ s for every $x \in G_i$ s, i. e. G_i s is a right simple semigroup As a minimal left ideal G_i s is also a left simple semigroup, and therefore it is a group. Thus we have proved that every minimal left ideal of S is a group.

Let $\{G_i; i \in J\}$ be the collection of all (different) minimal left ideals of the semigroup S and let $K = UG_i$. Then K is a two-sided ideal of S and $\{G_i; i \in J\}$ $i \in J$

is a collection of left ideals of K which are groups. Therefore (see, for example, [5] Lemma 2) there is a group G such that K is isomorphic to a semigroup $G \times J$ where the product is defined by (1); and we assume that $K - G \times J$. The subset $P - S \setminus K$ is a partial semigroup and we assume it to be non-empty.

Let $p \in P$, $i, j \in J$ be arbitrary elements and e the identity element of G. Then

$$p(e,i) = ((p,i)\varphi,i)\in G_l = \{(x,i); x\in G\}^3$$

(because G_l is a left ideal of S) and

$$((p,i)\varphi,i) = p(e,i) - p(e,j)(e,i) = ((p,j)\varphi,j)(e,i) = ((p,j)\varphi,i),$$

i.e. $(p, i) \varphi$ does not depend on i; and so

(6)
$$p(e, i) = (p\varphi, i),$$

where φ is a mapping of P into G. Also

$$(e,i) p = ((i,p) \psi, i \xi_p) \in G \times J^3),$$

¹⁾ P is a partial semigroup if a partial binary operation is defined in P such that $p \cdot qr \in P \iff pq \cdot r \in P$ and then $p \cdot qr = pq \cdot r$.

²⁾ T_I is the semigroup of all mappings from J into itself.

³) $(p,i) \varphi$, $(i,p) \psi \in G$, $i \xi_p \in J$

for $G \times J$ is a right ideal of S. Then

$$((i, p) \psi, i) = ((i, p) \psi, i \xi_p) (e, i) = (e, i) p (e, i) = (p \varphi, i),$$

i. e. $(i, p) \psi = p \varphi$ for every $i \in J$, $p \in P$; thus

(7)
$$(e, i) p = (p\varphi, i\xi_p)$$

where $\xi: p \to \xi_p$ is a mapping of P into T_J . From (6) and (7) there follow

$$p(x, i) = p(e, i)(x, i) = (p\varphi, i)(x, i) = (p\varphi x, i)$$

and

$$(x,i) p = (x,i) (e,i) p = (x,i) (p\varphi, i\xi_p) = (xp\varphi, i\xi_p)_e$$

i.e. the equations (2) and (3) are satisfied.

Let $p, q \in P$. If $pq = r \in P$ then

$$(r\varphi, i\xi_r) = (e, i) r = (e, i) pq = (p\varphi q\varphi, i\xi_p\xi_q),$$

whence follows that φ and ξ are homomorphisms. If $pq = (x, k) \in G \times J$, then, for every $i \in J$,

$$(x, k) = (e, i)(x, k) = (e, i)pq = (p \varphi q \varphi, i \xi_p \xi_q),$$

whence follows the equation (5) and that $\xi_p \xi_q$ is a constant. This completes the proof of Theorem.

Some notes.

- 1. For an arbitrary group G, a non-empty set J and a partial semigroup P, there exists a $[G, J, P; \varphi, \xi]$ -semigroup. For example, we can put $p\varphi = e$, $i\xi_{\rho} = k$ where k is a fixed element of J; if $P = \emptyset$ then $[G, J, P; \varphi, \xi] = G \times J$.
- 2. Two semigroups $\{G, J, P; \varphi, \xi\}$ and $\{G^*, J^*, P^*; \varphi^*, \xi^*\}$ are isomorphic if and only if there exist an isomorfism α from G onto G^* , an isomorphism β from P onto P^* and a one-to-one mapping γ from J onto J^* , such that $\beta \varphi^* = \varphi \alpha$ and $\xi_P \gamma = \gamma \xi^*_{P\beta}$.
- 3. $G \times J$ is the minimal two-sided ideal and also the unique minimal right ideal of a $[G, J, P; \varphi, \xi]$ -semigroup; therefore it is the set of all right zeroid elements of the semigroup [1]. From this follows that if a semigroup contains a left ideal and a right ideal which are groups then the semigroup contains two-sided zeroid elements.

REFERENCES:

- [1] A. H. Clifford: Semigroups containing minimal ideals, Amer. Journ. Math. 70 (1948) 521-528.
- [2] S. Schware: Semigroups in which every proper subideal is a group, Acta Sci. Math. Szeged. 21 (1960) 125-134,
- [3] R. Hrmová: Pologrupy v ktorých každý ľavý vlastný ideál je grupou, Mat. Fyz. Časop.
- 11 (1961) 75—80.
 [4] G. Čupona: On semigroups S in which each proper subset Sx is a group, Glasnik Mat,—Fiz. Astr. 18 (1963) 165—168.
 - [5] G. Cupona: On completely simple semigroups, Glasnik Mat.—Fiz. Ast. 18 (1963) 159—164.

полугрупи во кои некој идеал е група

Резиме

Во работата е докажан следниот резултат. Некој лев идеал на полугрупата S е група ако и само ако S е изоморфна со некоја полугрупа од облик $G \times JUP = [G, J, P; \varphi, \xi]$ каде: (i) G е група, J е напразно множество, а P е делумична полугрупа дисјунктна со множеството $G \times J$ (P може да биде и празно множество); (ii) φ : $p \to p\varphi$ е хомоморфизам од P во G, а ξ : $p \to \xi p$ е хомоморфизам од P во T_J таков да $\xi_p \xi_q$ е константна ако производот pq не е определен во P; (iii) операцијата во множеството $G \times JUP$

е определена со (1)—(5). При тоа под делумична полугрупа подразбираме алгебарска структура со една делумична бинарна операција која е асоцијативна, т.е. $pq \cdot r \in P \leftarrow p \cdot q \cdot r \in P$ и при тоа $pq \cdot r = p \cdot qr$. Со T_I ја означуваме полугрупата од сите трансформации на множеството J, т.е. пресликувања од J во J; операцијата во таа полугрупа е обичното множење на пресликувања.