ON n-GROUPOIDS
Mar. 6nnren Makenonnja, 2 (28) (1978), 5-11

An algebra Q (f) with an n-ary operation is said to be an #-su b-
grupoid of a grupoid G(e) if @ T G and f is the restriction of 71
on Q. And, an algebra A (F) is said to be an Frgroupoid if there is a
groupoid G (e) such that A (f) is an n-subgroupoid of G(e) for every n-ary
operator £€ F. It is shown in § | that every m-groupoid is an #-subgroupoid
of a groupoid. The classes of n-subgroupoids of each of the classes of cancel-
lative groupoids and commutative groupoids are described in §§ 2,3. It is
shown in § 4 that the class of F-groupoids is a variety iff there is an n-ary
operator € F such that, for every m-ary operator g€ F, n— 1 is a divisor
of m—1.

1. Universal covering groupoids. An algebra Q (f) with an n-ary ope-
ration is said tobe ann-grou p o id, and it is an n-subgroupoid of a groupoid
G(x) if Q C G and

Ay ...0, =% g, ...a,,
for all a,,..., @, & @. The following result can be obtained as a corrolary
from the main results of the papers [4] and [6], but we shall give here a di-
rect proof.

1.1. Every n-groupoid is an n-subgroupoid of a groupoid.

Proof. Let Q (f) be an n-groupoid and W (o) be the groupoid which
is freely generated by the set Q. Thus, W is the minimal set of finite sequences
on Q U {o} (where o& Q) satisfyng the following statements:

i gCW;: (i) u,vEW >ouvE W.

Denote by U the set of elements of B in which do not occur subse-
quences of the following form:

o lg,...a, (a,...,a, Q).
Define a binary operation e on U by:
u, v, ouvC U = e uv =ouv
b=jfa;... ana,in Q(f)=> e 0" @a,...a,_1a, =b.
Clearly, Q (f) is an r-subgroupoid of the groupoeid ¥ (e).d
The groupoid ¥/ (e) is said to be the universal covering
groupoid of the n-groupoid O (f). It is easy (o see that the following
propositions hold.

12. If u, v, u', v/ C U are such that euv=eu’v' and (u==u" or v==v),

then v, v' C Q and:
u=0"2a,...ay , '=0"24ga,...a, ,,
Sfay...ap s v=fa,...a, V.
for some a;, a;’ € Q.0

13 If vy, .o, u, CU then: @y . uy € OSu,y, .., 4y € Q.

1.4, Let 11 (a1, ..., am) be a continwed product in U(e), and
Ay, ..., Gp & Q. Then Il (ay, ..., a,) € Q Uff there is a continued product
II" (ay, - . ., &) in Q(f) such that Il is obtained form TI' replacing each
occuring of an operator sign f by "1, Then we also have:

M (ay,...,ax) =0 (ay, ..., ay). O]

2. n-subgroupoids of groupids with cancellation. First we state some
definitions. Let Q(f) be an n-groupoid and i € {1,. .., n}. We say that Q(f)
is icancellative if the following quasiidentity is satisfied:

SXa e e Xy X1 e Xp = X100 Xy—3 ZXg41. - - Xp > Y =
And, 2 (f)is cancellative if it is /-cancellative for each i. Instead
of nmcancellative (l-cancellative) we shall say left can-

and
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cellative (right cancellative).

From 1.2. follows that the universal covering groupoid of a left can-
cellative n-groupoid is left cancellative groupoid, and this implies the follo-
wing proposition:

2.1. The class of left cancellative n-groupoids and the class of n-sub-
groupoids of left cancellative groupoids are egual. ]

It is easy to see that if QO (f) is an n-subgroupoid of a cancellative
(right cancellative) groupoid, then Q (f) is cancellative (right cancellative)
and the following quasiidentity is satisfied in Q (f):

fxy .o X2y By =1V Ey e Zp—eg =
oy Xy oty =SV YUy Uy,
for each i€ {I,...n}.

Conversely, assume that @ (f) is a right cancellative n-groupoid in
which all the quasiidentities {2.1) are satisfied. The universal covering U (e)
of @ (f) can be not right cancellative. We are asking for a congruence o such
that @ (f) can be embedded as an r-subgroupoid in U/,(e) and U/,(e) should
be right cancellative.

First, for each i€ {1,...,n— 1}, let @ be defined by:

O, =10 ay...alay,....a. €0},
and let «; be a relation in @; defined by:
oilg,...aq o; oF 1 h, ... .0 &
ACirrre e s EOWAL . Qg Copq e -Cn=Fb .. . Dyeyry...Cp
By (2.1), the quantifier 3 may be changed by ¥, and this implies that:
cEQ, oty ... vy OFThy . . B> 0ta,. . .0 wyyy 0D ... B e
We also note that «, is the equality on Q (= Q).

Denote by « the minimal relation on U which satisfy the following
propositions: oy Uty U oen Uy g C o,

My ®Vy, UgGlVo, Oy Uy OV Vo & U = Otg Uy 08 O VyVa

It is easy to see that « is a congruence on U (e} and that G{e)=U/ (=)
is a right cancellative groupoid. Moreover, if @ (f) is cancellative, then G(e)
is cancellative too.

Finaly, the mapping a = a* embeds Q (f) into G (e).

Thus we obtain the following result.

2.2. An n-grupoid Q (f) is an n-subgroupoid of a (right) cancellative
groupoid iff O (f) is (right) cancellative and satisfies all the quassidentiiies
(z.1). 43 '

2.1)

As a corollary of 2.2 and the fact that every groupoid with cancella-
tion is a subgroupoid of a quasigroup ([1], VII. 4) we obtain the following

result.
2.3. The class of n-subgroupoids of quasigroups and the class of n-sub-

groupoids of groupoids with cancellation are equal. ]

If n = 3, then there exist r-quasigroups which do not satisfy some
of the quasiidentities (2.1) (for example, [7] p. 115), and thus we get the
following result.

2.4. If n = 3, then there exist n-quasigroups which are not r-sub-
groupoids of quasigroups. [

3. Commutative #-groupoids. An #n-groupoid @ (f) is said to be
(i, /)rceommutative if:

S P R N Ty 2T 7 I SR -
is an identity equation. Q (f) is called commutative if it is (§, j)-com-
mutative for each pair (/) 1 <i<j<n

3.1. An n-groupoid Q (f) is ar n-subgroupoid of a commutative groupoid
i O (f) s (1, 2)-commutative,
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Proof. Let Q (f) be a (1, 2)-commutative n-groupoid, and let C (o)
be the freely generated commutative groupoid by the set Q. Then
ow=ou veew=u,v=v)or (u=v, v=u"
Denote by D the set of elements of C which can not be represented
as producis of the form:

I1 s g, OF1 s Bpbainaes
with a;, b; € O. (a, a1, © b, by i @)

Define a binary operation e on D by:

and u, v, UV €D = o uv = o uvy,

u, vED, ouv =01 a,...a,, a=fa,...a, = eur =a.

It is easy to sec that:

(i) the operation e is well defined:

(ii) D (e) is a commutative groupoid;

(iii) O (f) s an n-subgroupoid of D (e).

It is clear that every m-subgroupoid of a commutative groupoid is
a (l,2)-commutative s-groupoid.

A groupoid G (=) is said to be ~commutative if the n-grou-
poid G (=*—1) is commutative.

3.2. The class of n-subgroupeids of n-commutative groupoids and the
class of commutative n-groupoids are equal.

Proof. First, it 15 clear that every n-subgroupoid of an nr-commuta-
tive groupoid is a commutative n-groupoid.

Let Q (f) be a commutative n-groupoid and let U (e) be the universal
covering groupoid of @ (f). Define a relation « on U in the following way.

If v— i, is a permutation of {I,...,n}, Il a product on U (e), and u,,
t; € U, then:
je H(“l:p"'a”ﬁls .”_lrl""rnau;a+1a"‘)c‘:

11 (Hl, - - en Hpgs on—1 Iil P ff” » Uptgq - - -).

It is obvious that the transitive and reflexive extension B of the rela-
tion o« 1s a congruence on U(e) and that the groupoid Ufg(o):G(-) is n-com-
mutative.

From 1.2 and 1.3 it follows that:
aC0 uc U= (guu > a=u),

a, bcQ=>(@p b=>a=0),
i.e that Q (f) can be embedded in G (o) as an sn-subgroupoid. (]

The statements 3.1 and 3.2 imply that every commutative n-groupoid
is an n-subgroupoid of a commutative groupoid, and also an x-subgroupoid
of an m-commutative groupoid. But there exist commutative n-groupoids
which can not be embedded in groupoids which are both commutative and
m-commutative, for commutativity and m-commutativity imply some asso-
ciativity. (For example, every commutative and 3-commutative groupoid
is a semigroup.)

4. F-groupoids. Here we assume that F is a nonempty set of finitary
operators such that Fy U F; = (77, where F, is the set of n-ary operators
belonging to F. An algebra A4 (F) is said to be an Frgroupoi 4 if there
is a groupoid G () such that 4 (f)is an n-subgroupoid of G (*) for every
n-ary operator /€ F; then we also say that 4 (F) is an F-subgroupoid of
G (#). An algebra A (F) is said to be a weak F-groupoid if for every
sequence of operators fy,..., f;, £1,..., & € F such that:

Ji € Fnpr, 856 ij_,_l, na+...+n=n=m+ ...+ my (41
the following identity is satisfied in A (F):
f]_...f,.xa...xﬂ=g1...g3x0...xﬂ. (4.2)

and this implies that:
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4.1. Every F-groupoid is a weak F-groupoid.

Proof. Let A (F) be an F-subgroupoid of a groupoid G (), and assume
that (4.1) is satisfied. If a,, ..., a, € 4 then we have:

Jr o Sty .y =%%ay. .. 0, —=g1...8g0..-Gp,
i.e. (4.2) is an identity in A (F). (J
Let Jp be the following set of integers:
Jp= {”I Fﬂ+1=!:@}s
and denote by d the greatest commeon divisor of the numbers belonging to Jg.

4.2, Every weak F-groupoid is an F-groupoid iff dp € Jp.

Proof. Let d=dp C Jp, f€ Fy, and let A(F) be a weak F-groupoid.
By 1.1, A(f) is a d4 1-subgroupoid of a groupoid U(e). If g € Fip4,, then
d is a divisor of m, and by (4.2) we have:

EXg.. Xp=J " x5 .. xp=e0"x,... Xp,
and this implies that 4 (F) is an F-subgroupoid of U (e).

Assume now that dr-Jp. Then, if n is the least element of Jp there
is an element # € Jp which is not divisible by n, and we shall assume that
m is the least element of Jp with that property. Define an algebra A (F)
in the following way:

() A=4{a,b,c}, asEbtcHa;

(ii) f€Fpyy=>fa,...a, =a if a, 5= c for some v and fe™+1 = b;

(iii) g€ Fryy, kFm=>ga,...a; =a.

It is easy to see that 4 (F) is a weak F-groupoid. A (F) is not an
F-groupoid, for if 4 (F) were an F-subgroupoid of a groupoid G (*) and if
SEC Finyq, 8 € Fpyy then we would have:

b =fc”‘+1 = MR g oM+l — B0 g o5 =
= &M ggh+l oM—n — ym gnt+l cm—n — fagntl gm—n = d. O

If ¥ is a class of groupoids we can ask for an axiom system of the
class of F-subgroupoids of X-grupoids. We note that there are known con-
venient descriptions of F-sugroupoids of semigroups ([2], 5),and F-subgrou-
poids of cancellative semigroups ([5], 3).
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3A »-T'PYIIOMIHUTE
(Pezume)

Bo paGoraBa ce 1OKaXxyBa HAEKdA CEKQj R-IPYHIOHA € A-NONUPYTOHLI
Ha rpynoua. Ce fgaBa omuc Ha KJAcCATA n-NIOATPYNOMAM HA TPYIIOHIM CO
KpaTeihe Kako M Ha KJI4acaTa n-MOMTPYHOMAM 04 KOMYTATHBHH IDYNOHIM.
Ce pasrieayBa U NOOTMIUTOTO NPAMIake 34 CMECTYBalke Ha TIPOH3BOJIHK
anTedpH BO rpymoMad M ce AOKaXyBa feka Kjacata F-rpymoMIH e MHOro-
KPaTHOCT aKKO NOCTOM r-apeH onepaTtop f¢€ F takos mTo 71— 1 e geauren
Ha m—1 3a cexoj m— apeH omepartop g € F.
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