ON n-GROUPOIDS

Мат. билтен Македонија, 2 (28) (1978), 5-11

An algebra Q(f) with an *n*-ary operation is said to be an *n*-s u bgrupoid of a grupoid $G(\bullet)$ if $Q \subseteq G$ and f is the restriction of \bullet^{n-1} on Q. And, an algebra A (F) is said to be an F-groupoid if there is a groupoid $G(\bullet)$ such that A(f) is an n-subgroupoid of $G(\bullet)$ for every n-ary operator $f \in F$. It is shown in § 1 that every n-groupoid is an n-subgroupoid of a groupoid. The classes of n-subgroupoids of each of the classes of cancellative groupoids and commutative groupoids are described in §§ 2,3. It is shown in \S 4 that the class of F-groupoids is a variety iff there is an n-ary operator $f \in F$ such that, for every m-ary operator $g \in F$, n-1 is a divisor

1. Universal covering groupoids. An algebra O(f) with an n-ary operation is said to be an n-g r o u p o i d, and it is an n-subgroupoid of a groupoid G(*) if $Q \subseteq G$ and $fa_1 \ldots a_n = *^{n-1} a_1 \ldots a_n$

for all $a_1, \ldots, a_n \in Q$. The following result can be obtained as a corrolary from the main results of the papers [4] and [6], but we shall give here a direct proof.

1.1. Every n-groupoid is an n-subgroupoid of a groupoid.

Proof. Let Q(f) be an *n*-groupoid and W(0) be the groupoid which is freely generated by the set Q. Thus, W is the minimal set of finite sequences on $Q \cup \{0\}$ (where $0 \notin Q$) satisfying the following statements:

(i)
$$Q \subseteq W$$
; (ii) $u, v \in W \Rightarrow o uv \in W$.

Denote by U the set of elements of W in which do not occur subsequences of the following form:

$$o^{n-1}a_1\ldots a_n \quad (a_1,\ldots,a_n\in Q).$$

Define a binary operation \bullet on U by:

and

$$u, v, ouv \in U \Rightarrow \bullet uv = ouv$$

$$b = fa_1 \dots a_{n-1} a_n \text{ in } Q(f) \Rightarrow \bullet o^{n-2} a_1 \dots a_{n-1} a_n = b.$$

Clearly,
$$O(f)$$
 is an *n*-subgroupoid of the groupoid $U(\bullet)$. \square

The groupoid $U(\bullet)$ is said to be the universal covering group oid of the n-groupoid Q(f). It is easy to see that the following propositions hold.

1.2. If $u, v, u', v' \in U$ are such that $\bullet uv = \bullet u' v'$ and $(u \neq u')$ or $v \neq v'$, then $v, v' \in Q$ and:

$$u = 0^{n-2} a_1 \dots a_{n-1}, u' = 0^{n-2} a'_1 \dots a'_{n-1},$$

$$f a_1 \dots a_{n-1} v = f a'_1 \dots a'_{n-1} v'.$$

for some a_i , $a_i' \in Q$. \square

1.3. If
$$u_1, \ldots, u_n \in U$$
, then: $\bullet^{n-1}u_1 \ldots u_n \in Q \Leftrightarrow u_1, \ldots, u_n \in Q$. \square

1.4. Let Π (a_1, \ldots, a_m) be a continued product in $U(\bullet)$, and $a_1, \ldots, a_m \in Q$. Then $\Pi(a_1, \ldots, a_m) \in Q$ iff there is a continued product $\Pi'(a_1, \ldots, a_m)$ in Q(f) such that Π is obtained form Π' replacing each occurring of an operator sign f by \bullet^{n-1} . Then we also have:

$$\Pi'(a_1,\ldots,a_m)=\Pi(a_1,\ldots,a_m).$$

2. n-subgroupoids of groupids with cancellation. First we state some definitions. Let Q(f) be an *n*-groupoid and $i \in \{1, ..., n\}$. We say that Q(f)is i-c ancellative if the following quasiidentity is satisfied:

$$fx_1 \ldots x_{i-1} yx_{i+1} \ldots x_n = fx_1 \ldots x_{i-1} zx_{i+1} \ldots x_n \Rightarrow y = z.$$

And, Q(f) is cancellative if it is i-cancellative for each i. Instead of n-cancellative (1-cancellative) we shall say left cancellative (right cancellative).

From 1.2. follows that the universal covering groupoid of a left cancellative *n*-groupoid is left cancellative groupoid, and this implies the following proposition:

2.1. The class of left cancellative n-groupoids and the class of n-sub-

groupoids of left cancellative groupoids are equal. \square

It is easy to see that if Q(f) is an *n*-subgroupoid of a cancellative (right cancellative) groupoid, then Q(f) is cancellative (right cancellative) and the following quasiidentity is satisfied in Q(f):

$$fx_1 \dots x_i \ z_1 \dots z_{n-i} = fy_1 \dots y_i \ z_1 \dots z_{n-i} \Rightarrow fx_1 \dots x_i \ u_1 \dots u_{n-i} = fy_1 \dots y_i \ u_1 \dots u_{n-i},$$

$$(2.1.)$$

for each $i \in \{1, \ldots n\}$.

Conversely, assume that Q(f) is a right cancellative *n*-groupoid in which all the quasiidentities (2.1) are satisfied. The universal covering $U(\bullet)$ of Q(f) can be not right cancellative. We are asking for a congruence α such that Q(f) can be embedded as an *n*-subgroupoid in $U/\alpha(\bullet)$ and $U/\alpha(\bullet)$ should be right cancellative.

First, for each $i \in \{1, \ldots, n-1\}$, let Q be defined by:

$$Q_i = \{ o^{i-1} \ a_1 \dots a_i | \ a_1, \dots, a_i \in Q \},$$

and let α_i be a relation in Q_i defined by:

$$o^{i-1}a_1\ldots a_i$$
 α_i $o^{i-1}b_1\ldots b_i \Leftrightarrow$

$$(\exists c_{i+1}, \ldots, c_n \in Q) fa_1 \ldots a_i c_{i+1} \ldots c_n = fb_1 \ldots b_i c_{i+1} \ldots c_n.$$
 By (2.1), the quantifier \exists may be changed by \forall , and this implies that:

 $c \in Q$, $o^{i-1}a_1 \ldots a_i$ α_i $o^{i-1}b_1 \ldots b_i \Rightarrow o^i a_1 \ldots a_i c$ α_{i+1} $o^i b_1 \ldots b_i c$. We also note that α_1 is the equality on $Q (= Q_1)$.

Denote by α the minimal relation on U which satisfy the following propositions: $\alpha_1 \cup \alpha_2 \cup \ldots \cup \alpha_{n-1} \subseteq \alpha$,

$$u_1 \propto v_1$$
, $u_2 \propto v_2$, o $u_1 u_2$, o $v_1 v_2 \in U \Rightarrow ou_1 u_2 \propto ov_1 v_2$.

It is easy to see that α is a congruence on $U(\bullet)$ and that $G(\bullet) = U/\alpha(\bullet)$ is a right cancellative groupoid. Moreover, if Q(f) is cancellative, then $G(\bullet)$ is cancellative too.

Finaly, the mapping $a \to a^{\alpha}$ embeds Q(f) into $G(\bullet)$.

Thus we obtain the following result.

2.2. An n-grupoid Q(f) is an n-subgroupoid of a (right) cancellative groupoid iff Q(f) is (right) cancellative and satisfies all the quassidentities (2.1). \square

As a corollary of 2.2 and the fact that every groupoid with cancellation is a subgroupoid of a quasigroup ([1], VII. 4) we obtain the following result.

2.3. The class of n-subgroupoids of quasigroups and the class of n-subgroupoids of groupoids with cancellation are equal. \Box

If $n \ge 3$, then there exist *n*-quasigroups which do not satisfy some of the quasiidentities (2.1) (for example, [7] p. 115), and thus we get the following result.

2.4. If $n \ge 3$, then there exist *n*-quasigroups which are not *n*-subgroupoids of quasigroups. \square

3. Commutative *n*-groupoids. An *n*-groupoid Q(f) is said to be (i, j)-commutative if:

$$fx_1 \ldots x_i \ldots x_j \ldots x_n = fx_1 \ldots x_j \ldots x_i \ldots x_n$$

is an identity equation. Q(f) is called commutative if it is (i, j)-commutative for each pair (i, j): $1 \le i < j \le n$.

3.1. An n-groupoid Q(f) is an n-subgroupoid of a commutative groupoid iff Q(f) is (1, 2)-commutative.

Proof. Let Q(f) be a (1, 2)-commutative *n*-groupoid, and let C(0) be the freely generated commutative groupoid by the set Q. Then

o
$$uv = o u' v' \Leftrightarrow (u = u', v = v')$$
 or $(u = v', v = u')$.

Denote by D the set of elements of C which can not be represented as products of the form:

with
$$a_i, b_i \in Q$$
. $\Pi(a_1, \ldots, a_{i-1}, o^{n-1} b_1 \ldots b_n, a_{i+1}, \ldots a_m)$

Define a binary operation • on D by:

and $u, v, ouv \in D \Rightarrow \bullet uv = ouv,$

 $u, v \in D$, o $uv = o^{n-1} a_1 \dots a_n$, $a = fa_1 \dots a_n \Rightarrow \bullet uv = a$.

It is easy to see that:

- (i) the operation is well defined:
- (ii) $D(\bullet)$ is a commutative groupoid;
- (iii) Q(f) s an *n*-subgroupoid of $D(\bullet)$.

It is clear that every n-subgroupoid of a commutative groupoid is a (1,2)-commutative n-groupoid. \square

A groupoid G(*) is said to be n-commutative if the n-groupoid $G(*^{n-1})$ is commutative.

3.2. The class of n-subgroupoids of n-commutative groupoids and the class of commutative n-groupoids are equal.

Proof. First, it is clear that every *n*-subgroupoid of an *n*-commutative groupoid is a commutative *n*-groupoid.

Let Q(f) be a commutative *n*-groupoid and let $U(\bullet)$ be the universal covering groupoid of Q(f). Define a relation α on U in the following way. If $v \to i_v$ is a permutation of $\{1, \ldots, n\}$, Π a product on $U(\bullet)$, and u_i , $t_i \in U$, then:

$$\Pi (u_1, \ldots, u_{p-1}, \bullet^{n-1} t_1 \ldots t_n, u_{p+1}, \ldots) \propto \Pi (u_1, \ldots, u_{p-1}, \bullet^{n-1} t_{i_1} \ldots t_{i_n}, u_{p+1}, \ldots).$$

It is obvious that the transitive and reflexive extension β of the relation α is a congruence on $U(\bullet)$ and that the groupoid $U/_{\beta}(\bullet) = G(\bullet)$ is *n*-commutative.

From 1.2 and 1.3 it follows that:

and this implies that: $a \in Q$, $u \in U \Rightarrow (a \propto u \Rightarrow a=u)$,

$$a, b \in Q \Rightarrow (a \beta b \Rightarrow a = b),$$

i.e that Q(f) can be embedded in $G(\bullet)$ as an *n*-subgroupoid. \square

The statements 3.1 and 3.2 imply that every commutative *n*-groupoid is an *n*-subgroupoid of a commutative groupoid, and also an *n*-subgroupoid of an *n*-commutative groupoid. But there exist commutative *n*-groupoids which can not be embedded in groupoids which are both commutative and *n*-commutative, for commutativity and *n*-commutativity imply some associativity. (For example, every commutative and 3-commutative groupoid is a semigroup.)

4. F-groupoids. Here we assume that F is a nonempty set of finitary operators such that $F_0 \cup F_1 = \emptyset$, where F_n is the set of n-ary operators belonging to F. An algebra A(F) is said to be an F-groupoid of if there is a groupoid G(*) such that A(f) is an n-subgroupoid of G(*) for every n-ary operator $f \in F$; then we also say that A(F) is an F-subgroupoid of G(*). An algebra A(F) is said to be a weak F-groupoid if for every sequence of operators $f_1, \ldots, f_r, g_1, \ldots, g_s \in F$ such that:

$$f_i \in F_{n_i+1}, g_j \in F_{m_j+1}, n_1 + \ldots + n_r = n = m_1 + \ldots + m_s$$
 (4.1)

the following identity is satisfied in A(F):

$$f_1 \dots f_r x_0 \dots x_n = g_1 \dots g_s x_0 \dots x_n.$$
 (4.2)

4.1. Every F-groupoid is a weak F-groupoid.

Proof. Let A(F) be an F-subgroupoid of a groupoid G(*), and assume that (4.1) is satisfied. If $a_0, \ldots, a_n \in A$ then we have: $f_1 \ldots f_r a_0 \ldots a_n = *^n a_0 \ldots a_n = g_1 \ldots g_s a_0 \ldots a_n,$

$$f_1 \dots f_r a_0 \dots a_n = *^n a_0 \dots a_n = g_1 \dots g_s a_0 \dots a_n$$

i.e. (4.2) is an identity in A(F). \square

Let J_F be the following set of integers:

$$J_F = \{n \mid F_{n+1} \neq \emptyset\},\,$$

and denote by d_F the greatest common divisor of the numbers belonging to J_F .

4.2. Every weak F-groupoid is an F-groupoid iff $d_F \in J_F$.

Proof. Let $d=d_F \in J_F$, $f \in F_{d+1}$ and let A(F) be a weak F-groupoid. By 1.1, A(f) is a d+1-subgroupoid of a groupoid $U(\bullet)$. If $g \in F_{m+1}$, then d is a divisor of m, and by (4.2) we have:

$$gx_0 \dots x_m = f^{m/d} x_0 \dots x_m = \bullet^m x_0 \dots x_m,$$

and this implies that A(F) is an F-subgroupoid of $U(\bullet)$.

Assume now that $d_F
otin J_F$. Then, if n is the least element of J_F there is an element $m \in J_F$ which is not divisible by n, and we shall assume that m is the least element of J_F with that property. Define an algebra A(F)in the following way:

- (i) $A = \{a, b, c\}, a \neq b \neq c \neq a;$
- (ii) $f \in F_{m+1} \Rightarrow fa_0 \dots a_m = a$ if $a_v \neq c$ for some v and $fc^{m+1} = b$;
- (iii) $g \in F_{k+1}$, $k \neq m \Rightarrow ga_0 \dots a_k = a$.

It is easy to see that A(F) is a weak F-groupoid. A(F) is not an F-groupoid, for if A(F) were an F-subgroupoid of a groupoid G(*) and if $f \in F_{m+1}$, $g \in F_{n+1}$ then we would have:

$$b = fc^{m+1} = *^{m-n} g c^{m+1} = *^{m-n} a c^{m-n} = \\ = *^{m-n} ga^{n+1} c^{m-n} = *^m a^{n+1} c^{m-n} = fa^{n+1} c^{m-n} = a. \square$$

If Σ is a class of groupoids we can ask for an axiom system of the class of F-subgroupoids of Σ -grupoids. We note that there are known convenient descriptions of F-sugroupoids of semigroups ([2], 5), and F-subgroupoids of cancellative semigroups ([5], 3).

REFERENCES

- [1] P. M. Cohn, Universal algebra, Harper & Row, New York 1965.
- [2] N. Celakoski, On semigroup associatives, Maced. Acad. of Sc. and Arts; Contributions IX — 2 (1977), 5—19.
- [3] G. Čupona, S. Markovski, On quasigroups, Godišen zbornik Prir.-matem. fakultet Skopje, 25/26 (1975/76) Sekc. A, 9-14.
- [4] M. D. Prešić, S. B. Prešić, Od the embedding of Ω-algebras in groupoids, Publications de l'Institut Mathématique N. S. T. 21 (35), 1977, 169-174.
- [5] Г. Чупона, Асоцијативи со кратење, Годишен зборник Прир.-матем. факултет Скопје, 19 (1969) Секц. А, 5-14.
- [6] Г. Чупона, С. Марковски, Сместување на универзални алгебри, Годишен зборник Прир-матем. факултет Скопје, 25/26 (1975/76) Секц. А, 15-34.
- [7] В. Д. Белоусов, п-арные квазигруппы, Кишинев 1972.

ЗА п-ГРУПОИДИТЕ (Резиме)

Во работава се покажува дека секој п-групоид е п-подгрупоид на групоид. Се дава опис на класата *n*-подгрупоиди на групоиди со кратење како и на класата п-подгрупоиди од комутативни групоиди. Се разгледува и поопштото прашање за сместување на произволни алгебри во групоиди и се докажува дека класата F-групоиди е многократност акко постои n-арен оператор $f \in F$ таков што n-1 е делител на m-1 за секој m — арен оператор $g \in F$.