n-SUBSEMIGROUPS OF SEMIGROUPS SATISFYING THE IDENTITY $x^r = x^{r+m}$

Год. збор. Мат. фак. Скопје, 30 (1979), 5-14

A subset Q of a semigroup S is said to be an n-subsemigroup of S if $Q^{n+1} \subseteq Q$. If C is a class of semigroups, then by C (n) is denoted the class of n-subsemigroups of C-semigroups. Let $P_{r,m}$ be the variety of semigroups defined in the title, and $C_{r,m}$ be the variety of commutative $P_{r,m}$ -semigroups. Main results $:P_{r,s^n}(n), P_{o,m}(n), P_{1,m}(n)$ and $C_{r,m}(n)$ are varieties for any r, s, m, n; if $r \neq 0,1$ and n is not a divisor of m, then $P_{r,m}(n)$ is not a variety.

0. Preliminary definitions and main results

0.1. An algebra Q[...] with an n + I-ary operation

$$[\ldots]:(x_0,\ldots,x_n)\mapsto [x_0\ldots x_n]$$

is called an n-semigroup if the operation is associative, i. e. if the following identity equations are satisfied:

$$[[x_0 \dots x_n] \ x_{n+1} \dots x_{2n}] = [x_0 [x_1 \dots x_{n+1}] \ x_{n+2} \dots x_{2n}] = \dots$$
$$= [x_0 \dots x_{n-1} [x_n \dots x_{2n}]].$$

Then, all the continued products on a sequence a_0, \ldots, a_{sn} of elements of Q are equal, and the result of such a product is denoted by $[a_0 \ldots a_{sn}]$; if s = 0, then $[a_0] = a_0$. An *n*-semigroup is said to be *commutative* if for any permutation i_0, \ldots, i_n of 0, 1, ..., *n* the following identity is satisfied: $[x_0 \ldots x_n] = [x_{i_0} \ldots x_{i_n}]$.

If $s \ge 0$ and if $j_0 \dots j_{sn}$ is a permutation of 0, 1,..., sn, then the following identity satisfies every commutative n-semigroup:

$$[x_0 \ldots x_{sn}] = [x_{j_0} \ldots x_{j_{sn}}].$$

Throughout the paper we will usually write "n-semigroup Q" instead of "n-semigroup $Q[\ldots]$ ".

0.2. Let S be a semigroup and Q a subset of S such that $Q^{n+1} \subseteq Q$. Then Q is called an *n*-subsemigroup of S. Clearly, the semigroup operation induces on Q an associative n+1-ary operation, and the corresponding n-semigroup Q is said to be induced by the given semigroup S. If, in addition, Q is a generating subset of S, then S is called a covering semigroup of Q; and this covering is proper if $Q^i \cap Q^j \neq \emptyset$ $\Rightarrow i = j \pmod{n}$. We note that the class of proper coverings of an n-semigroup is not empty and that a commutative n-semigroup admits proper commutative coverings. (These results, and convenient descriptions of some other classes of n-semigroups, can be found in [2] and [3].)

If C is a class of semigroups, then by C(n) is denoted the class of *n*-semigroups which can be embedded in C-semigroups as *n*-subsemigroups. For example, if C is the variety of (commutative) semigroups then C(n) is the variety of (commutative) *n*-semigroups.

0. 3. Let $n \ge 1$, $r \ge 0$ and $m \ge 1$ be given integers. Denote by $\mathbf{P}_{r,m}$ the variety of semigroups which satisfy the identity equation $x^r = x^{r+m}$, and by $\mathbf{C}_{r,m}$ the variety of commutative $\mathbf{P}_{r,m}$ -semigroups. ($\mathbf{P}_{o,m}$ is the variety of semigroups which satisfy the identities $x^m y = y$, $yx^m = y$, and it is, in fact, the class of groups in which the orders of all elements are divisors of m.)

The following theorems are the main results of this paper.

Teorem 1. $P_{r,m}$ (n) is a variety iff n is a divisor of m or $r \in \{0,1\}$. **Theorem 2.** $C_{r,m}$ (n) is a variety.

The proofs of these results are given in the sections 1-4. In the section 5 it is shown that each of the varieties $P_{r,sn}(n)$, $P_{1,m}(n)$, $P_{o,m}(n)$ and $C_{r,m}(n)$ can be defined by a finite system of identities.

0. 4 If C is a variety (or more generally a quasivariety) of semigroups, then C(n) is a quasivariety of n-semigroups. This result is a special case of the corresponding result on quasivarieties of universal algebras (for example, [1] p. 274). We find it interesting to look for a convenient description of the set \mathcal{U}_n of the varieties C of semigroups such that the corresponding classes C(n) are varieties of *n*-semigroups. Each of theorems 1 and 2 implies that the intersection \mathcal{D} of all the sets \mathcal{U}_n is an infinite set. Theorem 1 implies that the complement \mathcal{U}'_n (in the set of varieties of semigroups) of \mathcal{O}_n is an infinite set, for each $n \ge 2$.

We will state here the main results of the papers [4] and [5]. Let L_k (R_k) be the variety of semigroups S such that each element of S^k is a left (right) zero in S, and let $O_k = L_k \cap R_k$. Then L_k , R_k , $O_k \in \mathcal{V}$, for every $k \ge 1$. If \mathbf{D}^e (\mathbf{D}^r) is the variety of left (right) distributive semigroups, and $D = D^e \cap D^r$, then D^e , $D^r \in \mathcal{U}'_n$ and $D \in \mathcal{U}$, for every $n \ge 2$.

- 1. Here will be assumed that n is a divisor of m. As corollaries of the main result of the paper [3] we obtain the following descriptions of the classes $P_{r,sn}$ (n), $C_{r,sn}$ (n).
- **1.1.** $Q \in \mathbf{P}_{r,sn}(n)$ iff the following identity is satisfied in Q: $[x_1 \dots x_i (x_{p+1} \dots x_q)^r x_{i+1} \dots x_p] = [x_1 \dots x_i (x_{p+1} \dots x_q)^{r+sn} \dots x_p], \quad (1.1)$ for any integers i, p, q such that $0 \le i \le p < q$ and $p + r(q-p) \equiv 1$ (modn).
- **1.2.** $Q \in C_{r,sn}$ (n) iff Q is a commutative n-semigroup which satisfies all the identities (1.1.)

Now, from 1.1. and 1.2. it follows that:

- **1.3.** $P_{r,sn}$ (n) and $C_{r,sn}$ (n) are varieties.
- 2. Let d be the greatest common divisor of m and n, and i, j, m_1 , n_1 be integers such that:

$$in = jm + d$$
, $n = n_1 d$, $m = m_1 d$, $i > 0$, $j \ge 0$.

The following two propositions are obvious.

2.1. Let Q be an n-semigroup and let a d + l-ary operation [...]' be defined on Q by: $[x_0 \dots x_d]' = [x_0^{jm+1} \ x_1 \dots x_d].$ (2.1)

If $Q[...]' \in \mathbf{P}_{1,m}$ (d) and if the following identity is satisfied:

then
$$Q \in \mathbf{P}_{1,m}$$
 (n). $[x_0x_1 \dots x_n]' = [x_0 x_1 \dots x_n],$ (2.2)

2.2. If $Q \in P_{1,m}$ (n) and p, s, q, κ are such integers that $0 \le p \le d$, $0 \le q \le sd$, $1 \le k \le sd-q+1$, then the following identities are satisfied in Q:

$$[x_0^{jm+1}x_1...x_d] = [x_0...x_{p-1} \quad x_p^{jm+1}x_{p+1}...x_d];$$
 (2.3)

$$[x_0 x_1 \dots x_n] = [x_0^{n_1 / m + 1} x_1 \dots x_n]; \tag{2.4}$$

 $[x_0^{jsm+1}x_1...x_{8d}] = [x_0^{j(s+m_1k)m+1}x_1...x_{q+k-1}(x_q...x_{q+k-1})^mx_{q+k}...x_{8d}].$ (2.5)Now, $P_{1,m}(n)$ and $C_{1,m}(n)$ will be described.

2.3. $Q \in \mathbf{P}_{1,m}$ (n) iff all the identities (2.3)—(2.5) are satisfied.

Proof. Assume the identities $(2 \cdot 3) - (2 \cdot 5)$. By a finite number of applications of (2.3) we obtain that

$$[x_0^{sjm+1}x_1 \dots x_{8d}] = [x_0 \dots x_{p-1} \ x_p^{sjm+1} x_{p+1} \dots x_{8d}]$$

is an identity for any integers s, p such that $s \ge 0$, $0 \le p \le sd$. If the operation [...]' is defined by (2.1), then it can be easily seen that

$$[x_0 \dots x_{p-1} [x_p \dots x_{p+d}]' \ x_{p+d+1} \dots x_{2d}]' = [x_0^{2jm+1} x_1 \dots x_{2d}],$$

and this implies that $Q[\ldots]'$ is a d-semigroup. Moreover we have:

$$[x_0 \dots x_{sd}]' = [x_0^{sjm+1} \ x_1 \dots x_{sd}], \tag{2.6}$$

for every $s \ge 0$.

Let s, q, k be such that $0 \le q \le sd$, $1 \le sd - q + 1$. By (2.6) and (2.5) we have:

$$[x_0 \dots x_{sd}]' = [x_0^{s/m+1} x_1 \dots x_{sd}] = [x^{s/m+1} x_1 \dots x_{q+k-1} (x_q \dots x_{q+k-1})^m x_{q+k} \dots x_{sd}]$$

$$= [x_0 \dots x_{q-1} (x_q \dots x_{q+k-1})^{m+1} x_{q+k} \dots x_{sd}]',$$

and this implies that $Q[\ldots]'$ satisfies (1.1), i.e. that $Q[\ldots]' \in P_{1,m}$ (d). Finaly, by 2.1 we get that $Q \in P_{1,m}$ (n).

2.4 $Q \in C_{1,m}$ (n) iff Q is a commutative n-semigroup which satisfies all the identities (2.3) — (2.5).

Proof. The d-semigroup Q[...]' defined by (2.1) is also commutatioe and by 1.2 Q[...]' is a d-subsemigroup of a semigroup $T \in \mathbf{C}_{1,m}$. Then Q is an n-subsemigroup of T.

The following statements can be proved in the same way as the corresponding statements for the case r=1.

2.1'. Let Q be an n-semigroup, c a fixed element of Q and [...]' a d + 1-ary operation on Q defined by:

$$[x_0 \dots x_d]' = [c^{jm} \ x_0 \dots x_d].$$
 (2.1')

If $Q[\ldots]' \in \mathbf{P}_{0,m}$ (d) and if (2.2) is satisfied then $Q \in \mathbf{P}_{0,m}$ (n).)

2.2'. If $Q \in \mathbf{P}_{0,m}$ (n) then the following identities are satisfied

$$[x^{jm} \ x_0 \dots x_d] = [x_0 \dots x_{p-1} \ y^{jm} \ x_p \dots x_d];$$
 (2.3')

$$[x_0 \dots x_n] = [x^{jn_1m} x_0 \dots x_n];$$
 (2.4')

$$[x^{jsm}x_0...x_{sd}] = [x^{j(s+m_1k)m} x_0...x_t(x_{sd+1}...x_{sd+k})^m x_{t+1}...x_{sd}]; \qquad (2.5')$$

for any integers p, s t, k such that $s \ge 0$, $k \ge 1$, $0 \le p \le d+1$, $0 \le t \le sd$.

2.3.'. $Q \in \mathbf{P}_{0,m}$ (n) iff all the identities (2.3')—(2.5') are satisfied.

2.4'. $Q \in \mathbb{C}_{0,m}(n)$ iff Q is commutative and all the identities (2.3') — (2.5') are satisfied.

As a summary we have the following proposition:

2.5. The classes $P_{1,m}(n)$, $C_{1,m}(n)$, $P_{0,m}(n)$ and $C_{0,m}(n)$ are varieties.

3. Here we shall complete the proof of Theorem 1.

Assume that $r \neq 0,1$ and that n is not a divisor of m.

Let Σ be the set of all identities that hold in $P_{r,m}$ (i.e. the identites which are consequences from the identity $x^r = x^{r+m}$, and $\Sigma(n)$ be the set of n-semigroup identities defined by:

$$\Sigma(n) = \{ [x_{i_0} \dots x_{i_{pn}}] = [x_{j_0} \dots x_{j_{qn}}] \mid x_{i_0} \dots x_{i_{pn}} = x_{j_0} \dots x_{j_{qn}} \in \Sigma \}.$$
Clearly, if $Q \in \mathbf{P}_{r,m}(n)$, then Q satisfies all the identities in $\Sigma(n)$.

Moreover, if an identity holds in every $Q \in \mathbf{P}_{r,m}(n)$, then it belongs to $\Sigma(n)$.

Denote by Σ (n)* the variety of n-semigroups determined by Σ (n). We will show that $P_{r,m}(n)$ is a proper subclass of $\Sigma(n)^*$ and this will imply that $P_{r,m}(n)$ is not a variety.

Let i and j be nonnegative integers such that

$$r+j\equiv 1 \pmod{n}, i+1+m\equiv 0 \pmod{n},$$

and let $A = \{a_0, ..., a_{i+j}, b, b_0, ..., b_j, c_1, ..., c_n\}$ be a set with n + i + i+2i+3 distinct elements. Denote by F the n-semigroup which is freely generated by A in the variety Σ (n)*, and let ρ be the minimal congruence on F such that:

$$[b_0 \dots b_j \ b^{r-1}] \rho \ [a_i \dots a_{i+j} \ (bc_1 \dots c_n)^{r-1}].$$
 (3.1)

Namely, ρ is the transitive extension of β defined by:

 $u, v \in F \Rightarrow (u\beta v \Leftrightarrow u \alpha v \text{ or } u = v \text{ or } v\alpha u),$

where $u \propto v$ iff u and v are such that:

$$u = [d_1 \dots d_{i-1} \ b_0 \dots \ b_j \ b^{r-1} \ d_i \dots d_{sn}]$$

$$v = [d_1 \dots d_{i-1} \ a_i \dots a_{i+j} \ (bc_1 \dots c_n) \ r^{-1} \ d_i \dots d_{sn}]$$

for some d_1, \ldots, d_{sn} and $1 \leq i \leq sn$.

We shall show that it is not true that:

 $[a_0 \ldots a_{i-1} \ b_0 \ldots \ b_j \ b^{r+m} \ c_1 \ldots \ c_n] \ \rho \ [a_0 \ldots \ a_{i+j} \ (bc_1 \ldots \ c_n)^{m+r}].$ (3.2)

To prove that, denote by u the left hand side of (3.2), and by v the right one. By a finite number of applications of equalities that hold in F we obtain that

$$u = [a_0 \ldots a_{i-1} \ b_0 \ldots b_j \ b^{r+m+tp} \ c_1 \ldots c_n],$$

where p is the least common multiple of m and n, and t is an abritrany nonnegative integer; u can not be written as a, product"

$$[a_0 \ldots a_{i-1} \ b_0 \ldots b_j \ b^r \ c_1 \ldots \ c_n],$$

for $i+j+r \neq 0 \pmod{n}$. Therefore there is not a w such that $w \alpha u$, and $u \alpha v_1$ iff

$$v_1 = [a_0 \dots a_{i+1} (bc_1 \dots c_n)^{r-1} b^{1+m+tp} c_1 \dots c_n].$$
 (3.3)

If v_1 is defined by (3.3) then there is not a w such that $v_1 \propto w$. Thus we get the following statement:

$$u\beta v_1$$
 and $v_1\beta v_2 \Rightarrow v_2 = u$ or $v_1 = v_2$ or $u = v_1$,

and therefore there is not a sequence v_1, \ldots, v_k such that

$$u\beta v_1\beta v_2\beta \ldots \beta v_k\beta v_n$$

and this finaly implies that (3.2) does not hold.

Denote by Q the n-semigroup F/ρ , which obviously belongs to $\Sigma(n)^*$. We will show that Q does not belong to $\mathbf{P}_{r,m}$ (n), and this will imply that $\mathbf{P}_{r,m}$ (n) is a proper subclass of $\Sigma(n)^*$, i.e. that $\mathbf{P}_{r,m}$ (n) is not a variety.

First, we can assume that $A \subset P$, and thus we have:

$$[b_0 \dots b_j \ b^{r-1}] = [a_i \dots a_{i+j} \ (bc_1 \dots c_n)^{r-1}].$$
 (3.1')

The fact that (3.2) does not hold implies that the following inequality is satisfied in Q:

$$[a_0 \ldots a_{i+j} \ (bc_1 \ldots c_n)^{r+m}] \neq [a_0 \ldots \ a_{i-1} \ b_0 \ldots \ b_j \ b^{r+m} \ c_1 \ldots \ c_n].$$
 (3.2')

If Q were an n-subsemigroup of a semigroup $S \in \mathbf{P}_{r,m}$, then we would have:

$$[a_0 \ldots a_{i+j} \ (bc_1 \ldots c_n)^{r+m}] = a_0 \ldots a_{i-1} \ [a_i \ldots a_{i+j} \ (bc_1 \ldots c_n)^{r-1}] \ bc_1 \ldots c_n$$

$$= a_0 \ldots a_{i-1} [b_0 \ldots b_j b^{r-1}] b c_1 \ldots c_n = [a_0 \ldots a_{i-1} b_0 \ldots b_j b^{r+m} c_1 \ldots c_n].$$

This completes the proof of the following proposition:

3.1. If n is not a divisor of m and $r \neq 0,1$, then $P_{r,m}(n)$ is not a variety.

4. Theorem 2 is a consequence from the following statement:

4.1. An n-semigroup Q belongs to $C_{r,m}(n)$ iff the following identity is satisfied in Q:

$$\left[x_{1}^{i_{1}} x_{2}^{i_{2}} \dots x_{k}^{i_{k}}\right] = \left[x_{1}^{j_{1}} x_{2}^{j_{2}} \dots x_{k}^{j_{k}}\right] \tag{4.1}$$

for every sequence $i_1, \ldots, i_k, j_1, \ldots, j_k$ of positive integers, such that;

$$i_v < r \text{ or } j_v < r \Rightarrow i_v = j_v$$

 $i_v \geqslant r \text{ and } j_v \geqslant r \Rightarrow i_v \equiv j_v \pmod{m},$

$$(4.2)$$

$$i_1 + \ldots + i_k \equiv j_1 + \ldots + j_k \equiv 1 \pmod{n}.$$
 (4.3)

Proof. 1) It is easy to see that every identity in the variety $C_{r,m}$ has a form

$$x_1^{i_1} \cdots x_k^{i_k} = x_1^{j_1} \cdots x_k^{j_k},$$
 (4.1')

where i_v , j_v are such that (4.2) is satisfied. This implies that every identity which holds in $C_{r,m}$ (n) has a form (4.1), where (4.2) and (4.3) are satisfied.

We have to show that if an *n*-semigroup Q satisfy all the identities (4.1) then $Q \in C_{r,m}$ (n). If n is a divisor of m or $r \in \{0,1\}$, then this conclusion follows from 1.2, 2.4 and 2.4'. Further on, it will be assumed that n is not a divisor of m and r > 1.

2) Let $F \in \mathbb{C}_{r,m}$ be treely generated (in $\mathbb{C}_{r,m}$) by the carrier of the given *n*-semigroup Q. If $a_1, \ldots a_k$ are different elements of Q and if i_1, \ldots, i_k are positive integers less than r, then

$$u=a_1^{i_1}\cdots a_k^{i_k}$$

is said to be an irreducible element of F, for u can be represented in a unique way as a product or powers of different elements of Q, And, $v \in F$ iz reducible if it is not irreducible, i.e. if there exists a $b \in Q$ and a positive integer j such that $v = b^{jm}v$.

Define a relation α in F by:

$$a = [a_0 \dots a_{kn}]$$
 in $Q \Rightarrow au \propto a_0 \dots a_{kn} u$,

where $u \in F$ or u is an empty symbol. If β is the symmetric extension of β , and τ the transitive extension of β , then τ is a congruence on F. We will show that $a, b \in Q \Rightarrow (a \tau b \Rightarrow a = b)$, (4.4)

and this will complete the proof.

- 3) Let $a \in Q$, $u, v \in F$. Having in mind the assumptions on r, m and, n, we conclude that the following statements are statisfied.
 - (i) $u \alpha a \Rightarrow a = u$; (ii) $a \beta u \Leftrightarrow a \alpha u$;
 - (iii) $a \propto u$ iff there exist $a_0, \ldots, a_{sn} \in Q$ such that $a = [a_0 \ldots a_{sn}]$ and $u = a_0 \ldots a_{sn}$;
 - (iv) u is irreducible \Rightarrow $(a \alpha u \beta v \Rightarrow a \alpha v)$.
- 4) Assume now that $a \in Q$ and $a \propto u_1 \beta u_2 \beta \ldots \beta u_{q-1} \beta u_q$, where u_1 , u_q are reducible and u_2, \ldots, u_{q-1} are irreducible. Then there exist nonnegative integers k_1, \ldots, k_q , and $c, d, a_v, a_{v_\lambda} \in Q$ such that:

$$u_1 = ca_1 \dots a_{sn} = ca_{12} \dots a_{ik_1}, \quad u_2 = a_{21} \dots a_{2k_3}, \dots, \quad u_q = da_{q_2} \dots a_{qk_q}$$

 $a = [ca_1 \dots a_{sn}], \quad k_1 \equiv sn + 1 \pmod{m}, \quad k_1 \equiv k_2 \dots \equiv k_q \pmod{n}.$

From the reducibility of u_1 and u_q it follows that we may assume that

$$u_1 = c^{jm} \ u_1, \ u_q = d^{jm} \ u_q$$

for every $j \ge 0$. If $i \ge 0$ is such that $im + k_1 \equiv 1 \pmod{n}$, then we have: $[d^{im} \ d \ a_{q_2} \dots a_{qk_q}] = [d^{im} \ a_{q-11} \dots a_{q-1} \ k_{q-1}] = \dots = [d^{im} \ ca_{12} \dots \ a_{1k_1}]$

$$\begin{aligned} a_{qk_q} &= [a^{tm} \ a_{q-1} \dots a_{q-1} \ k_{q-1}] = \dots = [a^{tm} \ ca_{12} \dots \ a_{1k_1}] \\ &= [d^{tm} \ c^{rnm} \ ca_{12} \dots a_{1k_1}] = \dots = [d^{tm} \ c^{rnm} \ da_{q_2} \dots a_{qk_q}] \\ &= [c^{rnm+im} \ da_{q_2} \dots a_{qk_q}] = \dots = [c^{rnm+im} \ ca_{12} \dots a_{1k_1}] \\ &= [c^{rnm} \ ca_1 \dots a_{sn}] = [ca_1 \dots a_{sn}] = a, \end{aligned}$$

and this implies that $a \propto u_q$.

5) Now, it can be easily shown the statement (4.4), and this will complete the proof.

Let $a,b \in Q$ be such that $a \tau b$. Then, there exist u_1, \ldots, u_p such that $a \beta u_1 \beta u_2 \beta \ldots \beta u_p \beta b$. If p = 0 or p = 1, then by 3) we have a = b. Assume that $p \ge 2$. If u_1 is irreducible, then also by 3) we have $a \alpha u_2$. Thus we may assume that u_1 and u_p are reducible, and if $q \ge 2$ is the least integer such that u_q is reducible, then by 4) we get $a \alpha u_q$.

5. The Varietties $P_{r,sn}(n)$, $P_{1,m}(n)$, $P_{0,m}(n)$ and $C_{r,m}(n)$ are described in 1.1, 2.3, 2,4' and 4.1 respectively. But each of these varieties is characterized by an infinite number of identities.

Clearly, every identity of the form (1.1) is a consequence from the finite set of identities where the following relations are assumed:

$$0 \leqslant i \leqslant n, \ i \leqslant p \leqslant i+n, \ p < q \leqslant n+p$$

$$p+r \ (q-p) \equiv 1 \ (\text{mod } n)$$
(5.1)

Thus we have the following description of $P_{r,sm}$ (n).

5.1. $Q \in \mathbf{P}_{r,sn}$ (n) iff for any integers i, p, q which satisfy (5.1) the identity (1.1) holds in Q.

Let i, j, d, n_1 , m_1 be as in 3., and let the integers p, q, s, k satisfy the following relations:

$$0 \le p \le d, \ 0 \le s \le 2, \ 1 \le k \le d,$$

$$0 \le q \le d, \ q+k \le sd+1 \le d+q+k.$$

$$(5.2)$$

The following two statements are corollaries from 5.1, 2.1(2.1'), and 2.3(2.3').

5.2 (5.2') $Q \in \mathbf{P}_{1m}$ (n) $(Q \in \mathbf{P}_{0,m}(n))$ iff for any integers which satisty (5.2), the identities (2.3)—(2.5) ((2.3')—(2.5')) hold in Q.

It can be shown in the same way that each of the varieties $C_{r,sn}(n)$, $C_{0,m}(n)$ is finitely axiomatizable, but we will prove directly that each variety $C_{r,m}(n)$ is finitely axiomatizable.

5.3. Let p and q be the least nonnegative integers such that
$$p+r \equiv q+2r+m \equiv 1 \pmod{n}$$
. (5.3)

end let n = td, where d is the greatest common divisor of m and n. Then: $Q \in \mathbb{C}_{r,m}$ (n) iff Q is a commutative n-semigroup which satisfies the following identities:

$$[x^r \ x_1 \dots x_{\rho}] = [x^{r+tm} \ x_1 \dots x_p]$$
 (5.4)

$$[x^r \ y^{r+m} \ x_1 \dots x_q] = [x^{r+m} \ y^r \ x_1 \dots x_q]. \tag{5.5}$$

Proof. We have to show that if a commutative n-semigroup satisfies the identities (5.4) and (5.5), then it satisfies all the identities (4.1).

Assume that the nonnegative integers $i_1, \ldots, i_k, j_1, \ldots, j_k$ satisfy (4.2) and (4.3). By (5.4) and (5.5) it can be easily shown that if $i_2 = j_2, \ldots, i_k = j_k$ or $i_1 = j_2, i_2 = j_1, i_2 = j_3, \ldots, t_k = j_k$ then (4.1) holds. By applications of these results we obtain that all identities (4.1) hold in Q.

REFERENCES

- [1] А. И. Мальцев, Алгебраические системы, Москва 1970
- [2] G. Čupona, Semigroups geneated by associatives, Annuare de la Faculte des Sciences, Skopje, Sect. A, T. 15 (1964) 5-25.
- [3] G. Čupona, n-subsemigroups of periodic semigroups, Annuaire de la Faculte des Mathematiques, Skopje, T. 29 (1978) 21-25.
- [4] S. Markovski, On a class of semigroups, Matematički bilten 2 (XXVIII), 29-36.
- [5] S. Markovski, On distributive semigroups. Anuaire de la Faculte des Mahematiques, Skopje, T. 30 (1979), 15 — 27

n- ПОТПОЛУГРУПИ НА ПОЛУГРУПИ ШТО ГО ЗАДОВОЛУВААТ ЗАКОНОТ $x^r = x^{r+m}$

Резиме

За подмножеството Q од една полугрупа S велиме дека е n-йойийолугрупа ако $Q^{n+1}\subseteq S$. Ако C е класа полугрупи, тогаш со C (n) ја означуваме класата n-полуги што можат да се сместат во C-полугрупи. Во трудов, имено, се проучува класата $P_{r,m}$ (n), при што $P_{r,m}$ е многукратноста полугрупи спомената во насловот. Докажуваме дека $P_{r,m}$ (n) е многукратност ако и само ако $r\in\{0,1\}$ или n е делител на m. Исто така, покажуваме дека $C_{r,m}$ (n) е во секој случај многукратност, при што $C_{r,m}$ е многукратноста комугатнени $P_{r,m}$ -полугрупи.