SUBALGEBRAS OF SEMILATTICES

Zbornik radova Prir.-mat. fak. Novi Sad, 10 (1980), 191–195

Georgi Čupona, Gradimir Vojvodić, Siniša Crvenković

Let $\mathcal{A}=(A,\Omega)$ be an algebra, S a semigroup and $\omega \mapsto \overline{\omega}$ a mapping of Ω into S, such that $A \subseteq S$ and

(1) $\omega(a_1,\ldots,a_n)=\overline{\omega}a_1\ldots a_n$

for every n-ary operator $\omega \in \Omega$ and every $a_1, \ldots, a_n \in A$. $\mathcal{A} = (A, \Omega)$ is called a subalgebra of the semigroup S.

It is well known ([1] p. 185) that every algebra is a subalgebra of some semigroup. Subalgebras of commutative semigroups are characterized in [2].

In this paper we describe the class of algebras which are subalgebras of semilattices.

THEOREM. An algebra $\mathcal{A}=(A,\Omega)$ is a subalgebra of some semilattice if and only if the following condition is satisfied:

(*) For every pair of terms t_1 and t_2 , with the same sets of symbols, $t_1=t_2$ is an identity in A.

Proof. It is obvious that the condition (*) is satisfied in every subalgebra of a semilattice.

Suppose that the condition (*) is satisfied in the algebra $\mathcal{A}=(A,\Omega)$. We are going to prove that this algebra is a subalgebra of a semilattice. We can assume that:

- (i) A and Ω are disjoint sets;
- (ii) Different operators from Ω define different operations in A;
- (iii) Ω does not contain 0-ary operators, so that the operators, i.e. elements of Ω , are operations in A.

Le $K=A\cup\Omega$ and let \mathcal{M} be the family of finite subsets of the set K (including the empty set). \mathcal{M} is a semilattice with the set theoretical union as an operation. If we put $x=\{x\}$, for every $x\in K$, we have $K\subseteq\mathcal{M}$, so that \mathcal{M} may be considered as a free semilattice with an identity on the base K.

Define in $\mathcal M$ a relation of "neighbourhood" in the following way:

If S, $T \in \mathcal{M}$ and

$$S=S'\cup a$$
, $T=S'\cup\{\omega, a_1,\ldots,a_n\}$,

where $a=\omega(a_1,\ldots,a_n)$ in the algebra \mathcal{A} , we say that (S,T) and (T,S) are two pairs of neighbours generated by the operation ω .

If there exists a sequence $S_0, S, \ldots, S_p \in \mathcal{M}$ such that $S = S_0, T = S_p, p \ge 0$ and (S_{i-1}, S_i) is a pair of neighbours for every $i \in \{1, 2, \ldots, p\}$, we say that S and T are equivalent and denote this $S \sim T$.

The relation \sim is a congruence on the semilattice $\mathcal M$ and

(2)
$$a=\omega (a_1,\ldots,a_n) (\text{in } \mathcal{A}) \Rightarrow a \sim \{\omega,a_1,\ldots,a_n\}.$$

We are going to prove the following implication:

$$(3) a, b \in A \Rightarrow (a \sim b \Rightarrow a = b),$$

from which, because of (2), we come to the conclusion that the algebra \mathcal{A} is a subalgebra of the semilartice $p=\mathcal{M}/\sim$.

To every element $S \in \mathcal{M}$ we correspond its "value" [S] in the following way: If one of the sets $S_{\Omega} = S \cap \Omega$, $S_A = S \cap A$ is empty, we put [S] = S.

Let
$$S_{\Omega} = \{\omega_1, \ldots, \omega_r\}, S_A = \{a_1, \ldots, a_s\}$$

be non-empty sets. If all the operations from \mathcal{S}_{Ω} are unary we put

$$[S] = \{b_1, \ldots, b_s\}, \text{ where } b_v = \omega_1 \ldots \omega_r (a_v), v = 1, \ldots, s.$$

Finally, suppose that at least one of the operations from S_{Ω} for instance ω_r , is not unary. There exist positive integers i, j such that $\omega_1 \omega_2 \dots \omega_r^i (a_1^j, a_2, \dots, a_s)$ is

a "continued product" and if a is the value of this product we put [S]=a. From the condition (*), it follows that [S] does not depend on the quadruple ω_r , a_1 , i, j.

Further on we denote $[S_1 \cup S_2 \cup \ldots \cup S_k]$ with $[S_1, S_2, \ldots, S_k]$.

The following lemmas are simple consequences from the condition (*) and the definition of the transformation [].

LEMMA 1. [[S]]=[S].

LEMMA 2. If $S_A = T_A = \emptyset$, then

$$[S, T, U] = [S, [T, U]].$$

LEMMA 3. If $a=\omega(a_1,\ldots,a_n)$ in \mathcal{A} and $[S,a]\in A$ then $[S,a]=[S,\omega,a_1,\ldots,a_n].$

We are going to prove the following

LEMMA 4. Let $a=S_0, S_1, \ldots, S_p$ be a sequence of elements from \mathcal{M} , where $a \in A$, and (S_i, S_{i+1}) is a pair of neighbours for every $i \in \{0, 1, \ldots, p-1\}$. If ω_i is the generating operation for the pair (S_i, S_{i+1}) then

$$[\omega_{\nu}, a] = [\omega_1, \ldots, \omega_p, S_{\nu}] = a$$

for every $v \in \{1, \ldots, p\}$.

Proof. If p=1 then we have

$$S_1 = \{\omega_1, a_1, \ldots, a_n\} \text{ or } S_1 = \{a, \omega_1, a_1, \ldots, a_n\}$$

where $\omega_1(a_1,\ldots,a_n)=a$. Then

$$[\omega_1, a] = \omega_1 (a^n) = \omega_1 ((\omega_1 (a_1, \dots, a_n))^n) = \omega_1 (a_1, \dots, a_n) = a$$

$$[\omega_1, S_1] = \omega_1 (a^{n-1}, \omega_1 (a_1, \dots, a_n)) = \omega_1 (a^n) = a, n \ge 2$$

and

$$[\omega_1, S_1] = [\omega_1, \omega_1, a_1] = \omega_1^2(a_1) = \omega_1(a) = a$$
, for $n=1$.

Assume that the assertion of lemma 4, for the sequence $a=S_0, S_1, \ldots, S_q$ holds. We have two possible cases:

(I)
$$S_{q+1} = S' \cup \{\omega, a_1, \ldots, a_n\}, S_q = S' \cup b, b = \omega(a_1, \ldots, a_n)$$

(II)
$$S_{q+1}=S'\cup b$$
, $S_q=S'\cup \{\omega, a_1,\ldots, a_n\}$, $b=\omega(a_1,\ldots, a_n)$.

For case (I) we have

$$[\omega_1,\ldots,\omega_q,\omega,S_{q+1}]=[\omega_1,\ldots,\omega_q,\omega,\omega,S',a_1,\ldots,a_n]=$$
$$=[\omega_1,\ldots,\omega_q,S',\omega,a_1,\ldots,a_n].$$

From lemma 3. and an inductive assumption it follows that

$$a = [\omega_1, \ldots, \omega_q, S_q] = [\omega_1, \ldots, \omega_q, S', b] = [\omega_1, \ldots, \omega_q, S', \omega, a_1, \ldots, a_n] = [\omega_1, \ldots, \omega_q, \omega, S_{q+1}].$$

From lemma 2. we have

$$[\omega, a] = [\omega, [\omega_1, \ldots, \omega_q, \omega, S_{q+1}]] = [\omega_1, \ldots, \omega_q, \omega, S_{q+1}] = a,$$

$$[\omega, \omega_1, \ldots, \omega_q, S_v] = [\omega, [\omega_1, \ldots, \omega_q, S_v]] = [\omega, a] = a$$

for $v=1,\ldots,q$.

Consider case (II).

 $\omega \in \{\omega_1, \ldots, \omega_q\}$ so it follows that

$$[\omega, \omega_1, \ldots, \omega_q, S_{q+1}] = [\omega_1, \ldots, \omega_q, S_{q+1}].$$

By the inductive assumption we also have

$$[\omega_1,\ldots,\omega_q,S_q]=a.$$

If in the set $\{\omega_1, \ldots, \omega_q\}$ there is a non-unary operation, then $[\omega_1, \ldots, \omega_q, S_{q+1}]$ $\in A$, and from lemma 3. we have

$$[\omega_1,\ldots,\omega_q,S_{q+1}]=[\omega_1,\ldots,\omega_q,S,b]=$$

$$=[\omega_1,\ldots,\omega_q,S',\omega,a_1,\ldots,a_n]=[\omega_1,\ldots,\omega_q,S_q,]=a.$$

If all the operations $\omega_1, \ldots, \omega_q$ are unary then in can be easily sean that $[\omega_1,\ldots,\omega_q,\ S_q]=a$ implies that $[\omega_1,\ldots\omega_q,\ S_{q+1}]=a$. Q.E.D.

Now, implications (3) can easily be verified. If $a, b \in A$ and $a \sim b$, then there exists a sequence $a = S_0, S_1, \ldots, S_p = b$ such that (S_{i-1}, S_i) is a pair of neighbours for every $i \in \{1, \ldots, p\}$. If p = 0 then $a = S_0 = b$. Let $p \ge 1$ and the pair (S_{i-1}, S_i) be generated by the operation ω_i . From lemma 4. it follows that

$$[\omega_1, a] = [w_2, a] = \ldots = [\omega_p, a] = [\omega_1, \ldots, \omega_p, b] = a.$$

Consider the sequence $b=S_p,\ldots,S_1,S_0=a$. We have

 $b = [\omega_1, \ldots, \omega_p, a] = [\omega_1, \ldots, \omega_{p-1}, [\omega_p, a]] = [\omega_1, \ldots, \omega_{p-1}, a] = [\omega_1, a] = a$. By this we finish the proof of the theorem. *Notes*.

1. If Ω does not contain unary operators and to every *n*-ary operation $\omega \in \Omega$ we correspond a binary operation ω' by $\omega'(x,y) = \omega(x^{n-1},y)$, then we have the algebra (A,Ω') with binary operations, satisfying the condition (*) if and only if the algebra (A,Ω) satisfies the same condition. We also have that

$$\omega(x_1,\ldots,x_n)=\omega^{n-1}(x_1,\ldots,x_n).$$

2. We call the algebra (A,Ω) Ω -semilattice if there exists the semilattice P such that $A\subseteq P$ and

$$\omega(a_1,\ldots,a_n)=a_1\ldots a_n$$

for every *n*-ary operation $\omega \in \Omega$ and $a_1, \ldots, a_n \in A$. It can be easily verified that (A, Ω) is Ω -semilattice if and only if the following condition is satisfied:

(*') For every pair of terms t_1 , t_2 , with the same sets of variables $t_1 = t_2$ is an identity in (A, Ω) .

Obviously, the condition (*') is necessary.

If (*') is satisfied in (A, Ω) then all the operators, of the same arity n, define equal n-ary operations, so we may take that for every n there is at most one operation in Ω . If there exists a unary operation $\omega \in \Omega$ we have that $\omega(x) = x$ for every $x \in A$. Let ω be an n-ary operation in $\Omega(n \ge 2)$, and a binary operation α , α be defined by $\alpha \cdot y = \omega(x^{n-1}, y)$. Then we obtain a semilattice (A, α) such that

 $\rho(x_1,\ldots,x_m)=x_1\ldots x_m$ for every m-ary operation $\rho\in\Omega$.

- 3. An algebra \mathcal{A} satisfies condition (*) if and only if all the identities of the following forms hold in \mathcal{A} :
 - 3.1 $\omega x_1 \dots x_n = \omega x_{i_1} x_{i_2} \dots x_{i_n}$;
 - 3.2 $\omega \rho x_1 \dots x_m = \rho \omega x_1 \dots x_m$;
 - 3.3 $\omega \rho x_1 \dots x_m = \omega x_1 \dots x_{i-1} \rho x_i \dots x_m;$
 - 3.4 $\omega_1^{r_1} \dots \omega_p^{r_p} x_1^{\alpha_1} \dots x_q^{\alpha_q} = \omega_1^{s_1} \dots \omega_p^{s_p} x_1^{\beta_1} \dots x_q^{\beta_q}$

A satisfies (*') if it satisfies all the identities 3.1, 3.2, 3.3 and 3.4', where

3.4'
$$\omega_1 \ldots \omega_r x_1^{\alpha_1} \ldots x_q^{\alpha_q} = \rho_1 \ldots \rho_s x_1^{\beta_1} \ldots x_q^{\beta_q}$$
.

 $(\omega, \rho, \omega_{\nu}, \rho_{\nu})$ are arbitrary elements of Ω ; $i_1, \ldots i_n$ is a permutation of $1, \ldots, n$ and $n, m, r_{\nu}, s_{\nu}, \alpha_{\nu}, \beta_{\nu}, r, s$ are positive integers such that both the hand sides of the corresponding identities are Ω -terms).

REFERENCES

- [1] P. M. Cohn, Universal algebra, New York, 1965.
- [2] Ю. К. Ребане, О йредсшавлении универсальних аліебр в коммушашивных йолуїруйах, Сиб. Мат. Жур. 7 (1966), 878—885.

PODALGEBRE POLUMREŽE

REZIME

Neka je $\mathcal{A}=(A,\Omega)$ algebra, S polugrupa i $\omega\mapsto\overline{\omega}$ preslikavanje Ω u S tako da je $A\subseteq S$ i ω $(a_1,\ldots,a_n)=\overline{\omega}a_1,\ldots,a_n$

za svaki n-arni operator $\omega \in \Omega$ i $a_1, \ldots, a_n \in A$. Kažemo da je \mathcal{A} podalgebra polugrupe \mathcal{S} .

U radu je dat opis klase podalgebri polumreža. Važi sledeća

TEOREMA. Algebra $\mathcal{A} = (A, \Omega)$ je podalgebra neke polumreže ako i samo ako zadovoljava sledeći uslov:

(*) Za proizvoljne terme t1 i t2, sa jednakim skupovima simbola u algebri A je zadovoljen identitet t1=t2.