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The purpose of this paper is to show that the class of multiquasi-
groups is a convenient extension of the class of quasigroups. In the first part
of the paper we give four interpretations of the notion of an [n, m]—quasi-
group: (i) as a structure with a ,,vector valued* operation, (ii) as an algebra
with a strongly orthogonal system of quasigroups, (iii) as an algebra with
an orthogonal system of operations, and (iv) as a structure with a finitary
relation. In the second part of the paper we show that on each (nontrivial)
[n, m]-quasigroup it can be constructed an »-dimensional » 4+ m-net, and
conversely, each n-dimensional n 4 m-net can be coordinatized by an [n, m]-
quasigroup. Partial multiquasigroups are considered in the third part of
the paper, and it is shown that every partial [n, m]-quasigroup can be embed-
ded in an [r, m]-quasigroup.

1. Let Q be a nonempty set, nand m positive integers, and f: (x4, ...,
Xo) 1= f (x4, ..., xp) a2 mapping from @® into Q™. Then we say that
Q(f) is an [n, m]-groupoid, and the n-ary operations fy, fa,--., fm
defined by:

f(x].!---f xﬂ) =(yla---l J’m){i}(v ieNm) y‘=ﬁ(xll"'l xﬂ)v
are called the component operations of f and this is denoted by f = (f4,..., fm).

An [n, m]-groupoid Q (f) is said to be an [n, m]-quasigroup iff the
following statement is satisfied:

(A). For each ,,vector® (ay, ..., as) € Q" and each injection ¢ from
Na ={1,2,...,n} into Npim, there exists a unique vector (by,...,
buim) € Q*+™ such that bop=ay, ..., bgm = an and:

Sy ba) =basp.... bn+ﬁl)- (I)
It is clear that the following proposition is satisfied.
1.1. An [n, m]-groupoid Q (f) is an [n, m]-guasigroup iff the sequence
J1 +«+» fm of component operations of f satisfies the statement (A4") which
is obtained from (A4) by replacing (1) by: (Vi E Nm) fi (by, .. ., ba)=bnye.[]
A sequence f3, ..., fm of n-ary operations on a set Q is said to be
a strongly orthogonal system of operations if it satisfies the statement (4°).
And, a sequence g,, . . ., gn4m Of n-ary operations on a set Q is called ortho-
gonal if the following statement is satisfied.
(B). For each (ay, ..., an) € Q" and each injection ¢ : Np—> Npim
there exists a unique vector (¢y, ..., ¢s) € Q" such that:
(Vi€ Nn) 8w (€1,.... Cn) =ay.
The following proposition shows that there is an equivalence between
the notions of orthogonal system of operations and [n, m]-quasigroups.
1.2. An [n, m]-groupoid Q(f) is an [n, m]-quasigroup iff there exists

an orthogonal system of m-ary operations gy,...., gn+m such that:
S ooy Xn) = Gt n o+ o5 Xnpom) & @
(31'1:---.“nEQ)(VfEhTMm)xc=gi(t1;---’ rﬂ)'

Proof. If O (f) is an [n, m]-quasigroup and if g,,..., gn4m are defined by
S Gunees %) = Cngar e« o Xmim) © (VI€ Nugm) X¢ = 84 (F1, - -+, Xn),
then an orthogonal system of n-ary operations g,,..., gu4m is obtained.
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And conversely, if gy, ..., gnim is an orthogonal system of n-ary opera-
tions on Q, and if the [#, m}-groupoid Q (f) is defined by (2), then Q(f) is
an [n, m]-quasigroup.

As a consequence from 1.1 and 1.2 (or directly) we obtain the fol-
lowing connection between orthogonal and strongly orthogonal systems
of operations,

1.3. A sequence of n-ary operations f3,..., fim on aset Q is a strongly
orthogonal system iff the sequence gi,..., &€ f1,...,/fm is an orthogonal
system, where g,,..., g are defined by: (Vi€ Np) g (Xyeeo xp) = x¢.00

It is easy to see that in a strongly orthogonal system of n-ary ope-
rations on a set Q all operations are n-quasigroups.

An orthogonal system of n-quasigroups for n =2 is a strongly ortho-
gonal system, but for » > 2 a system of n-quasigroups which is an ortho-
gonal system need not be a strongly orthogonal system.

An n + m-ary relation p € O**+™ is called an [n m]-quasigroup rela-
tion if it satisfies the statement (4’") obtained form (A) by replacing (1) by:
p (by ... buym).

The proof of the following proposition is also clear.

14. O (f) is an [n, m]-quasigroup iff the relation p defined by:

P(Xseve) Xpim) ©F (X1, - - o, Xn) = (Xut1, - - - » Xnm)
is an [n, m]-quasigroup relation. []

Thus, we obtained four interpretations of the notion of [n, m]-quasi-
group. Further on we shall use mainly the last interpretation, i.e. by an
“[n, m]-quasigroup** we shall mean a structure Q (p) where p is an [n, m]-
quasigroup relation. Then, we shall sometimes say that Q (p) is a , multi-
quasigroup, if it is not necessary to emphasize n and m.

The proofs of the following properties are straightforward.

1.5. Let p C Q**™ and ¢ be a permutation of Nuim. Then Q (p)
is an [n, m]-quasigroup iff Q (P,;,) is an [n, m]-quasigroup, where:

P¢ (.\';, P x,,+m) = p (Xq"(l), . A xl}l(!!-i-m))' O
(Q(py) is called ¢ parastroph of the multiquasigroup Q (p).)

1.6. Let p C O*t™ and let £ =&y, ..., En+m) be a sequence of
permutations of Q. Then Q (p) is an [n, m]-quasigroup iff Q (p%) is an
[n, m]-quasigroup, where:

PE (X e evs Xnim) © p (B1 (x0). - .-, Enim Onim). U
(Q (%) is called E-isotope of O (p).)

1.7. Let Q (p) be an [n, m]-quasigroup, ay, ..., ax€ Q, k<mn, and

¢ an injection form QF into Q™. Then Q(p’) is also an [n—k, m]-quasigroup,

Whe: P (Xps e v v s Xnpm—k) © P (X1, - o s Xngm) AV I € Ni) Xpp=ay. [
1.8. An [n, 1]-groupoid Q(f) is an [n, 1]-quasigroup iff Q(f) is an
n-quasigroup. [
1.9. O (p) is a [I, m]-quasigroup iff there is a sequence &,,... En
of permutations of Q such that:
p(x, Xy ..., Xm) (Vi€ Nm) xq =8 (x). U
L.10. If |Q|=1, and p = Q™*™, then Q (p) is an [n, m]-quasigroup,
An [n, m]-quasigroup Q (p) is called nontrivial if |Q|>2, =2, m>1.
We remark that:



(i) The assumption that m and n are positive integers may be omited,
and then we would obtain that there exist only trivial [0, m]-quasigroups,
and [n, 0]-quasigroups. Namely, O (p) is an [n, 0]-quasigroup iff p = Qn®,
and Q (p) is a [0, m]-quasigroup iff |p|=1.

(ii) The notion of an [n, m]-loop can be defined in a usual way, but
it is easy to see that proper multiloops do not exist. We do not see any con-
venient definition of a proper multigroup.

2. let Pand B be two nonempty sets, B=B, U ... U Bpim
a partition of B, where n > 2, m>=1, and [ is a subset of PX B (the cle-
ments of P are called ,,points** and those of B ,blocks®“.) The structure
(P; By,..., Byym; I) is called an n-dimensional n + m-net (or simply:
an [#, n 4+ m]-net) if the following statements are satisfied.

(@) If p€P then there exists exactly one sequence By, ..., ByimEB
such that pIBs, Bs € B, for all s € Ny ym.

(ii) If @: N — Npim is an injection and Bs € By then there exists
exactly one p € P such that pl Bs for all s € N,.

We shall show that there exists an equivalence between the theory
of [n, n+4 mlnets and [n, m]-quasigroups.

2.1. Every nontrivial [n, m]-quasigroup induces an [n, n+m]-net.

Proof. Let O (p) be a nontrivial [n, m]-quasigroup. Define a set of

l’p01nts by: P = {(xl’ sy xﬂ"’ﬂ) I P (xl’ Lkl x”+m)}.

If x€Q and s€Nyim, then: BF={(*1,...,Xnm) EP|x;= x} is called a
»block*. And, B = {B;| s € Npim, x€ Q} is the set of all blocks. Further,

let B]_. “aey Bﬁ-[-m be defined b}': B; = {B': [xE Q}.
Clearly, B si a disjoint union of By, ..., Byym.

It is easy to see that (P; By,..., Buim; I) is an [n, n + mi]-net,
where pIBY ¢<>p € B;. (We say that this net is induced by the given
multiquasigroup.) [

2.2. Every [n, n4+m]-net induces an [n, m]-quasigroup.

Proof. Let (P; By, ..., Byym; I) be an [n, n4+m]-net.

We shall show that all the sets B, ..., B,,m have the same cardi-
nal number.

First we note that (i) and P4 (’jimply that all the classes of
blocks B, ..., Byim are nonempty.

Letr, SENpsm, 1, sE{lg. ..., Ip}, 1 <h<...<iy<n-+m, and
choose B, € By in an arbitrary way. If B € By, then by (ii) there exists exactly
one point p such that pIB and pIB, for each v¢€ {2, ..., n}. By (i) there
exists exactly one B’ € B; such that p/B’. This implies that a mapping sr:
B|— B’ of By into By is defined. In the same manner we define a mapping
Yrs: Bg = By. It is easy to see that rs Ysr=1g,, Ysr Yrs =1p,, and this implies
that drs= (g,)—L is a bijection.

Let O be a set and @;: @ — B; a bijection for every i€ Nyyim. We
define an n+m-ary relation p in Q by:

p (X -ves Xnym) © AP EP) (Vi€ Nuym) p 14 (x).

It can be easily seen that Q(p) is an [n, m]-quasigroup, and that the
[#, n+m]-net induced by Q(p) is isomorphic to the given [n, n+m]-net.[]

23. If O(p) and Q’ (p") are two [n, m]-quasigroups induced by an
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[#, n+4+m]-net, then they are isotopic.

Proof. Assume that (P; By, ..., Byim; I) is an [n, n+m]l-net,
@12 Q = By, @'t Q" — B; are bijections for each i € Nyim, and Q (p), Q' (p')
are the [n, m]-quasigroups defined as in the proof of 2.2.

If the sequence of bijections ¢;: Q@ — @', ..., Ynim: Q@ — Q' is
defined by Y;= @;"~' @, then we obtain an isotopy from Q(p) into Q'(p’). O

3. A substructre of an [r, m]-quasigroup (in general) is not an [n, m]-
quasigroup, but it is a partial [#, m]-quasigroup according to the following
definition.
' If p C Ont™ js an n+m-ary relation on a nonempty set Q, then the
structure Q (p) is called a partial [#, m]-quasigroup if the following condi-
tion is satisfied.

C Let ?:N”_*Nsd..m be an iﬂjection- If p(x],:" nxn+m): 'P(J"J,:-- -.J"n-Hn)

© and (Y i€ Np) Xpwy = Yo then (Vj€ Npsm) X3 = y5.

Clearly:

3.1. Every [n, m]-quasigroup is a partial [n, mj]-quasigroup, and the
class of partial [n, m]-quasigroups is hereditary.

Now, we shall show that:

3.2. Every partial [n, m]-quasigroup R (p) is a substructure of an
[n, m]-quasigroup R’ (p°).

Proof. Let ¢: N — Npym be an injection, and D} the subset of R"
defined by:
@y..., @) EDR & @by, .., baym) [p(by - - . bugm) AV i € Nu)ay = bgip).
Denote R by R, and p by p,. Assume that Ri(px) is a partial [n, m]-quasi-
group, and define Rx;, (px+,) in the following way.

Let a= (@,,...,an) € Rk \Df 1), where @: Np=> N,.m is an injec-
tion. Define a sequence (1,¢,..., (1 + m),q) in the following way

? T
(Vi€ Nn)ip=a; and (a, Dy ) = {jol/ & {e(1),..., 9 @)}}
consists of 7 elements and it is disjoint with Rg; it is also assumed that:
@DDN®DYDATSa=bA o=y
Now, we define the structure Riy, (pr+1) by:

Reyy=ReU U (a, DY), prrr=prU{l,p... 1+m),q|a€ RL\ DL, ¢}.

P, 8
It can be easily seen that Ri;, (pr4,) is @ partial [#, m]-quasigroup.

Finaly, let R’ (p’) be defined by: R’ = '1.) Re, p’'= kji P .

The structure R’ (p’) is a partial [n, m]-quasigroup, for it is the union of the
chain {R(px) k=1, 2, ...} of partial [», m}-quasigroups, such that RyC DT+ 1
for each injection @: N, — N,.m, and this implies that R’ (p’) is an [n, m]-
quaisgroup.

It is natural to say that R’ (p’) is the universal covering of R (p). The
universal covering B” (p) of the partial [n, m]-quisigroup B ((}) is in fact the
free [n, m]-quasigroup with a base B.

As consequences of 3.2 we obtain the following propositions.

3.3. If Q is an infinite set then there exists an [n, m]-quasigroup Q(p).[]

3.4. The free [n, m]-quasigroup with a finite (non-smpty) base is
countable and infinite. []

* b} =D},



Making an obvious modification of the proof of 3.2, we obtain that
the following statement is also satisfied.

3.5. Let ¢: Ny— Nyym be an injection, and R(p) a partial [n, m]-qua-
sigroup such that Df s~ R®, There exists a partial [z, m]-quasigroup Q (p)
with the following properties:

(1) O (p) is an extension of R (p);

(i1) ¢: Ny — Npimis an injection such that Dg oniff § =g,

(iii) If R is infinite then |R| =|[Q]|.

Denote by Xx” the set of n+m-ary relations p on a set R such that
R (p) is a partial [#, m]-quasigroup. By an application of Zorn’s lemma we
obtain the following proposition.

3.6. Every relation p€ Xy " is contained in a maximal relation T€ X} ™.

The following statements are also obvious.

37.If p € Z%™ and if : Np— Naim 15 an injection such that o3v
= R* then ¢ is a maximal element in X

3.8. If n4+m=n"+m’ and n > n’, then =¥’ ™ C IR

Now, we shall show that every fmltary relation on a set R inducss
a partial multiquasigroup.

3.9. If p C R¥(k = 0), then there exist n, m such that k =n+m
and R (p) is a partial [n, m]-quasigroup,

Proof. If p = (7§ or |p| = 1, then R (p) is a partial [#, m]-quasigroup
for each pair of nonnegative integers n, m such that n+m=k. Let |p| = 2,
and let d be the least positive integer such that there exist two vectors a, b
with exactly d different components (in other words, d is the ‘“‘code distance*
of p). Then, R (p) is a partial [k —d + 1, d — l]-quasigroup. [J
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MVJITHKBA3HUIPYIIH H CTPYKTYPH IIOBP3AHH CO HHB
PE3HME

Bo paGoraBa ce MOKaKyBa [eKa MVJITHKBA3ATPVIHTE C€ IONECHO IIpo-
mmMpyBalbe Ha Kiacara Keasurpymi. Bo mpeuoTr nmen Ha paGoraBa ce pnasaat
YeTHPH MHTEPNpPEeTAllMH Ha NOHMOT MYITHKBAa3HIpyIa: (g Kako amreGpa co
enna MynTuonepandja, (ii) xako anreGpa co CHIHO OPTOrOHAlEH CHCTEM KBa-
aurpymy, (iil) xako anrebpa co eneH OpPTOrNOHallEH CHCTeM oIepausH, H (iv)
Kako e/Ha pellaljuCcKa CTPYKTYpa. Bo BTOopuor nen ce mokaskyBa IeKa Ha
cekoja [n, m]—xBasurpyma MO’Xe Ja ©€ KOHCTPYHpAa n—IMMCH3HOHAIHA
m-+rH—pelerka, a U o0paTHO JeKa ceKoja TaKBa pelleTka MOKEe Ja ceo
KoopmuHupa co efgHa [#, m]—ksBasurpyna. JdenfyMHH MYITHKBASHIPYIIH CE
pasrieiyBaaT BO TPETHOT MICN, a IJIABHHOT PE3VATaT HAa OBOj fiel e neKka
CeKoja JenyMHAa MYNTHKBAa3WIPYIA MOJKE [a C€ CMECTH BO MYJITHKBasHTPyIA.

T @yeees @) EDF e (Tbue s, busm) [0 Buse vy busm) AC 1€ Na) ag = bgip)
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