n-SUBSEMIGROUPS OF SOME COMMUTATIVE SEMIGROUPS

Год. збор. Мат. фак. Скопје, 32 (1981), 33-36

A subset Q of a semigroup S is said to be an n-subsemigroup of S if: $a_1, \ldots, a_n \in Q \Rightarrow a_1 \ldots a_n \in Q$. Then, by $[x_1, \ldots, x_n] = x_1, \ldots, x_n$ is defined an associative n-ary operation [] on Q, i.e. (Q; []) is an n-semigroup. If C is a class of semigroups, then the class of n-semigroups that are n-subsemgroups of C-semigroupes is denoted by C(n). A variety of semigroups C is called an n-variety of semigroups iff C(n) is a variety of n-semigroups. (Clearly, every variety of semigrops is a 2-variety.) The set of n-varieties of semigroups and its complement, in the set of varieties of semigroups, are infinite for any $n \ge 3$. ([1], [2], [3], [4]) It is also known that the set of n-varieties of commutative semigroups is infinite. ([2]) Here we show that if n > 3then the set of varieties of commutative semigroups that are not n-varieties is also infinite.

Further on, by a semigroup (n-semigroup) we will mean a commutative semigroup (commutative n-semigroup).

A variety of semigroups is defined by a set of identities of the following form: $x_1^{i_1} x_2^{i_2} \dots x_n^{i_p} = x_1^{i_1} x_2^{i_2} \dots x_n^{i_p},$

(*) where: x_1, x_2, \ldots are variables; i_{ν} , j_{ν} are nonnegative integers such that $(\sum i_{\nu})(\sum j_{\nu}) > 0$. If $i_{\nu} = j_{\nu}$, for each ν , then (*) is called a trivial identity.

(As usually, variables will be also denoted by x, y, z, ...). Let m, s, n, k be positive integers such that $s + 2 \le m, m \ne 2s + 1$, $m \neq 2s + 2$, $m \equiv 1 \pmod{n-1}$ and $m + 2 \leq k$. Consider the following two identities:

$$x^{s} y^{m-s} = x^{s+2} y^{m-s-1},$$
 (m, s)

$$x_1x_2\ldots x_k=x_1^2x_2\ldots x_k. (k)$$

Denote by (m, s; k) the set of the given two identities, and by $(m, s; k)^n$ the set of identities (*) which are consequences of (m, s; k) and the exponents satisfy the following condition:

Every identity (*) which belongs to $(m, s; k)^n$ induces an identity

$$[x_1^{i_1} \cdot \cdot \cdot x_p^{i_p}] = [x_1^{j_1} \cdot \cdot \cdot x_p^{j_p}]$$
 [*]

of n-semigroups. We denote by $[m, s; k]^n$ the set of identities [*] such that (*) is in $(m, s; k)^n$.

It is clear that if $x^{s}y^{m-s} = x^{i}y^{j}$ is in $(m, s; k)^{n}$, then i = s, j = m - s, i.e. $[m, s; k]^n$ does not contain a nontrivial identity $[x^s y^m - s] = [x^i y^j]$.

Consider the variety $C^{(m, s; k)}$ of semigroups defined by (m, s; k). We will show namely that $C^{(m, s; k)}$ is not an n-variety. To prove this statement it is enough to find an *n*-semigroup $(Q; \lceil \rceil)$ which satisfies all identities belonging to $[m, s; k]^n$, but does not belong to $C^{(m, s; k)}$ (n).

Let a, b, c be three different objects and let (Q; []) be the n-semigroup with a presentation $< a, b, c; [a^{s+2} c^{m-s-2}] = [b^{s+2} c^{m-s-2}] >$

in the variety of n-semigroups defined by $[m, s; k]^n$. Let us give a more explicit construction of (Q; []). First, let (F; []) be the free *n*-semigroup with a basis $B = \{a, b, c\}$ in the variety defined by $[m, s; k]^n$. In other words F consists of all, commutative products of powers $[a^i \ b^j \ c^p]$, such that: i, j, $p \ge 0$, $i+j+p \equiv 1 \pmod{n-1}$, and the equality

$$[a^j b^j c^p] = [a^i' b^{j'} c^{p'}]$$

holds in F iff the following identity

$$[x^i y^j z^p] = [x^{i'} y^{j'} z^{p'}]$$

is in $[m, s; k]^n$. The operation [] is defined in the usual way, i.e. by the following equation:

$$[[a^{i_1}b^{j_1}c^{p_1}]\cdots [a^{i_n}b^{i_n}c^{p_n}]] = [a^{i_1+\cdots+i_n}b^{j_1+\cdots+j_n}c^{p_1+\cdots+p_n}].$$

Consider the minimal congruence \approx on (F; []) such that

$$[a^{s+2} c^{m-s-2}] \approx [b^{s+2} c^{m-s-2}].$$

Namely \approx is defined in the following way. If $u = a^{j} b^{j} c^{k}$ is such that $i + j + k \equiv 0 \pmod{n-1}$, then:

$$[u \, a^{s+2} \, c^{m-s-2}] \sim [u \, b^{s+2} \, c^{m-s-2}]$$
 and $[u \, b^{s+2} \, c^{m-s-2}] \sim [u \, a^{s+2} \, c^{m-s-2}]$.

Now, \approx is the transitive and reflexive extension of \sim , i.e. $u \approx v$ iff there exist $u_0, \ldots, u_t \in F$ such that $u = u_0, v = v_t, t \geqslant 0$, and $u_{t-1} \sim u_t$ if $i \geqslant 1$. Then $(F/\approx; [])$ is the desired n-semigroup (Q; []). We can assume that $a, b, c \in Q$.

Let us show that $[a^s \ c^{m-s}] \neq [b^s c^{m-s}]$ in (Q; []). Namely, we first conclude that if $[a^s \ c^{m-s}] = [a^i b^j c^p]$ in F, then i = s, j = 0, p = m - s. We also have that $[a^s \ c^{m-s}] \sim [a^i b^j c^p]$, for any i, j, p, and therefore $[a^s \ c^{m-s}] \approx [b^s \ c^{m-s}]$, i.e. $[a^s \ c^{m-s}] \neq [b^s \ c^{m-s}]$ in (Q; []).

Now, it is easy to show that (Q; []) does not belong to $C^{(m, s; k)}$ (n). Namely, if (Q; []) were an *n*-subsemigroup of a semigroup $S \in C^{(n, s; k)}$, then we would have

$$a^{s} c^{m-s} = a^{s+2} c^{m-s-1} = a^{s+2} c^{m-s-2} c$$

= $b^{s+2} c^{m-s-2} c = b^{s+2} c^{m-s-1} = b^{s} c^{m-s}$

in S, and this would imply the equality $[a^s c^m - s] = [b^s c^m - s]$ in (Q; []).

Clearly, if $m+2 \le k' < k''$ then $C^{(m, s; k')}$ is a proper subvariety of $C^{(m, s; k'')}$, and thus if s and m are fixed positive integers such that $s+2 \le m$, $m \ne 2s+1$, $m \ne 2s+2$, $m \equiv 1 \pmod{n-1}$ then we have an infinite set of varieties $\{C^{(m, s; k)} | k \ge n+2\}$ of commutative semigroups which are not n-varieties.

Denote by $C^{(m, s)}$ ($C^{(k)}$) the variety of semigroups defined by the identity (m, s) ((k)). From the above considerations it follows that $C^{(m, s)}$ is not an *n*-variety. Namely, we notice again that there is not a nontrivial identity $[x^sy^m-s]=[x^iy^j]$ in $[m, s]^n$. And, the *n*-semigroup (Q; []) with a presentation (**) in the variety of *n*-semigroups defined by $[m, s]^n$ is not an *n*-subsemigroup of a semigroup belonging to $C^{(m, s)}$.

But, the variety $C^{(k)}$ is an *n*-variety for every pair of positive numbers n, k such that $n \ge 2$. (Namely, the assumption $k \ge n + 2$ is not necessary.) First we notice that (*) is a consequence of (k) if $i_v = j_v$ for each v or $\sum i_v \ge k$, $\sum j_v \ge k$ and $i_v > 0 \Leftrightarrow j > 0$. This gives a complete description of $[k]^n$, as well.

Assume now that (Q; []) is an *n*-semigroup which satisfy any identity of $[k]^n$, i.e. each identity [*] such that

$$\Sigma j_{\mathbf{v}} \equiv \Sigma j_{\mathbf{v}} \equiv 1 \pmod{n-1}, \quad \Sigma i_{\mathbf{v}} \geqslant k, \Sigma j_{\mathbf{v}} \geqslant k$$

and $i_{v} > 0 \Leftrightarrow j_{v} > 0$.

We have to show that (Q; []) is an *n*-subsemigroup of a semigroup belonging to $C^{(k)}$.

Let $n \ge k$, and let a binary operation \cdot be defined on Q by:

$$x \cdot y = [x \ y^{n-1}].$$

Then it easy to see that $(Q; \cdot)$ is a semigroup in $C^{(k)}$, and moreover that

$$x_1x_2\ldots x_n=[x_1x_2\ldots x_n],$$

and therefore (Q; []) is an *n*-subsemigroup of $(Q; \cdot)$.

In the general case, we consider the semigroup S with a presentation

$$< Q; \{a = a_1 \dots a_n \mid a = [a_1 \dots a_n] \text{ in } (Q; [])\} >$$

in the variety $C^{(k)}$, and we have to show that:

$$a, b \in Q \Rightarrow (a = b \text{ in } S \Rightarrow a = b \text{ in } Q),$$

but here we will not give the complete proof of this statement.

REFERENCES

- [1] Марковски С.: За дистрибутивните полугрупи, Год. збор. Матем. фак. Скопје 30 (1979), 15—27
- [2] Марковски С.: За една класа полутрупи, Математички Билтен Кн. 1 (XXVII) 29—36
- [3] Чупона Ѓ.: Полугрупи генерирани од асоцијативи, Год. зборн. ПМФ Скопје Секц. А 15 (1964), 5—25
- [4] Čupona G.: n-subsemigroups of semigroups satisfying the law $x^r = x^{r+m}$, Год. зборник Матем. фак. Скопје, 30 (1979), 5—14

n—потполугрупи од некои комутативни полугрупи Резиме

Во работава се покажува дека множеството многубразија M комутативни полугрупи, такви што M(n) (т.е. класата од n-потполугрупи од M-полугрупи) е вистинско квазимногуобразие, е бесконечно, за секое n > 3.