POLYNOMIAL SUBALGEBRAS

Algebraic Conference, Novi Sad 1981; (1982), 1-6 G. Čupona and S. Markovski

A polynomial subalgebra of an algebra $A = (A, \bigcirc)$ is a subset B of the carrier of the algebra which is closed under the polynomials belonging to a set of \bigcirc -polynomials. In this paper polynomial subalgebras are considered, together with a few properties and examples. A special attention is given to the polynomial subalgebras of the algebras belonging to a variety.

1. Throughout the paper \bigcap and \bigcap' will be two sets of operational symbols and $X = \{x_1, x_2, \dots, x_n, \dots\}$ will be the set of individual variables. By \bigcap_X will be denoted the set of all \bigcap -polynomials, i.e. $\bigcap_X = \text{Term }(\bigcap)$. If $p \in \bigcap_X$ and if each variable that occurs in p is in the set $\{x_1, \dots, x_n\}$, then we will usually write $p = p(x_1, \dots, x_n)$. Let $A : \bigcap_X \to \bigcap_X$ be a mapping such that if $f \in \bigcap$ (n), then $f = f(x_1, \dots, x_n)$. The mapping A induces a mapping from \bigcap_X into \bigcap_X' (denoted with the same symbol A) defined by: (i) x = x, for each $x \in X$ and (ii) $f \in \bigcap$ (n), $p = f \mapsto p = f(p_1, \dots, p_n)$.

Let \underline{A} be an \bigcap -algebra, \underline{A} an \bigcap -algebra and $\phi: A \to A$ a mapping such that $\phi(f_{\underline{A}}(a_1, \ldots, a_n)) = f_{\underline{A}}(\phi(a_1), \ldots, \phi(a_n))$ for each $f \in \bigcap$ (n) and $a_1, \ldots, a_n \in A$. The mapping ϕ in this case will be called a Λ -homomorphism from \underline{A} into \underline{A} . Moreover, if $\underline{A} \subseteq A$ and if the embedding of \underline{A} into \underline{A} is a Λ -homomorphism, then \underline{A} is said to be a Λ -subalgebra of \underline{A} . (We will sometimes say polynomial homomorphism (polynomial subalgebra) instead of Λ -homomorphism (Λ -subalgebra).)

If \underline{A} is an C'-algebra, then an C-algebra \underline{A} by the same carrier \underline{A} is defined by: $\underline{f}_{\underline{A}}$, $(a_1',\ldots,a_n') = \underline{f}_{\underline{A}}$, (a_1',\ldots,a_n') , for each $\underline{f} \in C'$ (n) and $\underline{a}_1',\ldots,\underline{a}_n' \in \underline{A}$. We say that \underline{A} is induced from \underline{A} by \underline{A} .

Let C' be a class of C'-algebras and C be a class of C'-algebras. Then by C' will be denoted the class of C'-algebras which are A-subalgebras of C'-algebras belonging to C', and by C' the class of C'-algebras A' such that all A-subalgebras of A' are in C'. We say that a pair C' is C' is C'-compatible if each algebra C' is a C'-subalgebra of an algebra C' such that C' C' such that C'

The following properties give some connections between $\mathbb C$, $\mathbb C'$, $\mathbb C^n$ and $\mathbb C'$.

- $\underline{1}^{\circ}$. (a) If C is a class of C -algebras and C a class of C -algebras, then: C C C .
- (b) The equation $^{()}()^{()} = 0$ holds iff each $0^{()}$ -algebra $\underline{A} \in 0$ is a \underline{A} -subalgebra of an $0^{()}$ -algebra \underline{A} such that each \underline{A} -subalgebra of \underline{A} is in $0^{()}$.

 2° . If ((), ()) is a \wedge -compatible, then ()

 3° . If C' is a quasivariety of C'-algebras, then C' is also a quasivariety of C'-algebras. ([8], p. 274).

We note that there are known infinite many varieties of O'-algebras C' such that ^C' is a proper quasivariety. This suggests to look for a description of the set of varieties C' of O'-algebras such that ^C' to be also a variety of O'-algebras.

 $\underline{4}^{\circ}$. Let \underline{C}' be a variety of \underline{O}'' -algebras and \underline{A} be an \underline{O}' -algebra. Let \underline{F}' be the \underline{O}'' -algebra which is freely generated by \underline{A} in \underline{C}'' and let $\underline{\rho}$ be the least congruence on \underline{F}' such that:

 $\underline{6}^{\circ}$ Let $C = \operatorname{Var}_{\sigma} \Sigma$, $C' = \operatorname{Var}_{\sigma'} \Sigma'$ be such that $C \subseteq {^{\circ}C'}$. Denote by Σ'' the following set of O'-identities:

$$\{p^* \equiv q^* \mid p \equiv q \in \Sigma\} \cup \Sigma',$$

and let C'' = Var C'. Then the pair (C, C') is \sim -compatible iff $C' \subseteq C''$.

 7° . If ()' is an axiomatizable class of ()'-algebras, then ()' can be defined by a system of open formulas. ([7]).

 $\underline{8}^{\circ}$. Let Σ be a class of \widetilde{U}' -identities satisfying the following condition:

(**) If u',v' are finite sequences on $\widetilde{U}'UX$, $p'\in \widetilde{U}_X$ and if there is a $q'\in \widetilde{U}_X$ such that $u'p'v'\equiv q'\in \langle \Sigma'\rangle$, then there is a $q''\in \langle \Sigma'\rangle$ such that $u'xv'\equiv q''\in \langle \Sigma'\rangle$, where x is a variable which does not occur in u'p'v'.

Then $^{\text{Var}}$ $_{\bigcirc}$, $^{\text{\Sigma}}$ is a variety of \bigcirc -algebras ([5]).

 $\underline{2}$. Now, we will state some results concerning special classes of algebras, which will throw better look on the properties $\underline{1}^{O}-\underline{8}^{O}$.

1) Let $\underline{\text{Sem}}$ be the variety of semigroups. If $\bigcap' = \{\cdot\} = \bigcap'(2)$ and if $p(x_1, \ldots, x_n) \in \bigcap'_X$, then by the associative law an (2)

identity of the form $p \equiv x_1 x_2 \dots x_k$ holds in <u>Sem</u>, where $i_v \in \{1,2,\dots,n\}$. Thus, we can assume that if (is a variety of semigroups, then (= Var Σ , where Σ is a set of identities of the forms $x_1 \dots x_k \equiv x_1 \dots x_j$, where i_v , $j_\lambda \in \{1,2,\dots\}$, including the identity $x_1(x_2x_3) = (x_1x_2)x_3$.

The following result is known as Cohn-Rebane's theorem ([1] page 185):

If \underline{A} is an $\overline{\mathbb{O}}$ -algebra, then there is a semigroup \underline{S} and a mapping $f\mapsto \overline{f}$ of $\overline{\mathbb{O}}$ into S such that $\underline{A}\subseteq S$ and $\underline{f}_{\underline{A}}(a_1,\ldots,a_n)=\overline{f}_{\underline{A}}\ldots a_n$ for each $\underline{f}\in \overline{\mathbb{O}}$ (n) and all $\underline{a}_1,\ldots,\underline{a}_n\in A$. Then we say that \underline{A} is an $\overline{\mathbb{O}}$ -subalgebra of the semigroup \underline{S} . If $\underline{\mathbb{O}}$ is a class of semigroups, then by $\underline{\mathbb{O}}'(\overline{\mathbb{O}})$ will be denoted the class of $\overline{\mathbb{O}}$ -algebras which are $\overline{\mathbb{O}}$ -subalgebras of semigroups belonging to $\underline{\mathbb{O}}'$. Thus, the Cohn-Rebane's theorem can be formulated as follows:

1.1) Sem (\mathcal{O}) is the variety of all \mathcal{O} -algebras.

We will state some other results. First, we will give some definitions. If $p \in \mathcal{O}_X$ and if $b \in X \cup \mathcal{O}$, then $|p|_b$ is the number of occurences of the symbol b in p. Also, by Absem we denote the variety of commutative semigroups, and by $\underline{C}_{r,m}$ the variety \underline{Absem} ($x^r = x^{r+m}$), where r and m are positive integers. Then we have:

- 1.2) $\underline{A} \in \underline{Absem}$ ($\overline{0}$) if \underline{A} satisfies any identity $p \equiv q$, where $p,q \in \overline{0}_X$ are such that $|p|_b = |q|_b$, for each $b \in \overline{0} \cup X$ ([10]).
 - 1.3) $\underline{c}_{r,m}(0)$ is a variety iff r=1 or 0 = 0 (1). ([6]).

We note that, if $(0) = \emptyset$, then 1.1) and 1.2) are consequences from 8° . If in 1.1) or 1.2) we have $(0) = \emptyset$, $(0) \neq \emptyset$ (or in 1.3) $(0) \neq \emptyset$, then the condition (**) of $(0) \neq \emptyset$ is not satisfied.

- 2) Let $O = \{f\} = O(n)$, $O' = \{\cdot\} = O'(2)$ and $f^* = x_1x_2...x_n$. If $O' = \{\cdot\} = O'(2)$ is a class of groupoids, then $O' = \{\cdot\} = \{\cdot\}$
 - 2.1) $\underline{\operatorname{Sem}}(n) = \underline{\operatorname{Sem}}_n$.
 - 2.2) $P_{r,m}(n)$ is a variety iff r=1 or n-1 is a divisor of m.
 - 2.3) $\underline{C}_{r,m}(n)$ is a variety for all r,m,n.
 - 2.4) D(n) is a variety for every n.
 - 2.5) $D^{\ell}(n)$ is a proper quasivariety for every $n \ge 3$.
 - 2.6) Let Σ be a set of semigroup identities $p \equiv q$ such that $|p|_{\dot{1}} \equiv |q|_{\dot{1}} \pmod{n-1}$ (***)

for each i=1,2,..., where $n \ge 3$, and let $\binom{\prime}{} = \underline{\operatorname{Sem}}(\Sigma)$. Then $\binom{\prime}{}(n)$ is a variety. (We note that this result is a corrolary from $\underline{8}^{O}$; and, conversely, if a variety $\binom{\prime}{} = \underline{\operatorname{Sem}}(\Sigma')$ satisfies the condition (**) of $\underline{8}^{O}$, then (***) is satisfied for every identity $p = q \in \Sigma'$.)

The above results are proved in the papers [3], [4], [5], [9]. Some of the results in 1) and 2) suggest the following conjecture: If ()' is a variety of semigroups such that ()' is a variety of ()'-algebras for every ()', then ()'(n) is a variety of n-semigroups for every () 2.

- 3) If R is a ring, then by 1.1) there is a semigroup S and a pair of elements $a,b \in S$ such that x+y = axy, $x \cdot y = bxy$ (" $\cdot \cdot$ " is the multiplication in the ring R). But, if S is a semigroup with at least two elements, and if the operations + and \bullet defined on S by: x+y = axy, $x \cdot y = bxy$, where $a,b \in S$, then $(S;+,\bullet)$ is never a ring. This example shows that it can happen a pair (C,C') to be not \land -compatible, although C,C'. In [2] there are given several examples of such noncompatible pairs. We note that in each of the examples 1.1)-1.3), 2.1)-2.4) we have a compatible pair of varieties.
- 4) Now we will finish our considerations by an example of a variety $C' = Var \Sigma'$ such that C' is not a variety although Σ' does not contain non trivial identities. Namely, let $C' = C'(2) = \{\cdot\}$, $C = C(3) = \{f\}$, and $f' = (x_1x_2)x_3$. If $\Sigma' = \{(((x_1x_2)x_1)x_2)x_1 = ((x_1x_1)x_1)(x_2x_2)\}$, then Σ' does not contain nontrivial identities, but $\Delta \Sigma'$ is a proper subclass of the class of ternary groupoids (i.e. algebras with a ternary operation).

REFERENCES

- [1] Cohn P.M.: Universal Algebra, New York 1965
- [2] Čupona G.: Za teoremata na Kon-Rebane, God. Zb. 20, 1970, 15-34
- [3] Čupona G.: n-subsemigroups of semigroups satisfying the law $x^r = x^{r+m}$, God. Zb. Mat. fak. 30, 1979, 5-14
- [4] Čupona G., Celakoski N.: Polyadic Subsemigroups of Semigroups, Algebraic Conference, Skopje 1980, 131-152
- [5] Čupona G., Markovski S.: Smestuvanje na univerzalni algebri, God. Zb. 25-26, 1976, 15-34
- [6] čupona G., Crvenković S., Vojvodić G.: Subalgebras of commutative semigroups satisfying the law x^r = x^{r+m} Zbor.rad.PMF Novi Sad br. 11.1981(to appear)
- [7] Los J.: On the extending of models (I), Fund. Math. 42, 1955, 38-54
- [8] Maljcev A.I.: Algebraičeskie sistemi, Moskva 1970
- [9] Markovski S.: Za distributivnite polugrupi, God. Zb. Mat. fak. 30, 1979, Skopje
- [10] Rebane Ju. K.: O predstavlenii universalnih algebar v komutativnih polugruppah, Sib. Mat. Žurn. 7, 1966, 878-885