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Abstract. Let M be a set of positive integers. For every meM,
let F be a set cf vector valued operations on a set A, such that
m+kf m 1)
(HfGFm] f:A + A,
where kg > 0. Dencte by F the set \/(F | meM} .

The vector valued algebra (A;F) is said to be an associati-
ve if the general associative law holds. In two previous papers
([1] and [2]) some results of associatives concerning the case
|[M/=1 are obtained, and here we make corresponding investigations
assuming that M is an arbitrary nonempty set of positive integers.

51. Polynomial operations
Let A be a nonempty set, and let Op(A) be the set of vector
valued operations on A, i.e.
op(a) = (£:A0 > A™ | n,m 2 1).
1f £:A" > A", then we write &6f=n, pf=m, (f=n-m (or &(f)=n etc.
when parenthesis are more convenient), and we say that n,m, n-m

- P —m—m=a=aa _—===

Let F be a nonempty subset of Op(A) with the following property:
(¢fer) ((f=6f-pf > 0). (1.1)
We define a set of operations C[?(F) < Op(A), which will be called
the set of polynomials generated by F, in the following way:

P (F) = UF_ |a 21}, (1.2)

F, = F,

where:

= _ P 2)
FPopg " F L {q{gi*...*gp} |geFa.qveFaLJ{1A};5q = vi1pqu}
It can be easily shown that:
P.1.1. R (P(F)) =P (F). o
It is desirable to have a corresponding description of the

sets p (P(F)), UPFEN).
First we have:

P.1.2. o (P(F)) = o(F).
Denote the set p (F) by:

M= (m,m,...} = (m | aenr}, (1.3)
g ? and A is the set of positive integers or

A={1,2,...,t}. We assume that |A| 2 2, for the case A ={1} is
considered in [2] and [4].

Denote by F, (CP, (F)) the set of elements f€F (fe CP(F)) such
that pf=ml and put:

¢(F)=1,, L(F)=I, (P (F))=K,, (P(F))=k  (1.4)

where m, < m

2l AY 1s the r-th Cartesian power of A.

2) Composition and direct products of operations have the

usual meanings; IAII is the identity transformation of A (see

for ex. [4;123-124]).

3) If G is a set of operations on A, and 1 is a mapping

from G into a set B, then t(G)={1(g) | g€G}.



Clearly:
P.1.3. I=U(I, | »enl, K= UK, | Aer}. ¢
By a usual induction it can be shown that:
P.1.4. K is an additive semigroup of positive integers ge-

nerated by I, and, for every A€\, Kl is a subsemigroup of K. ¢

Assume now that p,ve€A and k EK are such that mv+kv = mu,

and let ku be an arbitrary element of K . Then, there exist
fe §3<F), 9e @, (F) such that f=k , g= ku and
= f(gxlu...xl)eQP (F), h-ku+ku.

+
m mu

This implies the following property of the collection {Kh | Aenl:
P.1.5. If v,ue€n, kuEKu are such that ku+mv2 mu, then ku+Ku gKv. *

Now we will give a satisfactory description of the collec-
tion of semigroups {K, | xerd.

P.1.6. Let a collection of sets of positive integers

{Iv o | »eér, @ =2 0} be defined as follows:
r
where Iu,o = Iy Iu,u+1 =1, aUI e’
I, o = li,+i, iivEIv,u' i,e1,, m+i, = m,, A€A}.
Then: :

K, =U{Iv,u |a 20}, o

1f FcOp(A), then F induces a vector valued algebrac{ =(2;F)
with a carrier A. Then (P (A4)=(A;P(F)) is the corresponding po-
lynomial algebra. It is clear that:

P.1.7. If C€A, C #¢, then:

C is a subalgebra of 4 iff C is a subalgebra of P (A o

Let A’ be a set and F'c Op(A’). A homomorphism from o{ into
A'=(A";F") is a pair of mappings ¢:A +- A', y:F > F' such that y

is surjective and:
(YfeF) (s f=6(W(£)), pf=p (Y (£))),

(Ya €A, feF) (z(f(a]))=£'(a})),
where ¢(c)=¢, v(f)=f’, and t(bT)=F7.
P.1.8. Every homomorphism (z,¢) from (A;F) into (A’;F’) induces
a unique homomorphism (z,¥) from (A;@P(F)) into (A7; CP(F')). ¢

§2. Associatives

‘As in the previcus section, we will assume that A#f§ and
FcOp(A), F#8, is such that ¢f >0, i.e. df > pf, for every fer.

dition is satisfied:
f,9e GP(F), 6f=8g, pf=pg => £ =g. (2.1)
Let K, (K, | AeA} and M={m, | 1A} be defined as in the pre-
vious section. By P.l.l1 one obtains:
P.2.1.F is an associativeon A iff Q’D(E‘) is an associative on A.¢
According to this proposition, we will assume further on that

P (F) = F. (2.2)
Therefore, for every kAEKA’ xer {0}, there exists a unique
(ky emy )k, +m, my (0,1)
f A + A (where K,={0}, m,=1, £ =1A) . This enab-

les us, for every A€A, to define a unique mapping



(mk} K. +m m, )

- f A LERN R Al
4 k,+m,  (m,) (k, ,m,)
(¥xen V£ (x) = f (%) .
Thus one obtains a set of mappings
(ml} Klﬂnl m,
G = {f A - A | renl (2.3)

with the following property:

(m ) (m,.) (m, ) {(m )s)
m, +...tm €K tm => £ g M0 “Plhee ¥

£
A A
! p

(2.4)

TS OEY

And conversely:
If a family of mappings (2.3) has the property (2.4) and
(k,,m,) (m,)
TR A
f = f k)\'ﬂ'ﬂ;\
Fy ’
then the set
(kyrm,)
F = (f
is an associative on A.
Note that, by induction, it is easy to show that the condition
(2.4) can be changed with the following special (weaker) condition:
(m ) (m ) (m )
atm, +8€K +m => f i (1°%£ ¥ x18)cf " : (2.6)
Further on we will always consider the class of F-associati-
ves as a class of mappings (2.3), which satisfy (2.4), where K,
{KA | »€ér}, M have the above mentioned properties. Instead of "F-

associative", we will write “(K;{KA | A€r} ;M) -associative", and
we will say that ¢=(K;{K | €A} ;M) is the type of the associati-
ve. Also we will write
[ kk "’l'l'll
a

| xen, k, €K, } (2.5)

(m, ) k, +m

(n) A x
] instead of f (a,

)i
Assume that A and A’ are the carriers of two associatives of the
same type ¢. A mapping gc:c »>cC from A into A’ is a homomorphism iff:
k,+m, 1 (1) m _k +m_ 5 (1) m
[a," *] =b,* => [a1'\ "] = B,} (2.7)

1

It can be easily seen that this definition of homomorphism
is compatible with the usual definition given in §1.

§3. Free associatives

The notion of a "free associative with a basis B" has the
usual meaning. So we will not state here the corresponding explicit
definition, but we will give a construction of free associatives.

Let B be a nonempty set and o=(K;{Kl | A€A} ;M) a type of

associatives, M={m, ,m,,...}, m < m Denote

A A+t
m,+...+m by m, , { L2 pwen y £F by N, m,=0, N,=f.

Define a sequence of sets {Ba |a> 0) as follows: B, =B and

B =B UC , (3.1)
a+1 a L
where
c, = u{(Nﬁ:ﬁ\mﬁi_‘);«Rm'Jk | xeal}. (3.2)
Now we have to explain the meaning of Ra \ First, we define RQ J\]:ry:
K, +m . ¢
R = (B,) AR t3.3)

O,

%) We _note that if P is a set of positive integers on a set
A, then AP = (y{aAP | peP}. (Thus, here, AP has not the usual mea-
ning - the set of all mappings from P into A.)

S) If £:B + D, g:C » D, then fc g iff BEC and (Yx€B)
f(x)=g(x), i.e. £ is the restriction of g on B.




Assume that B, is well defined. Then (as usually) we denote
by B: the free semigroup with a basis B and by B} = B;\J{l} the
free monoid with a basis B. An element

u = (@, +1,y) (W,+2,y) ... (W, ,,,y)€B] (3.4)

+K
Then Rua is the set of all the reduced elements of B?l A,

Thus, Ru,A is a well defined subset of BSA+K1 for every
a =2 1, A€A. Moreover, if xGBY, then xeRY’R iff xGRT+,rA.

Denote the set U({B, |a2 0} by B.

1f x€B*, then we say that x€B is reduced if x€B} and x is
reduced in B:. Dencte the set of the reduced elements of B by R.
Thus, R=U{Ru a20)}, where R, is the set of reduced elements of B;.

The concepts of hierarchy % in B and norme | | in B are

defined as follows:
# (a) = min{quEBu};
|lu| = 0 <=> ueB", |(4i,x)]| = 1+ x|, |xy|=|x| + |y].

Now we will define a mapping ¢ :B*>R in the following way ((i) and (ii)):

(i) xBR ==> y(x) = x.

Let xéﬁ+\R and let ¢(y)ER be defined for every yeﬁ+ such
that |y| < |x|, and then

vily) # y <=> |vy)| < lyl|. (3.5)

Let x=x'ux", where u is an elementary reduction of the form
(3.4), and %' is reduced (or x'=1). Then |x'yx"| < |x|, and
thus ¢ (x’yx") is well defined. Then we define ¥ (x) by:

(1ii) ¢(x) = p(x"yx").

Then we have:
lv(x) | =lv(xyx") | s [x'yx"|< [x],

and this implies that y:BY + R is a well defined mapping such
that (3.5) is satisfied.

Let us establish some properties of the mapping ¥¢.

P.3.1. If x€B’ and dm(x)€m +K $’then dm(y(x))em +K,.

Proof. Let Y (x) be defined by[ii).Then,dm(x)=dm(x'x")+ml+1,

dm(x’yx") = dm(x’x") + dmy.

The fact that (m,+i,y)€B (1<i<m,  )implies that dmy=k, . +m .
for some k, , €K, . But dmxem“ﬂ{‘J implies that dmx=mv+k“ for some vEA.
Thus we have: mv+kv = dm(x’x")+ml+1, and therefore mv+kv 2 My 4y
which implies that kv + KA+1 g;Kv. Finally, we obtain

r L Foapt - [ETa =
dm(x'yx")=dm(x'x")+dm(y)=dm(x’'x )+kH1+mH‘ m +k +k, . €m +K .
Then, by an induction on norms, we obtain that
dm(y(x)) = dm(*(x'yx“}lﬂmv+Ku. .

P.3.2. (uxeB’, yeB*) ¢(xy) = v (p(x)y). o

P.3.3. If x=x'ux", x’,x"€B*,and u is an elementary reduction
of the form (3.4), then ¢(x) = yp(x'yx").

Proof. If x'=1 or x'ER, then the above equality holds by (ii),
and if x#1, x¢R, then we can apply P.3.2 and an induction on norms. ¢

P.3.4. (¥x’,x"€B*, x€B' )y (x"xx") =y (x'¢(x)x").

Proof. We can assume that y (x)#x, and apply P.3.3. ¢

Now, we will define a collection of mappings

s) 1f xeB% B', then dm(x)=a=dmx.




m. +K m
([1*8* *5 8| sen.

_m, +K, _m, +K,
Namely, assume that (€A and xXEB . Then, by P.3.1, ¢y (x)EB ,
and thus z1=(El_1+i,w(x)}e§, for every i€N . Then we put
A m A
(x]" = z,2. (3.6)

To show that (B;([ ]* |1€A}) is a (K;{K, |rer}; (m |1rer}-
associative, we have to show that

[x’ [x]* x"]* = [x'xx"]", (3.7)
for every pair v,A€p, and x’,y,x“eﬁ* such that the left hand side
is well defined. m)‘+KA

Namely, first we have that x€B and
v — —
[x] = (m _ FL,u(x)) ... (m _ +m L (x)).

By P.3.4 we have y(x’[x]V x")=¢p(x’xx"), and this implies that
(3.7) is satisfied.

Thus,[ﬁsq ]”Aeﬂ})is an associative. By induction on hierarchy,
it can be easily seen that B is a generating subset of this associative.

Assume that (Q; {[ ] "Ime.ﬂ.}} is anassociative of the same type and £:B»Q
an arbitrary mapping. Define a sequence of mappings {CQ:BG*Q} as follows.

First, we put {,=f{. Assume that ¢ :B =+ Q is well defined.
Let v€B \Bu. Then there exist A+l€A and i€N, , such that

. a+1 1
v=(ml+i,x), where x€R Thus, x=u,u,...u , for some

A1 ,0” +k
u;EB,. Then ¢, (u )€Q is well defined. Let AFLTTA#
x My
[.a[u1]...tc“(um % Vl=c, -

At
“a4r (V) = cy,and 2 (w) = ¢ (w), for every weB_.

Define by ¢ the uniquelly determined mapping ¢:B -+ Q which
is an extension of Cor for every a = 0.

By induction it can be shown that
v (B3 ([ 1M 1rexd) » (@:t[ 1| rend)
is a homomorphism, and that will complete the proof of the following
Theorem 3.5. (Q:;{[ ]* |1€A}) is a free (K;(K, |re€al};
{m, | 2er}) associative with a basis B. |l
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1 A4
Then we put =

MHOT'YIMMEH3HOHAJIHU ACOLMIATHBH
Pesume

Hexa M e MHOXECTBO TMO3MTHBHH lesIH BPOEeBH M, 3a cexkoj mEM,
Hexka Fp € MHOXeCTBO BEKTOPCKO BPEAHOCHH ONepauHH Ha eOHO MHOXeCT-
BO A, Taka wWToO (VfEFm) £: Am+kf R Am,
kagme wro k. > 0. (Ipuroa, AY osxauyyBa r-TH OeKapTOB CTeneH Ha
MHOXecTBOTO A.) Jla ro o3HauyHWMe coO F MHOXeCTBOTO {lemem}.

BekTOpCKO BpegHocHara anretpa (A;F) ce BMKka acoOUHjJATHB ako
BaXH OMUTHOT acOLHjaTHBEH 3aKOH. BOo OBa MNoOpaHewHH Tpyna ?Il] H
[2]) ce mo6uenu Hexom pesynraTH 3a ACOUHIATHBH WTO Ce OOHECYBaaT
Ha cnyuajor |[M|=1, a oBme ce BpmaT COONBETHHM HCMUTYBama s3eMajiu
M npna e NpoM3BOJIHO HENPa3HO MHOKECTBO MO3MTHBHH UelH GpOoeBH.
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