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Abstract. A variety of n-groupoids {i.e. algebras with one n-ary operation f) is said to
be a primitive n-variety if it is defined by a system of identities of the following form:

Flzig@igy @iy ) = flo 2550000, 25, (*)
Here we give a convenient description of {ree objects in primitive n-varieties, and several properties
of free objects are also established.

1. Introduction. Identities of the form (#} are called primitive n-identities,
where we take n to be a fixed positive integer, and i, j, are positive integers.
We do not make any distinction between two equivalent identities, and that is the
reason why we assume 1 < 7, j, < 2n. A set ¥ of primitive n-identities is said
to be complete il it contains every primitive n-identity which 15 a consequence of
%.. Everywhere in this paper we suppose that T is a complete system of primitive
n-identities, and we also take n > 2, since for n = 1 the only nontrivial primitive
l-identity is f{z) = f(y), which gives rise to constant unars.

The main results obtained here are the construction of free Z-objects with
given basis B and the following theorems, which are corollaries of the obtained
construction.

THEOREM A. A free Z-object has a unigue basis. O

THEOREM B. FEvery subobject of a free E-object is a free Z- ob;ec! as well U]

For any identity (*) we put I = {iy,...,in}, J = {j1,..., Jn}.

THeoREM C. Assume thai there is an sdcntzty (*) in £ such that INJ=0.If
ke{l,2,...,n—1} is the largest inleger such that () is in & for [={1} and for every J
with [J|<k, then any free L-object with rank k has a subobject with infinite rank.0J

THEOREM D. For every identily () in & let INJ # 0 and assume that if (*)
s X for I = {1,2,...,n}, then |J| > 2. Then every free L-object has a subobjecit
with infinite rank. O

THEOREM E. The word problem is solvable in any primilive n-variety. O

2. Complete sets of primitive n-identities. As we already mentioned in
section 1, we assume that in (*) we have 1 <1i,, j, < 2n = m for each v. In such
a way the primitive n-identities can be considered as transformations of the set
M = {1,2,...,m}, i.e. as elements of the set 7 = M™(= {p|p: M — M}). Next,
in this paper we will not make any distinction between the sets M™ and M"™ x M"™,
where M"™ = {¢|¢: {1,2,... ,n} — M}. Namely, if o € M™ and ¢, g € M" are

gefinie by (i) = (i), er(i) = p(n +i)
for each i€{1,2,...,n}, then (¢, ¢r) will be considered as another notation of .
We stress again that we suppose here and further on that ¥ denotes a complete
set of primitive n-1dentities, where n > 2is a given integer. By the above agreement,
we also have that ¥ C 7.
Every subset A of 7 induces a relation ~4 on M" defined by
p~at (oY) €A
The following completeness theorem is a consequence of a result from [2]:
ProrosiTION 2.1. A subset A of T is complete iff il salisfies the following
condilions:
(i) ~A s an equivalence relation on M"™;
(i) A is a left ideal in T, i.e. T o A C A, where : denotes the usual superposilion
of transformations. O
The following property (shown in [2]) will be used in the next section:
PROPOSITION 2.2. Lel £, € X be such thal kerfr = kernr, and denoie by
T(&,n) the set of all elemenis ¢ € T which satisfy the following conditions: {1 = &L

and £G) = £(k +n), 7(k) = n(G +n) = C() = (G +n)
for every i,k,j € {1,2,...,n}. Then T(&,n) # 0 and T(E,n) C X (and, further-
more, T oT({,p) C X). O

Given any complete set © of primitive n-identities, by L[M] we denote the
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quotient set M™/~yx, and if ¢ € M™, then by [¢] € L[M] we denote the corre-
sponding class of equivalent elements. (Further on, we will write simply ~ instead
of ~y.)

For any i € M, let i € M" be defined by i(r) = i for each v € {1,2,...n}.
We say that ¥ is with constant if [1] = [2].

If o € M™, then the set {¢(1),...,%(n)} is called the content of ¢, and will
be denoted by cnt(¢).

ProrosiTiON 2.3. The following condilions are equivalent:

(i) X is with constiant;

(i) i) =[] for any i,j € M;

(ii1) there exist ¢, 7 € M™ such that [¢] = [n] and the contents of p and 1 are
disjoint. O

If ¥ is with constant, then any element of [i] is called a ©-constant; ¥ is said
to be with absolute constant if £[M] is a singleton. Denote by & the element of
M™ defined by e(v) = v for each v € {1,2,...,n}.

ProrosiTION 2.4. The following conditions are equivalent:

(i) X is with absolule constant;
(i) ¢ ~n for any ¢, nE€ M™;
(iii) there is a ¢ € M™ such that € ~ ¢ and € and © have disjoini contents. [

ProprPoSITION 2.5. If ¢ € M™ is nol a T-constani, then there is an 1 € []
such that cnt(n) is a subsei of ent(¥) for any ¥ € [p].

(Then we say that 5 is a minimal member of [¢].)

Proof. Since A = {cnt(§)[€ € [¢]} is a finite set, there is an 7 € [¢] such that
ent(n) is a minimal member in A. Assume that cnt(n) and cnt(n’) are different
minimal members in A. Then cnt(n) N ent(n') # @, since ¢ is not a T-constant.
Let 7 € cnt(n) Ncnt(n’) and let j € ent(n’)\ent(n). Define ¢ € 7 by ¢(j) = i and
¢(k) =k for any k& # j. Then (o (n,n') = (»,7") € X for some " € M™ such that
ent(n’”) = ent(n)\{j}. O

Now we define the notion of the X-content of an element ¢ € M™, denoted by
entx (), as follows. We put cntx(p) = 0 if ¢ is a E-constant, and entg () = ent(n)
is  is not a X-constant and 7 is a minimal member of [¢]. Note that & ~ ¢ implies
entg(€) = entg(yp).

ProrosiTiON 2.6. There exists a ¢ € M™ such thal cntz(w) s a singlefon
iff T is without constant. O

X is said to be essentially k-ary iff |enis(e)] = k.

If ¥ is with constant, then the order of the constant of ¥ is said to be k iff
cntp(e) = 0 for each ¢ € M™ such that [cnt(p)| < k, and k is the largest such
integer. Therefore we have:

ProrosiTioN 2.7. The following statemenis are equivalent:
(i) X is with absolule constani;
(ii% X is with constant of erder n. O

3. Z-objects. Let A be a nonempty set and let £ be a complete set of
primitive n-identities. Define a relation ~g 4 (shortly denoted by ~,4) on the set
A™(= {ala: {1,... ,n} — A}) as follows:

a~ b <= (3¢ € T)keré = ker(a, b)
where a,b € A™ and (a,b) € A™ is defined as in the preceding section, i.e.
(a,b)(i) = a(i), (a,b)(i +n) = b(i), for each i € {1,2,...,n

The following stalement is a corollary from Proposition 1.1 (and its general-
ization as well):

PrOPOSITION 3.1. (i) ~4 is an equivalence relation. (ii) Ifa~4 b, cisa
transformation of A and co (a,b) = (a’,b’), then a’ ~, b’. O

Proof. We will give only a sketch of the proof, and we will use the fact that
¥ is a complete set of identities. Let a,b,c € A",

(i) Then for suitably chosen ¢ € 7 we have kerp(g,€) = ker(a, a), and also if
kerf = ker(a,b), then ker(€r, &) = ker(b,a). The transitivity follows by
using Proposition 2.2.

(it) If ker € = ker {(a, b) and c o (a,b) = (a’,b’), then there is a ¢ € 7 such that
ker @€ = ker (a’,b’), and £ € & implies € € £ by Proposition 2.1. O
We denote by I[A] the quotient set A/ ~ 4 and by [a] the class of equivalent



elements of a € A™. (So, [a] = [b]iffTa~a b.) A =M = {1,2,... ,m}, then ~4
and ~ have the same meaning as in section 2.
Proposition 2.2-2.6 have obvious generalizations, and we make a summary

ow.

(1) |Z[A]] = 1 iff one of the following cases appears: 1.1) |[A| = 1; 1.2) Z is
with absolute constant; 1.3) |A| < k and Z is with constant of order k.

(2) If ag A", then the set cnt{a)={a(1),...,a(n)} is called the content of a.
If T is with constant and |ent(a)|=1, then the class of equivalent elements [a] will be
denoted by o(@A) and called the zero of X[A]. Then we also say that the £-content
of o is empty, and we denote it by enty(0) = #; moreover, for each ¢ € o we put
entp(c)=0. Let b € A™ If either £ is without constant or [b]#o, then in the family
of sets {cnt(c)|e € [b]} there is the least member which will be denoted by cntx[b]

and called the X-content of [b]; in this case we also let enty(c) = entg[b] for each
c€[b]. And, if d€[b] is such that ent(d)=cnty(d), then we say that d is a minimal
member of [b]. (We note that [b] can contain distinct minimal members.)

(3) If £ is with constant then |enty[a]| > 2 for each [a] # o, but if ¥ is
without constant then |entg(a)| = 1 for every a € A™ such that |ent(a)] = 1. IT E
is essentially unary then |cntg(a)| = 1 for every a € A™.

(4) If A C B then the canonical mapping from E[A] into X[B] is injective,
and then we can assume that £[A] C X[B], in the following sence: if [a] € X[B]
and cntgfa] C A, then we take [a] € £[A] as well.

An algebra (A, f) with n-ary operation f (i.e. an n-groupoid) is called a
Z-object if it satisfies all the identities belonging to T.

ProPOSITION 3.2. An n-groupoid (A, f) is a T-object iff
for everya,be A™. O auberflar=Ab)

Denote by nat(~,4) the natural mapping a — [a] from A" into X[A]. Then
by Proposition 3.2 we have:

PropPosiTION 3.3. An n-groupoid (A, f) is a E-object iff there is a uniquie
mapping f:E[A] — A such that fonat(~,) = f. (Certainly, the eristence of such
a mapping [ implies ils uniqueness.) O

Now we have a more convenient a.ll-ernatwe deﬁmtlon of a E-object. Namely,
if f is a mapping from X[A] into A, then the pair (A, f) is called a X-object with
carrier A and operation f. Futher on, by a X-object we > will understand the kind of

structure we have just defined. Thus, for subobjects and homomorphisms we have
the following characterizations:

ProrosiTioN 3.4. If A = (A,[f) is a E-object and C C A, then C is a
subobject of A iff f(E[C])C C. O

Thus, any subobject of a X-object is a X-object too.

PROPOSITION 3. 5. Lel A = (A, f) and B = (B, g) be E-objecls, and let
h: A — B be a mapping. Then h induces a unique mapping h: ©[A] — X[B] such
that h o nat(~,) = nat(~g)oh, and h is a komomorphwm from A into B iff
hof=goh. 0O

(We note that h: A — B induces a mapping h("): A"— B" such that [a] = [b] in
E[A] implies [k(®)(a)]=[A")(b)] in (B8], and then h([a])=[h(™)(a)] for each a€A™)

The notion of a partial X-object can be defined as follows. Let A be a nonemp-
ty set, D a subset of X[A] and f a mapping from D into A. Then we say that the
triple (A, D, f) is a partial E-object. It can be easily seen that this definition is
compatible with Evans’ definition of partial algebras in a variety of algebras (see
(3], where the words “incomplete” and “a class of algebras V7 are used instead of
“partial” and “a variety V). Turthermore, if (A, P, f) is a given partial T-object
and g a fixed element of A, then if we define g: £[4] — A by

_ { f([a]), if[a]jeD
o(lal) = { q if [a] € S[AND!

then (A, g) is a £-object which is an extension of (A, D, f). Now we can apply the
well known Evans’ result [3, p. 68] “if V is a class of algebras having the property
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that any incomplete V-algebra can be embedded in a V-algebra, then the word

problem can be solved for this class” to obtain the proof of Theorem E of section 1.
4. A construction of free T-objects. Here we will give a construction of

free T-objects with basis B, where B is a given nonempty set. Let {5,jp = 0) be

a sequence of sets defined inductively as follows:

- By = B, Bpy1 = B, UX[B,],

F(z, B) = | J(B,Ip > 0).

{We will write simply F instead of (2, B), when £ and [ are known.) By induc-
tion on p one can easily prove that £[F] = F\B.

If w€ F and if p is the least number such that «€B,, then we say that p is the
hierarchy of u and write x(u)=p. Il is clear that if £ is with constant, then x{o}=1.

ProrosiTiON 4.1. Letu € F and let u notl be a constanl. Then yx(u) = p+1
iff entp(u) = {vy,ve,... , v} is such that x(v;) < p for each i and x(v;) = p for
some j (i,j €{1,2,...,k}). O

Define an operation f: E[F]—F by f(u)=u for each ue¥X[F]. Then we have:

ProPOSITION 4.2. (F, f) is a X-objecl generated by the sel B. (J

Let (C,g) be an arbitrary Z-object and let h: B — C be a mapping. Put
he = h and suppose that h,: B, — C is a well defined mapping for each r < p
in such a way that h, is an extension of A,_;, and if r > 0, yx(u) = r, then
he(u) = goh,_;(u), where h,_,:Z[B,_;] — Z[C] is defined as in Proposition 3.5.
Now define iy 41: Bpy1 — C Lo be the extension of o, such that hyi1(u) = goh,(u)
for each u with x(u) = p+1. (Note that if x{u} = p+ 1, then u € £[B,], and thus
h,(u) € E[C] is well defined by Proposition 3.5.) In such a way we have defined a
chain of mappings (hy|p > 0), and its union b = J(hp|p > 0) is an extension of A
and a homomorphism from (I, f) into (C, g) as well. Thus we have the following

THEOREM 4.3. If B is a nonemply set, then (F, f) s a free object with basis B.OJ

The preceding construction of free T-objects is somewhat obscure, but in
some cases it can be considerably simplified.

Erample 44. If £ is with constant and a,b € B, then we have [a"] =
[6"] = o, where o is the zero of F. (Here, and later on, a":1 +— a for each a € A,
1 € {1,...,n}.) Clearly, o € B;\B and if £ is with absolute constant, then
F = BU{o} and f(u) = o for each u € E[BU{o}]. Therefore, if ¥ is with absolute
constant, then every constant n-groupoid is freely generated by the set of elements
distinct from the constant (i.e. 0). We have the same result if £ is with constant,
of order k and |B| < k. (Morcover, if X is with constant, then any one-element
groupoid can be considered as free Z-object with empty basis.) O

Ezample 4.5, Assume that I is essentially unar, i.e. for each ¢ € M™ there
isani € {1,2,...,n} such that (p,j) € & for j = ¢(i). Then the class of Z-objects
can be viewed as the class of unars. Namely, if (G, h) is a unar and if we define a
mapping g: £[G] — G by g(a) = h(a(?)), then we get a E-object (G,g), and any
-object can be obtained in such a manmer. Moreover, (G,g) is a free ¥-object
with basis B ifl (G, h) is a [ree unar with basis B. [J

We note that a subunar of a finitely generated free unar is finitely generated
too, and thus Example 4.5 shows that the assumptions of Theorem D are essential.

Example 4.6. Let n = 3 and let V be a variety defined by the identities

f(z,z,2) = f(z,z,y) = f(v,0,9), J(z,9,2) = fy,z,2) = f(z,2,9).
If B = {b}, o # b and if we put G = {o,b} and g(u,v,w) = o for each u,v,w € G,
then (G, g) is a [ree object in V with basis B of rank 1. Now, take B = {b,c}, b # ¢
and o € B, and defline the sets B, inductively by

By=BU{o}, Byni =B, U{{u,v,u}u#v#w#u, uv,we€ B}
Let H = | J(By|p > p) and let .

U(B,lp > p) bl {{uv’w} ifu+#vsws#u
otherwise

Then H = (H, h) is a free object in V with basis B. The subset D of IT, where D =
{d;]i = 0} and the elements d; are defined inductively by dp = {0,b, r:}, dpy1 =
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{0,b,d;} is a basis of infinite rank of the subobject L of H generated by D. O

Frample 4.7. 'There exist exactly 6 nonequivalent primitive 2-identities:
Ty = zy, TY = yx, Ty = zz, ry = yy, rr = yy, zy = zw. (Here a usual notation
of identities is used.) One can form 7 primitive 2-varieties, 6 of them being defined
by a single identity of the above ones, and V = Var({zy = yz,zz = yy}). In the
variety V we can describe a free object with nonempty basis B by F' = [ J(B,|p >
0), where Bp = B, By = BU {o} U {{u,v}u,v € B,u # v}, o ¢ B, and
By = By U{{u,v}|u,v € Bp,u# v} when p> 1. O

5. Some properties of free E-objects. Here we will give proofs of Theo-
rems A, B, C and D ol section 1. Although one can prove these theorems by using
an induction on hierarchy, we will rather use the ideas involved in [1].

Assume that G = ((, g) is a Z-object. An element a € (G is said to be prime
in G if a # g([b]) for any [b] € ©[G]. If £ is with constant, then each element of
G is said to be an improper divisor of the zero o € X[G]. If ¢ € G is nonzero and
nonprime element, then there is a [b] € E[G] such that ¢ = g([b]), and let a be a
minimal member of [b]. Then each element ¢ € cnt(a) = cutg[a] is called a proper
divisor of c. A sequence (finite or infinite) of elements a;,az,... of G is said to be
a divisor chain in G il for every ¢ > 1 g; is a proper divisor of a;-q.

Now we have another characterization of free L-objects:

THEOREM 5.1. A Z-object H = (H,h) is a free X-object with a nonemply
basis B C H iff the following conditions hold:

(i) B is the sel of prime elemenis in H.
(it) If c € H is nonprime, then there is a unigque [b] € S[B] such that ¢ = h([b]).
(iii) Fvery divisor chaein in H s finile.

Proof. It is clear that (F, f) satisfies (i), (ii) and (iii).

Conversely, if H satisfies (i), (ii) and (iii), then it is easy to show by induction
on hicrarchy that there is an isomorphism g: (F, f) — (H, k) such that g(b) = b for
each b e B. O

Now, Theorem A is a direct consequence of Theorem 5.1, for the set of prime
elements of a free X-object is its unique basis. (We should emphasize here that we
do not need Theorem 5.1 to prove Theorem A, since it follows directly from the
definition of primitive n-identities.)

Assume that G is a subobject of (F,f). The set of prime elements in G
(considered as a %-object) is empty only if £ is with zero and G = {0}, and then
G is free with an Ll'npty basis. If the set C' of prime elements in G is nonemply,
then C is a basis of G, since conditions (ii) and (iii) of Theorem 5.1 are hereditary.
This completes the proo[ of Theorem B.

Now, let £ be with constant of order k¥ < n, and let B = {ay,a»,...,az}.
Then B, = B U {o} and cnty(aa;...aro” %) = {a,as,...,ar,0}. Consid-
er the subset C' = {eci,ea,...,¢p,...} of F, where ¢; = [a1...a0" ], ¢cpp1 =
[a1...axep~*]. Let Q be the subobject of (F, f) generated by C. Clearly, C is the
set of prime elements in @. (Namely, ¢, is a divisor of ¢p41 in F, but this does
not hold in @.) This completes the proof of Theorem C, since the conditions for X

stated in Theorem C show that ¥ is with constant of order k. o )
It remains to show Theorem D. First we note that the assumption in this

Theorem can be expressed by |entg(g)] = & > 2. Take ¢ to be a minimal member
in [¢], and ¢ € entyp(p). Let B be a nonempty set, b € B and define a sequence
aj,ag,...,a, by aj = b, a;y; = [a'] for 0 < i < n, and an infinite sequence
€1,€2y---,Cpy--- By €1 =@, Cpy1 = [@1@2...ai-16pai41...ap]- Then a; # a; for
i # j and ¢r # ¢, for r # s. This implies that C = {c.|r > 1} is an infinite basis of
the subobject @ of (F, f) generated by C.
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