FREE OBJECTS IN PRIMITIVE VARIETIES OF *n*-GROUPOIDS Publ. de l'Inst. Math., Nouvelle série, 57 (71) (1995), 147–154

G. Čupona and S. Markovski

Dedicated to the memory of Professor D. Kurepa

Abstract. A variety of n-groupoids (i.e. algebras with one n-ary operation f) is said to be a primitive n-variety if it is defined by a system of identities of the following form:

 $f(x_{i_1}, x_{i_2}, \dots, x_{i_n}) = f(x_{j_1}, x_{j_2}, \dots, x_{j_n}) \tag{*}$ description of free objects in primitive x-varieties, and several properties

Here we give a convenient description of free objects in primitive n-varieties, and several properties of free objects are also established.

1. Introduction. Identities of the form (*) are called primitive n-identities, where we take n to be a fixed positive integer, and i_{λ} , j_{μ} are positive integers. We do not make any distinction between two equivalent identities, and that is the reason why we assume $1 \leq i_{\nu}$, $j_{\nu} \leq 2n$. A set Σ of primitive n-identities is said to be complete if it contains every primitive n-identity which is a consequence of Σ . Everywhere in this paper we suppose that Σ is a complete system of primitive n-identities, and we also take $n \geq 2$, since for n = 1 the only nontrivial primitive 1-identity is f(x) = f(y), which gives rise to constant unars.

The main results obtained here are the construction of free Σ -objects with given basis B and the following theorems, which are corollaries of the obtained construction.

THEOREM A. A free Σ -object has a unique basis. \square

THEOREM B. Every subobject of a free Σ -object is a free Σ -object as well. \square

For any identity (*) we put $I = \{i_1, \ldots, i_n\}, J = \{j_1, \ldots, j_n\}.$

THEOREM C. Assume that there is an identity (*) in Σ such that $I \cap J = \emptyset$. If $k \in \{1, 2, ..., n-1\}$ is the largest integer such that (*) is in Σ for $I = \{1\}$ and for every J with $|J| \leq k$, then any free Σ -object with rank k has a subobject with infinite rank. \square

THEOREM D. For every identity (*) in Σ let $I \cap J \neq \emptyset$ and assume that if (*) is in Σ for $I = \{1, 2, ..., n\}$, then $|J| \geq 2$. Then every free Σ -object has a subobject with infinite rank. \square

THEOREM E. The word problem is solvable in any primitive n-variety.

2. Complete sets of primitive n-identities. As we already mentioned in section 1, we assume that in (*) we have $1 \le i_{\nu}$, $j_{\nu} \le 2n = m$ for each ν . In such a way the primitive n-identities can be considered as transformations of the set $M = \{1, 2, \ldots, m\}$, i.e. as elements of the set $T = M^m (= \{\varphi | \varphi : M \to M\})$. Next, in this paper we will not make any distinction between the sets M^m and $M^n \times M^n$, where $M^n = \{\psi | \psi : \{1, 2, \ldots, n\} \to M\}$. Namely, if $\varphi \in M^m$ and φ_L , $\varphi_R \in M^n$ are defined by $\varphi_L(i) = \varphi(i), \qquad \varphi_R(i) = \varphi(n+i)$

for each $i \in \{1, 2, ..., n\}$, then (φ_L, φ_R) will be considered as another notation of φ .

We stress again that we suppose here and further on that Σ denotes a complete set of primitive *n*-identities, where $n \geq 2$ is a given integer. By the above agreement, we also have that $\Sigma \subseteq \mathcal{T}$.

Every subset Λ of \mathcal{T} induces a relation \sim_{Λ} on M^n defined by $\varphi \sim_{\Lambda} \psi \Leftrightarrow (\varphi, \psi) \in \Lambda$.

The following completeness theorem is a consequence of a result from [2]:

Proposition 2.1. A subset Λ of T is complete iff it satisfies the following conditions:

- (i) ~_Λ is an equivalence relation on Mⁿ;
- (ii) Λ is a left ideal in \mathcal{T} , i.e. $\mathcal{T} \circ \Lambda \subseteq \Lambda$, where : denotes the usual superposition of transformations. \square

The following property (shown in [2]) will be used in the next section:

PROPOSITION 2.2. Let $\xi, \eta \in \Sigma$ be such that $\ker \xi_R = \ker \eta_L$, and denote by $T(\xi, \eta)$ the set of all elements $\zeta \in T$ which satisfy the following conditions: $\zeta_L = \xi_L$ and

 $\xi(i) = \xi(k+n), \ \eta(k) = \eta(j+n) \Rightarrow \zeta(i) = \zeta(j+n)$

for every $i, k, j \in \{1, 2, ..., n\}$. Then $T(\xi, \eta) \neq \emptyset$ and $T(\xi, \eta) \subseteq \Sigma$ (and, furthermore, $T \circ T(\xi, \eta) \subseteq \Sigma$). \square

Given any complete set Σ of primitive n-identities, by $\Sigma[M]$ we denote the

quotient set M^n/\sim_{Σ} , and if $\varphi\in M^n$, then by $[\varphi]\in\Sigma[M]$ we denote the corresponding class of equivalent elements. (Further on, we will write simply ~ instead of \sim_{Σ} .)

For any $i \in M$, let $i \in M^n$ be defined by $i(\nu) = i$ for each $\nu \in \{1, 2, ... n\}$.

We say that Σ is with constant if [1] = [2].

If $\varphi \in M^n$, then the set $\{\varphi(1), \ldots, \varphi(n)\}$ is called the content of φ , and will be denoted by $cnt(\varphi)$.

PROPOSITION 2.3. The following conditions are equivalent:

(i) Σ is with constant;

(ii) [i] = [j] for any $i, j \in M$;

(iii) there exist φ , $\eta \in M^n$ such that $|\varphi| = |\eta|$ and the contents of φ and η are

disjoint.

If Σ is with constant, then any element of [i] is called a Σ -constant; Σ is said to be with absolute constant if $\Sigma[M]$ is a singleton. Denote by ε the element of M^n defined by $\varepsilon(\nu) = \nu$ for each $\nu \in \{1, 2, ..., n\}$.

PROPOSITION 2.4. The following conditions are equivalent:

Σ is with absolute constant;

(ii) $\varphi \sim \eta$ for any φ , $\eta \in M^n$;

(iii) there is a $\varphi \in M^n$ such that $\varepsilon \sim \varphi$ and ε and φ have disjoint contents. \square PROPOSITION 2.5. If $\varphi \in M^n$ is not a Σ -constant, then there is an $\eta \in [\varphi]$ such that $cnt(\eta)$ is a subset of $cnt(\psi)$ for any $\psi \in [\varphi]$.

(Then we say that η is a minimal member of $[\varphi]$.)

Proof. Since $A = \{\operatorname{cnt}(\xi) | \xi \in [\varphi] \}$ is a finite set, there is an $\eta \in [\varphi]$ such that $\operatorname{cnt}(\eta)$ is a minimal member in A. Assume that $\operatorname{cnt}(\eta)$ and $\operatorname{cnt}(\eta')$ are different minimal members in A. Then $\operatorname{cnt}(\eta) \cap \operatorname{cnt}(\eta') \neq \emptyset$, since φ is not a Σ -constant. Let $i \in \operatorname{cnt}(\eta) \cap \operatorname{cnt}(\eta')$ and let $j \in \operatorname{cnt}(\eta') \setminus \operatorname{cnt}(\eta)$. Define $\zeta \in \mathcal{T}$ by $\zeta(j) = i$ and $\zeta(k) = k$ for any $k \neq j$. Then $\zeta \circ (\eta, \eta') = (\eta, \eta'') \in \Sigma$ for some $\eta'' \in M^n$ such that $\operatorname{cnt}(\eta'') = \operatorname{cnt}(\eta') \setminus \{j\}. \square$

Now we define the notion of the Σ -content of an element $\varphi \in M^n$, denoted by $\operatorname{cnt}_{\Sigma}(\varphi)$, as follows. We put $\operatorname{cnt}_{\Sigma}(\varphi) = \emptyset$ if φ is a Σ -constant, and $\operatorname{cnt}_{\Sigma}(\varphi) = \operatorname{cnt}(\eta)$ is φ is not a Σ -constant and η is a minimal member of $[\varphi]$. Note that $\xi \sim \varphi$ implies

 $\operatorname{cnt}_{\Sigma}(\xi) = \operatorname{cnt}_{\Sigma}(\varphi).$

Proposition 2.6. There exists a $\varphi \in M^n$ such that $\operatorname{cnt}_{\Sigma}(\varphi)$ is a singleton iff Σ is without constant. \square

 Σ is said to be essentially k-ary iff $|\operatorname{cnt}_{\Sigma}(\varepsilon)| = k$.

If Σ is with constant, then the order of the constant of Σ is said to be k iff $\operatorname{cnt}_{\Sigma}(\varphi)=\emptyset$ for each $\varphi\in M^n$ such that $|\operatorname{cnt}(\varphi)|\leq k$, and k is the largest such integer. Therefore we have:

Proposition 2.7. The following statements are equivalent:

(i) Σ is with absolute constant;
(ii) Σ is with constant of order n. □

3. Σ -objects. Let A be a nonempty set and let Σ be a complete set of primitive n-identities. Define a relation $\sim_{\Sigma,A}$ (shortly denoted by \sim_A) on the set $A^n (= \{\mathbf{a} | \mathbf{a} : \{1, \dots, n\} \rightarrow A\})$ as follows:

 $\mathbf{a} \sim \mathbf{b} \Longleftrightarrow (\exists \xi \in \Sigma) \ker \xi = \ker(\mathbf{a}, \mathbf{b})$

where $a, b \in A^n$ and $(a, b) \in A^m$ is defined as in the preceding section, i.e. $(a, b)(i) = a(i), (a, b)(i + n) = b(i), \text{ for each } i \in \{1, 2, ..., n\}.$

The following statement is a corollary from Proposition 1.1 (and its general-

ization as well):

PROPOSITION 3.1. (i) \sim_A is an equivalence relation. (ii) If $a \sim_A b$, c is a transformation of A and $c \circ (a, b) = (a', b')$, then $a' \sim_A b'$. \square

Proof. We will give only a sketch of the proof, and we will use the fact that

 Σ is a complete set of identities. Let $a, b, c \in A^n$.

- (i) Then for suitably chosen $\varphi \in \mathcal{T}$ we have $\ker \varphi(\varepsilon, \varepsilon) = \ker(\mathbf{a}, \mathbf{a})$, and also if $\ker \xi = \ker(a, b)$, then $\ker(\xi_R, \xi_L) = \ker(b, a)$. The transitivity follows by using Proposition 2.2.
- (ii) If $\ker \xi = \ker(a, b)$ and $c \circ (a, b) = (a', b')$, then there is a $\varphi \in \mathcal{T}$ such that $\ker \varphi \xi = \ker (\mathbf{a}', \mathbf{b}')$, and $\xi \in \Sigma$ implies $\varphi \xi \in \Sigma$ by Proposition 2.1. \square We denote by $\Sigma[A]$ the quotient set A^n/\sim_A and by [a] the class of equivalent

elements of $a \in A^n$. (So, [a] = [b] iff $a \sim_A b$.) If $A = M = \{1, 2, \dots, m\}$, then \sim_A and \sim have the same meaning as in section 2.

Proposition 2.2-2.6 have obvious generalizations, and we make a summary below

(1) $|\Sigma[A]| = 1$ iff one of the following cases appears: 1.1) |A| = 1; 1.2) Σ is

with absolute constant; 1.3) |A| < k and Σ is with constant of order k.

(2) If $a \in A^n$, then the set $cnt(a) = \{a(1), \ldots, a(n)\}$ is called the content of a. If Σ is with constant and $|\operatorname{cnt}(a)|=1$, then the class of equivalent elements [a] will be denoted by $o(\notin A)$ and called the zero of $\Sigma[A]$. Then we also say that the Σ -content of o is empty, and we denote it by $cnt_{\Sigma}(o) = \emptyset$; moreover, for each $c \in o$ we put $\operatorname{cnt}_{\Sigma}(\mathbf{c}) = \emptyset$. Let $\mathbf{b} \in A^n$. If either Σ is without constant or $[\mathbf{b}] \neq \mathbf{0}$, then in the family of sets $\{\operatorname{cnt}(c)|c \in [b]\}$ there is the least member which will be denoted by $\operatorname{cnt}_{\Sigma}[b]$ and called the Σ -content of [b]; in this case we also let $\operatorname{cnt}_{\Sigma}(c) = \operatorname{cnt}_{\Sigma}[b]$ for each $c \in [b]$. And, if $d \in [b]$ is such that $cnt(d) = cnt_{\Sigma}(d)$, then we say that d is a minimal member of [b]. (We note that [b] can contain distinct minimal members.)

(3) If Σ is with constant then |cnt_Σ[a]| ≥ 2 for each [a] ≠ o, but if Σ is without constant then $|\operatorname{cnt}_{\Sigma}(\mathbf{a})| = 1$ for every $\mathbf{a} \in A^n$ such that $|\operatorname{cnt}(\mathbf{a})| = 1$. If Σ

is essentially unary then $|\operatorname{cnt}_{\Sigma}(\mathbf{a})| = 1$ for every $\mathbf{a} \in A^n$.

(4) If $A \subseteq B$ then the canonical mapping from $\Sigma[A]$ into $\Sigma[B]$ is injective, and then we can assume that $\Sigma[A] \subseteq \Sigma[B]$, in the following sence: if $[a] \in \Sigma[B]$ and $\operatorname{cnt}_{\Sigma}[a] \subset A$, then we take $[a] \in \Sigma[A]$ as well.

An algebra (A, f) with n-ary operation f (i.e. an n-groupoid) is called a

 Σ -object if it satisfies all the identities belonging to Σ .

Proposition 3.2. An n-groupoid (A, f) is a Σ -object iff

 $\mathbf{a} \sim_A \mathbf{b} \Rightarrow f(\mathbf{a}) = f(\mathbf{b})$ for every $a, b \in A^n$. \square

Denote by $nat(\sim_A)$ the natural mapping $a \mapsto [a]$ from A^n into $\Sigma[A]$. Then by Proposition 3.2 we have:

Proposition 3.3. An n-groupoid (A, f) is a Σ -object iff there is a uniquie mapping $f: \Sigma[A] \to A$ such that $f \circ \operatorname{nat}(\sim_A) = f$. (Certainly, the existence of such

a mapping f implies its uniqueness.)

Now we have a more convenient alternative definition of a Σ -object. Namely, if f is a mapping from $\Sigma[A]$ into A, then the pair (A, f) is called a Σ -object with carrier A and operation f. Futher on, by a Σ -object we will understand the kind of structure we have just defined. Thus, for subobjects and homomorphisms we have the following characterizations:

If A = (A, f) is a Σ -object and $C \subseteq A$, then C is a Proposition 3.4.

subobject of A iff $f(\Sigma[C]) \subseteq C$. \square

Thus, any subobject of a Σ -object is a Σ -object too.

PROPOSITION 3.5. Let A = (A, f) and B = (B, g) be Σ -objects, and let $h: A \to B$ be a mapping. Then h induces a unique mapping $h: \Sigma[A] \to \Sigma[B]$ such that $\underline{h} \circ \operatorname{nat}(\sim_A) = \operatorname{nat}(\sim_B) \circ h$, and h is a homomorphism from A into B iff $h \circ f = g \circ \underline{h}$. \square

(We note that $h: A \to B$ induces a mapping $h^{(n)}: A^n \to B^n$ such that [a] = [b] in $\Sigma[A]$ implies $[h^{(n)}(a)] = [h^{(n)}(b)]$ in $\Sigma[B]$, and then $\underline{h}([a]) = [h^{(n)}(a)]$ for each $a \in A^n$.

The notion of a partial Σ -object can be defined as follows. Let A be a nonempty set, \mathcal{D} a subset of $\Sigma[A]$ and f a mapping from \mathcal{D} into A. Then we say that the triple (A, \mathcal{D}, f) is a partial Σ -object. It can be easily seen that this definition is compatible with Evans' definition of partial algebras in a variety of algebras (see [3], where the words "incomplete" and "a class of algebras V" are used instead of "partial" and "a variety V"). Furthermore, if (A, \mathcal{D}, f) is a given partial Σ -object and q a fixed element of A, then if we define $g: \Sigma[A] \to A$ by

$$\underline{g}([\mathbf{a}]) = \begin{cases} f([\mathbf{a}]), & \text{if } [\mathbf{a}] \in \mathcal{D} \\ q, & \text{if } [\mathbf{a}] \in \Sigma[A] \setminus \mathcal{D}' \end{cases}$$

 $\underline{g}([\mathbf{a}]) = \left\{ \begin{array}{ll} f([\mathbf{a}]), & \text{if } [\mathbf{a}] \in \mathcal{D} \\ q, & \text{if } [\mathbf{a}] \in \Sigma[A] \backslash \mathcal{D}' \end{array} \right.$ then (A,\underline{g}) is a Σ -object which is an extension of $(A,\mathcal{D},\underline{f})$. Now we can apply the well known Evans' result [3, p. 68] "if V is a class of algebras having the property

that any incomplete V-algebra can be embedded in a V-algebra, then the word problem can be solved for this class" to obtain the proof of Theorem E of section 1.

4. A construction of free Σ-objects. Here we will give a construction of free Σ -objects with basis B, where B is a given nonempty set. Let $(B_p|p \geq 0)$ be a sequence of sets defined inductively as follows:

and let

$$B_0 = B, B_{p+1} = B_p \cup \Sigma[B_p],$$

$$F(\Sigma, B) = \bigcup (B_p | p \ge 0).$$

(We will write simply F instead of $F(\Sigma, B)$, when Σ and B are known.) By induction on p one can easily prove that $\Sigma[F] = F \setminus B$.

If $u \in F$ and if p is the least number such that $u \in B_p$, then we say that p is the hierarchy of u and write $\chi(u)=p$. It is clear that if Σ is with constant, then $\chi(0)=1$.

PROPOSITION 4.1. Let $u \in F$ and let u not be a constant. Then $\chi(u) = p+1$ iff $\operatorname{cnt}_{\Sigma}(u) = \{v_1, v_2, \dots, v_k\}$ is such that $\chi(v_i) \leq p$ for each i and $\chi(v_i) = p$ for some $j \ (i, j \in \{1, 2, ..., k\})$. \square

Define an operation $f: \Sigma[F] \to F$ by f(u) = u for each $u \in \Sigma[F]$. Then we have:

Proposition 4.2. (F, f) is a Σ -object generated by the set B. \square

Let (C,g) be an arbitrary Σ -object and let $h:B\to C$ be a mapping. Put $h_0 = h$ and suppose that $h_r: B_r \to C$ is a well defined mapping for each $r \leq p$ in such a way that h_r is an extension of h_{r-1} , and if r > 0, $\chi(u) = r$, then $h_r(u) = \underline{g} \circ \underline{h}_{r-1}(u)$, where $\underline{h}_{r-1} : \Sigma[B_{r-1}] \to \Sigma[C]$ is defined as in Proposition 3.5. Now define $h_{p+1}: B_{p+1} \to C$ to be the extension of h_p such that $h_{p+1}(u) = g \circ \underline{h}_p(u)$ for each u with $\chi(u) = p + 1$. (Note that if $\chi(u) = p + 1$, then $u \in \Sigma[B_p]$, and thus $\underline{h}_p(u) \in \Sigma[C]$ is well defined by Proposition 3.5.) In such a way we have defined a chain of mappings $(h_p|p \ge 0)$, and its union $\overline{h} = \bigcup (h_p|p \ge 0)$ is an extension of h and a homomorphism from (F, f) into (C, g) as well. Thus we have the following

THEOREM 4.3. If B is a nonempty set, then (F, f) is a free object with basis B. \square The preceding construction of free Σ -objects is somewhat obscure, but in

some cases it can be considerably simplified.

Example 4.4. If Σ is with constant and $a, b \in B$, then we have $[a^n] =$ $[b^n] = 0$, where o is the zero of F. (Here, and later on, $a^n : i \mapsto a$ for each $a \in A$, $i \in \{1, \ldots, n\}$.) Clearly, $o \in B_1 \setminus B$ and if Σ is with absolute constant, then $F = B \cup \{o\}$ and f(u) = o for each $u \in \Sigma[B \cup \{o\}]$. Therefore, if Σ is with absolute constant, then every constant n-groupoid is freely generated by the set of elements distinct from the constant (i.e. o). We have the same result if Σ is with constant, of order k and |B| < k. (Moreover, if Σ is with constant, then any one-element groupoid can be considered as free Σ -object with empty basis.) \square

Example 4.5. Assume that Σ is essentially unar, i.e. for each $\varphi \in M^n$ there is an $i \in \{1, 2, ..., n\}$ such that $(\varphi, \mathbf{j}) \in \Sigma$ for $j = \varphi(i)$. Then the class of Σ -objects can be viewed as the class of unars. Namely, if (G, h) is a unar and if we define a mapping $\underline{g}: \Sigma[G] \to G$ by $\underline{g}(\mathbf{a}) = h(\mathbf{a}(i))$, then we get a Σ -object (G, \underline{g}) , and any Σ -object can be obtained in such a manner. Moreover, (G, \underline{g}) is a free Σ -object

with basis B iff (G, h) is a free unar with basis B. \square

We note that a subunar of a finitely generated free unar is finitely generated too, and thus Example 4.5 shows that the assumptions of Theorem D are essential.

Example 4.6. Let n=3 and let V be a variety defined by the identities $f(x,x,x) = f(x,x,y) = f(y,y,y), \quad f(x,y,z) = f(y,x,z) = f(x,z,y).$ If $B = \{b\}, o \neq b$ and if we put $G = \{o,b\}$ and g(u,v,w) = o for each $u,v,w \in G$, then (G,g) is a free object in V with basis B of rank 1. Now, take $B=\{b,c\}, b\neq c$ and $o \notin B$, and define the sets B_p inductively by

and $0 \notin B$, and define the sets B_p inductively by $B_0 = B \cup \{0\}$, $B_{p+1} = B_p \cup \{\{u, v, w\} | u \neq v \neq w \neq u, u, v, w \in B_p\}$ Let $H = \bigcup (B_p | p \geq p)$ and let $h(u, v, w) = \begin{cases} \{u, v, w\}, & \text{if } u \neq v \neq w \neq u, \\ 0, & \text{otherwise} \end{cases}$ Then $\mathbf{H} = (H, h)$ is a free object in \mathcal{V} with basis B. The subset D of H, where $D = \{\{u, v, w\}, u \neq v \neq w \neq u, u, v, w \in B_p\}$ $\{d_i|i\geq 0\}$ and the elements d_i are defined inductively by $d_0=\{0,b,c\}, d_{p+1}=\{0,b,c\}$

 $\{o, b, d_p\}$ is a basis of infinite rank of the subobject L of H generated by D. \square

Example 4.7. There exist exactly 6 nonequivalent primitive 2-identities: xy = xy, xy = yx, xy = xx, xy = yy, xx = yy, xy = zw. (Here a usual notation of identities is used.) One can form 7 primitive 2-varieties, 6 of them being defined by a single identity of the above ones, and $\mathcal{V} = \text{Var}(\{xy = yx, xx = yy\})$. In the variety \mathcal{V} we can describe a free object with nonempty basis B by $F = \bigcup (B_p | p \ge 0)$, where $B_0 = B$, $B_1 = B \cup \{0\} \cup \{\{u,v\} | u,v \in B,u \ne v\}$, $o \notin B$, and $B_{p+1} = B_p \cup \{\{u,v\} | u,v \in B_p,u \ne v\}$ when $p \ge 1$. \square

5. Some properties of free Σ -objects. Here we will give proofs of Theorems A, B, C and D of section 1. Although one can prove these theorems by using

an induction on hierarchy, we will rather use the ideas involved in [1].

Assume that G = (G, g) is a Σ -object. An element $a \in G$ is said to be prime in G if $a \neq g([b])$ for any $[b] \in \Sigma[G]$. If Σ is with constant, then each element of G is said to be an improper divisor of the zero $o \in \Sigma[G]$. If $c \in G$ is nonzero and nonprime element, then there is a $[b] \in \Sigma[G]$ such that c = g([b]), and let a be a minimal member of [b]. Then each element $d \in \text{cnt}(a) = \text{cnt}_{\Sigma}[a]$ is called a proper divisor of c. A sequence (finite or infinite) of elements a_1, a_2, \ldots of G is said to be a divisor chain in G iff for every i > 1 a_i is a proper divisor of a_{i-1} .

Now we have another characterization of free Σ -objects:

Theorem 5.1. A Σ -object $\mathbf{H} = (H, \underline{h})$ is a free Σ -object with a nonempty basis $B \subseteq H$ iff the following conditions hold:

(i) B is the set of prime elements in H.

(ii) If $c \in H$ is nonprime, then there is a unique $[b] \in \Sigma[B]$ such that $c = \underline{h}([b])$.

(iii) Every divisor chain in H is finite.

Proof. It is clear that (F, f) satisfies (i), (ii) and (iii).

Conversely, if **H** satisfies (i), (ii) and (iii), then it is easy to show by induction on hierarchy that there is an isomorphism $g:(F,\underline{f})\to (H,\underline{h})$ such that g(b)=b for each $b\in B$. \square

Now, Theorem A is a direct consequence of Theorem 5.1, for the set of prime elements of a free Σ -object is its unique basis. (We should emphasize here that we do not need Theorem 5.1 to prove Theorem A, since it follows directly from the definition of primitive n-identities.)

Assume that G is a subobject of (F,\underline{f}) . The set of prime elements in G (considered as a Σ -object) is empty only if Σ is with zero and $G = \{o\}$, and then G is free with an empty basis. If the set C of prime elements in G is nonempty, then C is a basis of G, since conditions (ii) and (iii) of Theorem 5.1 are hereditary.

This completes the proof of Theorem B.

Now, let Σ be with constant of order k < n, and let $B = \{a_1, a_2, \ldots, a_k\}$. Then $B_1 = B \cup \{o\}$ and $\operatorname{cnt}_{\Sigma}(a_1a_2 \ldots a_ko^{n-k}) = \{a_1, a_2, \ldots, a_k, o\}$. Consider the subset $C = \{c_1, c_2, \ldots, c_p, \ldots\}$ of F, where $c_1 = [a_1 \ldots a_ko^{n-k}]$, $c_{p+1} = [a_1 \ldots a_kc_p^{n-k}]$. Let Q be the subobject of (F, \underline{f}) generated by C. Clearly, C is the set of prime elements in Q. (Namely, c_p is a divisor of c_{p+1} in F, but this does not hold in Q.) This completes the proof of Theorem C, since the conditions for Σ stated in Theorem C show that Σ is with constant of order k. It remains to show Theorem D. First we note that the assumption in this

Theorem can be expressed by $|\operatorname{cnt}_{\Sigma}(\varepsilon)| = k \geq 2$. Take φ to be a minimal member in $[\varepsilon]$, and $i \in \operatorname{cnt}_{\Sigma}(\varphi)$. Let B be a nonempty set, $b \in B$ and define a sequence a_1, a_2, \ldots, a_n by $a_1 = b$, $a_{i+1} = [a_i^n]$ for 0 < i < n, and an infinite sequence $c_1, c_2, \ldots, c_p, \ldots$ by $c_1 = a_n$, $c_{p+1} = [a_1 a_2 \ldots a_{i-1} c_p a_{i+1} \ldots a_n]$. Then $a_i \neq a_j$ for $i \neq j$ and $c_r \neq c_s$ for $r \neq s$. This implies that $C = \{c_r | r \geq 1\}$ is an infinite basis of

the subobject Q of (F, f) generated by C.

REFERENCES

R.H. Bruck, A Survey of Binary Systems, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958
 G. Cupona, S. Markovski S., Z. Popeska, Primitive n-identities, Contributions to General

Algebra 9 (1995), 107-116

3. T. Evans, The word problem for abstract algebras, J. London Math. Soc. 26(1951), 64-71