FREE OBJECTS IN SOME VARIETIES OF GROUPOIDS
Mar. 6unren Makenonnja 20 (46) (1996), 5-16

G. Cupona and N. Celakoski

Abstract

We give a canonical description of free objects in the variety
Vin,n of groupoids which satisfy the law z™y" = z122... z;n, where
z; =z if1is odd, z; = y if 7 is even, and m, n are integers such
that m > n > 2. We also consider a derived quasivariety V5, , of
groupoids in which only trivial identities hold.

0. Introduction

A groupoidis an algebra G = (G, -) with one binary operation (z, y) —
x +y. As usual, the symbol of the operation and some brackets will be
omited. Namely, if a, @y, a2, ..., ag, apy € G, then:

al = a, a*t! = d*a, (0.1)
a1as - - apappr = (@103 - - Qg )ak4 - (0.2)

If k is a positive integer and a, b, c € G, z; = a, z; = bfor1 <, 5 < k,

where 7 is odd and j is even, then:
abk = xy 2334, abl = a, (0.3)
cabk = cxy---xp, cabl =ca, cabd=

Note that if a, b, a,, b, € G, k >0, ky, ka2, ... > 0, then

@alblk] S L] bjkj (0.4)
is an element of ¢ which is defined by:
abk a1 5,0 = abk, abka b1 = (abk)-a,,
abk a1 5,2 = ((abk)ay )by, ...

It should be pointed out that, in (0.4), abk is an element of (7, and
each of the triples a;b;k; takes part as a sequence of elements where the
multiplication is "from left to the right” according to the definition (0.2).
For example: ab3, ecd2 € 7, but ab3 cd2 # (ab3) - (¢d2). Namely,

ab3 cd2 = (((ab}a)c')d = abacd ,
(ab3) - (cd2) = ((ab)a)(cd).
Recall that V,, , is the variety of groupoids which satisfy the identity
™ y" = zym, (0.5)

where 1, n are positive integers. Further on we will assume that m >n> 2,
if it is not stated otherwise.

For every p > 0, we define transformations z — <P~ and z + z'?)
of G in the following way:

20> = g0 — g p<PHI> _ (<) gletl) _ (I{p})”’ . (0.6)
Clearly:
‘ {I<p>)<‘i> = g<p+e> (I(P))(q) — (p+a) 2 (0.7)
for all p, g = 0.

Let Q = (Q, o) and G = (G, ) be groupoids such that Q@ C . Q is
said to be an (m, n)-subgroupoidof G iff aob = a™b"™ for all a, b € ). The
class of groupoids which are (m, n)-subgroupoids of groupoids in V,,, ,, will
be denoted by V. .. So V:h“ is derived from V,, .. ([3], I11.7.)

A free groupoid (in the variety of all groupoids) with a given basis B
will be denoted by F = (F), -).
We denote by R,, . the least subset of F such that B C F' and
Y € Ry 45 [2, Y € Ry and (Va, B €F)(z # a™ or y # ™). (0.8)
(Further on we will write R instead of R,, ,..)
Below we define a mapping *: R* — F.
Let z,y € R be such that 2y € R and [y], =r Y, y = z\"). Then,
we define zxy, <!> xy(1) and z<P+!> 4 y(P+1) where p > 1, as follows.
T kY =TY. (0.9)



v, if z=v% n=2 m=3

2 (1) g g rED )y, 3

SR 4 200 = Zn L (0.10)
if z=y™, n>3, m=n+1
Tym, if z£y" orm>n+1.

g<PH> y{"“): (1:<'> * y(”) z2<1>yMm—_2... :c':p)y(mm—'z (0.11)
The following theorems are the main results in the paper.
THEOREM 1. u*v € R, for all u, v € R and the groupoid R = (R, *)

is free in V. n with the (unigque) basis B.
THEOREM 2. V.

m,n

is a proper quasi-variety of groupoids, and only
trivial identities hold in V:l',l.

REMARK. (m, n) subgroupoids are special kinds of i-subgroupoids,
where t = #(z, y) is a groupoid term in which two variables x, y appear.
(Q = (Q, o) is a t—subgroupoid of a groupoid G = (. -) iff Q C & and

aob=1tig(a,b), (0.12)
for all a, b € @; the right-hand side of (0.12) is the value of the term
iz, y)in G for = a, y = b.) If V is a variety of groupoids, then the
class of {—subgroupoids in ¥V will be denoted by V*.

The paper [7] consider a question which can be "translated” in the
language of groupoids in the following way: "Is the condition «Only trivial
identities hold in V' suflicient for the class V! to coincide with the variety
of all groupoids?” The answer (which follows by Th. 2) is negative. The
question: whether the same is true for generalized subalgebras of algebras
of any type §2, remains open.

Th. 1, Th. 2 are proved in §1, §2 respectively. The obtained canonical
description of free groupoids in V (in Th. 1) is due to the fact that the
rewriting system on F induced by elementary transformations u™v" —uvm
is a terminating Church-Rose system. This conclusion does not hold in
the case 2 < m < mn or m > n = 1, which is shown in §3.

1. A canonical description of free groupoids in V,,

In this section we will prove Th. 1 in the case m > n > 2; first we state
some properties of F.

The following two properties are characteristic for a free groupoid F
with the basis B ([1], 1.1).

a)ab=cd = a=¢, b=d.

(Any groupoid with this property is said to be injective.)

b) B is the set of primes in F and it generates F.

(An element ¢ € (G is prime in a groupoid G = (G, ) iff ¢ # zy, for
all z, y € ¢.)

The normin F is the homomorphism z +— |z| from F into the additive
groupoid of positive integers which is an extension of the mapping B—{1}.

U [y],. is the largest non-negative integer 7 such that y = 2{™) for some z € F},.
(See also below, after (1.4.2).)

Fhus: bl =1, |uv]=|ul+ 0], (1.1)
forbe B, u, ve F.

The statements below are direct consequences of (1.1) and the injec-
tivity of F. Here: z,, y,,z,y, € F, i, 5. k> 1, p,q, r > 0.

lz'| = ilz], |2<P7|=mP|z|, [«P]=n"|z]|. (1.2)

=y ==y, i=j; (1.3.1)

TNE2 e LY oY =22 0aZf > Z=T1eee Ty 21 =YL y-05 Zj =53 (1.3.2)

z<P> — y<p+q> =z = y<9> (P — y{p+q} = 7 = y(q)_ (1.3.3)
2<k<m, x1#x; forsome i > 1= 2129...2;5 #a"; (1.4.1)

2<k<m, yi#y; forsome i #j=>xy .. xpy ..oy Fa™ o (1.4.2)
According to (1.2), for any u € F', there exists the largest non—negative
integer k such that u = 2<*>, for some 2 € F. This integer Ak will
be denoted by [u],,. One defines [u], in the same way. Next, [u, v] is

lefined by:
cefined by [w, v] = min {[u]n, [w].} . (1.5)
By (1.5), it follows:
[u<”>, 1-'(”)] =p+ [u, v]. (1.6)



The definition (0.8) can obtain now the following form:
un € Rm,n < (u, v € R‘m.ua [H, t’] = 0). (17)
(As above, we will write R instead of R,, ,,.)
The following properties are also consequences of (1.7) and (1.2) (1.6).

1<k<m,z€ R=>a*ec R, 2<P>, 2P ¢ R. (1.8)
2P cRorzP e R=>zcR. (1.9)
reR=>(z""'eR& [z],=0). (1.10)

p>1, z,y€E R= zy<P> € R. (1.11)
p>1, z,y€ R= (zy'™ € R & [z],. = 0). (1.12)
ryeE R= (zyzr e R& (z #y" or m >n+ 1)) . (1.13)

Assume now that u =+ v € F is defined by (0.9), (0.10) and (0.11),
where u, v € R are such that [u,v] = p, u = 2<7>, y =y, [y], = r,
y = 2{"). We have to show that u * v € R.

If p =0, then u*v = uv € R, and thus we can assume that p > 1.
Consider first the case = # y™ or m > n+ 1. Then z<'> % y(1) = zym.
By (1.13) we have zyr = ry3 € R, and thus we can assume that m > 4.
Then from (1.4.1) it follows: zyxy € R. In the same way one can obtain:
a<1> 4 gyl = zym € R. Assume now that p > 1. Then:

g<PHI> o (P +D) = gym <12y (Vi — 2., . 2<P>y(Pyp — 2, (1.14)
We will consider only the case m = 4 (and n =2 or n = 3). Then:
<PHI> 4 (P D) — gy p<1>0(1) | p<p>y(p) (1.14")

From (1.11) we obtain xyzyr<'> € R, and then (1.4.2) implies:
zyzyr<'>y") € R. Continuing in this way we would get
g<PH1> 4 pt]) €

It remains the case z = y", m =n+ 1.

If n =2, then z<'> xy(1) = 43 € R, and therefore z<P+!1> % ylr+1) =
yx<1> . . x<P> ¢ R, by (1.11). Thus we can assume that = > 3. In the
case n = 3, we have z<!'> xy(!) = 25 € R, by (1.10), and then (in the same
way as in the case m = 4, r # y?) one can show that <P+ 4y(P+1) ¢ R in
the case m = n+1 =4, = = y?, as well. It remains the case n+1 = m > 5.
y = 2™. Then, we obtain <!> % y(!) € R, by applications of (0.10), (1.10)
and (1.4.2), Finally, in the same way as in the first considered case (z # y"
or m > n + 1) one can obtain that z<Pt1> 4 ylrtl) ¢ R

Thus we have the following:

PROPOSITION 1.1. R = (R, #) is a groupoid .

Below we will show that (R, *) € V,,,. First, denote by u
(w€ i, k> 1) the corresponding k-th power of u in R, i.e.
ukt! k

k

*

ul = u, = u * u.
By (0.9) and (1.8): k < m = u¥ = «*, and thus:
u™ = u™, ul =u", ulP? =u<P>, u,(,p) = ulP) (1.15)
for all w € R, p > 0. This implies:
™ kvl = u k" = g <PHI> yrty (1.16)

where u, v € R, [u, v] = p, u = z<P> v = y(P).
If u,» € R, then *xuwvm will be an abbreviation for the product
Zy *# 2 %+ =% Z,, Where z; = u when 7 is odd, and z; = » when j is even.
(Note that uvm € F, *uvm € R and it is possible *uvm # uvm.)
From (0.9), (0.10) and (0.11) we obtain
*TYm = 2<1> 4 y(”,
¥z <Py Py = (2:<1> * y(”) <>y (N 2...2<P>y(Plyp 2.

(For example, if (m=4,n=2) or (m=4,n=3,z # y*), then:

*xzyd = ((z*y)*z) xy = zyzy = 21>

(1.17)

* y“).
If p>1, then
1-m{p"'y{pH:((:<p>*y“’))*Jf‘:p))*y(p):;ry:gyx{l)y(’>___x<p>y(p)
:(:.1:<1> i y[l}) £<1>y(1)_”$<p>y(?} .

In the case n+ 1 =m =4,z = ¥, [y]. = 7, y = 2{"), we have:

*TYyd = ((r*y)*r)*y:zs=:f:<'>=r'y(”,



* $<p>y(P)4:((I<P> * ,y(P)) * z<P>) 4 y(;')235w<l>y(l) <P yp)
—(2<1> & D) 2<I> (D) | <p>y (@)
So, the following equation holds:
. w™ x " = xuvm, (1.18)
and therefore we obtain:
PROPOSITION 1.2. Re V,, .. ¢
The following statement "inspired” the definition of ® and %, and it
will be used in the proof of Pr. 1.4, as well.
PROPOSITION 1.3. If G = (G, -) € V,, 5. then the following imnpli-
cations hold:
a)p> 1 = z<PHI>yrtl) = gy <12y — 2 2<P>y(P)y — 2,
bym=3=n+1= y3y? = ¢>.
c)m=4=n+1,r>0=> (z“""‘”)4 20+l = 25
dym=n+1>5,r>0=
(D)™ ) = pmAl (W am 2, 2r+D (N2, &

PROPOSITION 1.4. If G = (G,:) € Vo and @: F — G s a
homomorphism from F into G then the restriction ¥ of ¢ on R is a
homomorphism from R into G.

Proof. By using Pr. 1.3 and the definition of . ¢

As a consequence we obtain Th. 1, i.e. the following

PROPOSITION 1.5. R is free in V,, ,, with the (unique) basis B.

Proof. First, by the definition of R and *, B is the set of primes in
R and B generates R. Let G=(G.-)eV,,,, and A\: B—(/ be a mapping.
If ¢ is the homomorphism from F into G which extends A, then by Pr.
1.4, the restriction 1 of ¢ on R is a homomorphism from R into G.¢

Below we show a variant of 7T%h. 1 concerning the variety Vy ,.

PROPOSITION 1.6. V,  is the variety of left- zero groupoids. &

PROPOSITION 1.7. If m = 1, n > 2, then [u], < 1 for every
u € R(= Ry,.). If an operation * 1is defined by:

uv, if [v], =0, _
u*'u_{ g B ol (1.19)

then R = (R, *) is a groupoid which is free in V), with the basis B.
Proof. It is clear by (0.8) that [v],, > 2 implies v ¢ R. Therefore, by

1.19), btain:
( ), we obtain { v i [9)s =0,
v, if [v],=1,

T - —
u*vf:{u*u =u, if [v],=0,

wxwv=mun, Iif [T«']u.
Thus, R€ Vi .. ¢

2. Some properties of the class V:,,n

Given a groupoid H = (H, ), by H will be denoted the groupoid
(H, 0O) defined by 60 b=a™p (2.1)
(The right—hand side of (2.1) has the usual meaning in H.)

In Pr. 2.1-Pr. 2.5, m, n are (arbitrary) positive integers.

PROPOSITION 2.1. G € V., .. iff there erists a groupoid H € V,,

LT

such that G is a subgroupoid of H. ¢

Propositions 2.2 and 2.3 are special cases of more general results. (For
example: [3], IV.5 and IV.6; [8], V.11.2.)

PROPOSITION 2.2. Let G = ((, o) be a groupoid and R = (R, *)
be a free groupoid in V,, ,, with the basis . Let = be the least congruence
on R with the property

ol =

and so:

Il

aob=c = a™*xb" = c. (2.2)
Then: G € V::l'n iff the following condition is satisfied:
Va,beGlacmb=a=0"5. §
PROPOSITION 2.3. V),
of azioms of V.. . each of which is a quasi-identity.?) $.

is a quasi-variety, i.e. there exists a system



PROPOSITION 2.4. The quasi-identily
ror=yoy=>roz=yoz (2.3)

is true in each groupoid G = (G, o) € V:l_" .0

PROPOSITION 2.5. V:l,n is a proper subclass of the class of groupoids.

Proof. Let G=({a, b},-) be a two-element groupoid such that ba = b,
and zy = a in every other case. Then (2.3) is not satisfied in G. {

Below we will establish some properties of the groupoid R” = (R, 0O),
assuming that m > n > 2. First recall that

wlov=u"x*0v" (2.1
for all u, v € R.

2) Pr. 2.2 is almost obvious and Pr. 2.3 is a corollary of it. Moreover, we can
use Pr. 2.2 to obtain a convenient axiom system for V::,‘,,‘ Such a procedure is exposed
in [2], where it is found an axiom system of quasi-identities for the gquasi-variety of
algebras A = (A, ©2) which can be embedded in semigroups S = (5, -) in such a way
that f(aj, ..., an) = a1 ...an, for each n—ary operator f € 2, (n > 2).

In the Pr. 2.6-2.11 we assume that m > n > 2. They are corolaries of
the definitions of R and R”, and the injectivity of F.

PROPOSITION 2.6. z" is a prime in R", for eachz € R.

PROPOSITION 2.7. If (m,n)¢{3,2),@,3)}, then R’ is injective.

PROPOSITION 2.8. Let u, v, v, 8 € R and (u, v) # (v, §).

1) If (m, n) = (3,2), then:

w@ v =508 iff {(u, ), (v, 8)} = {(4% ¥), (v, ¥)}, Jor some y € R.

2) If (m,n) = (4, 3), then: u D v =046 iff

{(w, v), (7, 8)} = {(=\"Y), 2(7), (1), z(*N)],
for some z € Rand 0 <r <s.

PROPOSITION 2.9. The subgroupoid Q of R generated by the
basis B of R is injective. )

Proof. It (m, n)e{(3,2),(4,4)}, the assertion is a corollary from Pr.
2.6 and Pr. 2.8; in the case m>n+1 or m>5 we can apply Pr. 2.7.¢

PROPOSITION 2.10. Only trivial identities hold in V,, .. ¢

Finally: ,

PROPOSITION 2.11. vf,'m ts not a variety.

Proof. If V,, . were a variety, then by Pr. 2.10, it would be defined by
a trivial identity, for example @ = x. This would imply that V:"”
class of all groupoids, which contradicts Pr. 2.5. {

Thus the proof of Th. 2 is completed.

The following two propositions are corollaries of Pr. 1.6 1.7 and the
definitions of V, ,, and Vy . We see {rom them that the condition m > 3 is
essential for Th. 2.

PROPOSITION 2.12. For everyn > 1, V:]_,l is the variety of left-zero
groupoids. .

PROPOSITION 2.13. For everyn > 1, V), =Vs,. &

3. V,. .—reduced sets

Assume that V is a (non-trivial) variety of groupoids, and F = (F, +)
a free groupoid with the basis B. Let =y (furter on: =) be the least
congruence on F such that F/. € V. If u € F, then we denote by u/~
the =~ class containing u. We say that a subset S of F is V-reduced iff the
mapping u +— u/~ is a bijection from S onto F/~. Thus:

PROPOSITION 3.1. Let S be a V-reduced set of F' and the operation
e is defined on S as follows:

u, v, wWES=>(uerv=wEur=w). (3.1)

Then u — u/~ is an isomorphism from S = (5, o) onto F/~, and S is free
in V with the basis B.

PROPOSITION 3.2. R,, ,. is V,, n-reduced set iff: m=1 orm > n>2.

is the



Proof. I m > n > 2 or m = 1, then from Th. 1 and Pr. 1.6-1.7
follows that R,, , is a V,,, reduced set. Namely, the rewriting system (on
F) induced by elementary transformations: u™v™ — uwvm is a terminating
Church—Rose system ([5], 2.9), and R,, , consists of the normal forms in
this system.

Let m > 2, n=1 and a € B.

If m = 2, then:

(a*)’a — a*a — aa = a* € Ra,,
(a*)*a = (a*a®)a — (aa*)a € Ry, .
3) We note (see, for example: [3], IV.4.4) that Q is free in Vf:,l,, with basis B.

If m > 3, then:

m m

(a")"a — a"am =a"aa"am -2 — a™a™ aa™m—-3 —

—aa™maa"m—3 € R,

(a™)"a=a"a" ama"m—2a — aa"ma"a"m—-2a € R,, ;.

If m =mn > 2, then:

(“_n }n+1 = (“‘u}uan — aan € Hn,n. .

{an)n+l = a"a” a®a™n—1— a™ a®a®n—1 =
- (ﬂ.ﬂ)” o {an)n—l st & Rn,n )
Finally, if 2 < m < n, then:
(an)m(an)u — a™amm = (an]m c Rm,n .

(u‘ﬂ )m{.a" }H ={al‘l )Il‘l ({ﬂﬂ )‘IHIEI’I) a?laﬂ?£ —_ 11— I e

— (a")Y"(a"ama™a"n—m—1) € Ry n .

Therefore, if m > n =1 or 2 < m < n, then there exist u, v € R,, .
such that w # v, u = v, i.e. R, , is not V,, ,—reduced. &

From Pr. 3.2 follows that the definition of R,, , is "unsuccessful™ if
m>n=1lor2<m< n.
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CJIOBOJIHMU OBJERTHM BO HEROM
MHOI'YOBPA3SHMIJA TPYIIOMNIN
Pezume
Bo paboraBa ce jlaBa KaHoHMYeH onuc Ha ciobomnnTe 0OjeKkTH BO
mHEOryobpasumero rpynowan z™y™ = ryr---, Kajae mrto m > n > 2, a Ha
MecHaTa CTapaHa ce nojaByBaaT m (aKTOPH, MO pell: T, Y, T, Y,...



