FREE OBJECTS IN SOME VARIETIES OF GROUPOIDS Мат. билтен Македонија 20 (46) (1996), 5-16

G. Čupona and N. Celakoski

Abstract

We give a canonical description of free objects in the variety $\mathcal{V}_{m,n}$ of groupoids which satisfy the law $x^my^n=z_1z_2\ldots z_m$, where $z_i = x$ if i is odd, $z_j = y$ if j is even, and m, n are integers such that $m > n \ge 2$. We also consider a derived quasivariety $\mathcal{V}_{m,n}^{\square}$ of groupoids in which only trivial identities hold.

O. Introduction

A groupoid is an algebra $G = (G, \cdot)$ with one binary operation $(x, y) \mapsto$ $x \cdot y$. As usual, the symbol of the operation and some brackets will be omited. Namely, if $a, a_1, a_2, \ldots, a_k, a_{k+1} \in G$, then: $a^1 = a \,, \qquad a^{k+1} = a^k a \,,$

$$a^1 = a$$
, $a^{k+1} = a^k a$, (0.1)

$$a_1 a_2 \cdots a_k a_{k+1} = (a_1 a_2 \cdots a_k) a_{k+1}$$
. (0.2)

If k is a positive integer and a, b, $c \in G$, $x_i = a$, $x_j = b$ for $1 \le i, j \le k$, where i is odd and j is even, then:

$$\underline{abk} = x_1 x_2 \cdots x_k, \qquad \underline{ab1} = a, \tag{0.3}$$

$$c \, \underline{abk} = cx_1 \cdots x_k \,, \quad c \, \underline{ab1} = ca \,, \quad c \, \underline{ab0} = c \,.$$

Note that if $a, b, a_{\nu}, b_{\nu} \in G, k > 0, k_1, k_2, ... \geq 0$, then

$$\underline{abk} \, \underline{a_1 b_1 k_1} \, \dots \, \underline{a_j} \, b_j \, k_j \tag{0.4}$$

is an element of G which is defined by:

$$\frac{abk}{abk} \frac{a_1b_10}{a_1b_12} = \frac{abk}{(abk)}, \quad \frac{abk}{a_1b_11} = (\underline{abk}) \cdot a_1,$$

$$\frac{abk}{abk} \frac{a_1b_10}{a_1b_12} = ((\underline{abk})a_1)b_1, \dots$$

It should be pointed out that, in (0.4), <u>abk</u> is an element of G, and each of the triples $a_ib_ik_i$ takes part as a sequence of elements where the multiplication is "from left to the right" according to the definition (0.2). For example: $\underline{ab3}$, $\underline{cd2} \in G$, but $\underline{ab3}$ $\underline{cd2} \neq (\underline{ab3}) \cdot (\underline{cd2})$. Namely,

$$\underline{ab3} \ \underline{cd2} = \Big(\big((ab)a \big) c \Big) d = abacd,
\underline{(ab3)} \cdot (\underline{cd2}) = \big((ab)a \big) (cd).$$

Recall that $V_{m,n}$ is the variety of groupoids which satisfy the identity $x^m y^n = xym,$

where m, n are positive integers. Further on we will assume that $m > n \ge 2$, if it is not stated otherwise.

For every $p \ge 0$, we define transformations $x \mapsto x^{< p}$ and $x \mapsto x^{(p)}$ of G in the following way:

$$x^{<0>} = x^{(0)} = x$$
, $x^{} = (x^{})^m$, $x^{(p+1)} = (x^{(p)})^n$. (0.6)

Clearly:
$$(x^{})^{< q>} = x^{< p+q>}, \quad (x^{(p)})^{(q)} = x^{(p+q)},$$
 (0.7)

for all $p, q \geq 0$.

Let $\mathbf{Q} = (Q, \circ)$ and $\mathbf{G} = (G, \cdot)$ be groupoids such that $Q \subseteq G$. Q is said to be an (m, n)-subgroupoid of G iff $a \circ b = a^m b^n$ for all $a, b \in Q$. The class of groupoids which are (m, n)-subgroupoids of groupoids in $\mathcal{V}_{m,n}$ will be denoted by $\mathcal{V}_{m,n}^{\mathfrak{a}}$. So $\mathcal{V}_{m,n}^{\mathfrak{a}}$ is derived from $\mathcal{V}_{m,n}$. ([3], III.7.)

A free groupoid (in the variety of all groupoids) with a given basis Bwill be denoted by $\mathbf{F} = (F, \cdot)$.

We denote by $R_{m,n}$ the least subset of F such that $B \subset F$ and $xy \in R_{m,n} \Leftrightarrow [x, y \in R_{m,n} \text{ and } (\forall \alpha, \beta \in F)(x \neq \alpha^m \text{ or } y \neq \beta^n)].$ (0.8) (Further on we will write R instead of $R_{m,n}$.)

Below we define a mapping $*: R^2 \to F$. Let $x, y \in R$ be such that $xy \in R$ and $[y]_n = r^{-1}$, $y = z^{(r)}$. Then, we define x * y, $x^{<1} * y^{(1)}$ and $x^{< p+1} * y^{(p+1)}$, where $p \ge 1$, as follows. x * y = xy.

$$x^{\langle 1 \rangle} * y^{(1)} = \begin{cases} y^3, & \text{if } x = y^2, \ n = 2, \ m = 3\\ z^{n+2} \frac{z^{(1)} z n - 3 \dots z^{(r+1)} z^{(r)} n - 3,}{\text{if } x = y^n, \ n \ge 3, \ m = n+1\\ \frac{xym}{n}, & \text{if } x \ne y^n \text{ or } m > n+1. \end{cases}$$
(0.10)

$$x^{< p+1>} * y^{(p+1)} = (x^{<1>} * y^{(1)}) x^{<1>} y^{(1)} m - 2 \cdots x^{} y^{(p)} m - 2$$
 (0.11)

The following theorems are the main results in the paper.

THEOREM 1. $u*v \in R$, for all $u, v \in R$ and the groupoid $\mathbf{R} = (R, *)$ is free in $V_{m,n}$ with the (unique) basis B.

THEOREM 2. $\mathcal{V}_{m,n}^{\mathbf{q}}$ is a proper quasi-variety of groupoids, and only trivial identities hold in $\mathcal{V}_{m,n}^{\mathbf{q}}$.

REMARK. (m, n)-subgroupoids are special kinds of t-subgroupoids, where t = t(x, y) is a groupoid term in which two variables x, y appear. $(\mathbf{Q} = (Q, \circ))$ is a t-subgroupoid of a groupoid $\mathbf{G} = (G, \cdot)$ iff $Q \subseteq G$ and

$$a \circ b = t_{\mathbf{G}}(a, b), \tag{0.12}$$

for all $a, b \in Q$; the right-hand side of (0.12) is the value of the term t(x, y) in G for x = a, y = b.) If \mathcal{V} is a variety of groupoids, then the class of t-subgroupoids in \mathcal{V} will be denoted by \mathcal{V}^t .

The paper [7] consider a question which can be "translated" in the language of groupoids in the following way: "Is the condition «Only trivial identities hold in \mathcal{V}^t » sufficient for the class \mathcal{V}^t to coincide with the variety of all groupoids?" The answer (which follows by Th. 2) is negative. The question: whether the same is true for generalized subalgebras of algebras of any type Ω , remains open.

Th. 1, Th. 2 are proved in §1, §2 respectively. The obtained canonical description of free groupoids in V (in Th. 1) is due to the fact that the rewriting system on F induced by elementary transformations $u^m v^n \rightarrow \underline{uvm}$ is a terminating Church-Rose system. This conclusion does not hold in the case $2 \le m \le n$ or m > n = 1, which is shown in §3.

1. A canonical description of free groupoids in $V_{m,n}$

In this section we will prove Th. 1 in the case $m > n \ge 2$; first we state some properties of F.

The following two properties are characteristic for a free groupoid F with the basis B ([1], I.1).

a) $ab = cd \Rightarrow a = c, b = d.$

(Any groupoid with this property is said to be injective.)

b) B is the set of primes in F and it generates F.

(An element $c \in G$ is prime in a groupoid $G = (G, \cdot)$ iff $c \neq xy$, for all $x, y \in G$.)

The norm in **F** is the homomorphism $x \mapsto |x|$ from **F** into the additive groupoid of positive integers which is an extension of the mapping $B \rightarrow \{1\}$.

 $[y]_n$ is the largest non-negative integer r such that $y=z^{(r)}$ for some $z\in F_n$. (See also below, after (1.4.2).)

$$|b| = 1, \quad |uv| = |u| + |v|,$$
 (1.1)

for $b \in B$, $u, v \in F$.

The statements below are direct consequences of (1.1) and the injectivity of **F**. Here: x_{ν} , y_{ν} , x, y, $\alpha \in F$, i, j, $k \ge 1$, p, q, $r \ge 0$.

$$|x^{i}| = i |x|, \quad |x^{}| = m^{p} |x|, \quad |x^{(p)}| = n^{p} |x|.$$
 (1.2)

$$x^{i} = y^{j} \Rightarrow x = y, \quad i = j; \tag{1.3.1}$$

$$|x^{i}| = i |x|, |x^{}| = m^{p} |x|, |x^{(p)}| = n^{p} |x|.$$

$$x^{i} = y^{j} \Rightarrow x = y, i = j;$$

$$x_{1}x_{2}...x_{i}y_{1}...y_{j} = zz_{1}...z_{j} \Rightarrow z = x_{1}...x_{i}, z_{1} = y_{1}, ..., z_{j} = y_{j};$$

$$x^{} = y^{} \Rightarrow x = y^{"}, x^{(p)} = y^{(p+q)} \Rightarrow x = y^{(q)}. "$$

$$(1.2)$$

$$(1.3.1)$$

$$x_{1}x_{2}...x_{i}y_{1}...y_{j} = zz_{1}...z_{j} \Rightarrow z = x_{1}...x_{i}, z_{1} = y_{1}, ..., z_{j} = y_{j};$$

$$x^{} = y^{} \Rightarrow x = y^{"}, x^{(p)} = y^{(p+q)} \Rightarrow x = y^{(q)}. "$$

$$(1.3.3)$$

$$x^{} = y^{< p+q>} \Rightarrow x = y^{< q>}, \qquad x^{(p)} = y^{(p+q)} \Rightarrow x = y^{(q)}.$$
 (1.3.3)

$$2 \le k \le m$$
, $x_1 \ne x_i$ for some $i > 1 \Rightarrow x_1 x_2 \dots x_k \ne \alpha^m$; (1.4.1)

$$2 \le k < m$$
, $y_i \ne y_j$ for some $i \ne j \Rightarrow x_1 \dots x_n y_1 \dots y_k \ne \alpha^m$; (1.4.2)

According to (1.2), for any $u \in F$, there exists the largest non-negative integer k such that $u = x^{\langle k \rangle}$, for some $x \in F$. This integer k will be denoted by $[u]_m$. One defines $[u]_n$ in the same way. Next, [u, v] is

$$[u, v] = \min\{[u]_m, [u]_n\}. \tag{1.5}$$

By (1.5), it follows: $[u^{}, v^{(p)}] = p + [u, v].$ (1.6) The definition (0.8) can obtain now the following form:

$$uv \in R_{m,n} \Leftrightarrow (u, v \in R_{m,n}, [u, v] = 0). \tag{1.7}$$

(As above, we will write R instead of $R_{m,n}$.)

The following properties are also consequences of (1.7) and (1.2)–(1.6).

$$1 \le k \le m, \ x \in R \Rightarrow x^k \in R, \ x^{(p)}, \ x^{(p)} \in R.$$
 (1.8)

$$x^{\langle p \rangle} \in R \text{ or } x^{(p)} \in R \Rightarrow x \in R.$$
 (1.9)

$$x \in R \Rightarrow (x^{m+1} \in R \Leftrightarrow [x]_n = 0) . \tag{1.10}$$

$$p \ge 1, \quad x, y \in R \Rightarrow xy^{} \in R. \tag{1.10}$$

$$p \ge 1, \ x, y \in R \Rightarrow \left(xy^{(p)} \in R \Leftrightarrow [x]_m = 0\right).$$
 (1.12)

$$xy \in R \Rightarrow (xyx \in R \Leftrightarrow (x \neq y^n \text{ or } m > n+1)).$$
 (1.13)

Assume now that $u * v \in F$ is defined by (0.9), (0.10) and (0.11), where $u, v \in R$ are such that [u, v] = p, $u = x^{\langle p \rangle}$, $y = y^{(p)}$, $[y]_n = r$, $y=z^{(r)}$. We have to show that $u*v\in R$.

If p = 0, then $u * v = uv \in R$, and thus we can assume that $p \ge 1$. Consider first the case $x \neq y^n$ or m > n + 1. Then $x^{(1)} * y^{(1)} = xym$. By (1.13) we have $xyx = xy3 \in R$, and thus we can assume that $m \geq 4$. Then from (1.4.1) it follows: $xyxy \in R$. In the same way one can obtain: $x^{<1>} * y^{(1)} = xym \in R$. Assume now that $p \ge 1$. Then:

$$x^{< p+1>} * y^{(p+1)} = xym \; x^{<1>} y^{(1)} m - 2 \dots x^{} y^{(p)} m - 2$$
. (1.14)

We will consider only the case m = 4 (and n = 2 or n = 3). Then:

$$x^{(p+1)} * y^{(p+1)} = xyxy \ x^{(1)}y^{(1)} \dots x^{(p)}y^{(p)}$$
 (1.14')

From (1.11) we obtain $xyxyx^{<1>} \in R$, and then (1.4.2) implies: $xyxyx^{(1)}y^{(1)} \in R$. Continuing in this way we would get $x^{< p+1>} * y^{(p+1)} \in R.$

It remains the case $x = y^n$, m = n + 1. If n = 2, then $x^{<1>} * y^{(1)} = y^3 \in R$, and therefore $x^{< p+1>} * y^{(p+1)} = x^{(p+1)}$ $y^3x^{<1>}\dots x^{}\in R$, by (1.11). Thus we can assume that $n\geq 3$. In the case n=3, we have $x^{<1>}*y^{(1)}=z^5\in R$, by (1.10), and then (in the same way as in the case $m=4, x\neq y^2$) one can show that $x^{< p+1} * y^{(p+1)} \in R$, in the case $m=n+1=4, x=y^3$, as well. It remains the case $n+1=m\geq 5$, $y=x^n$. Then, we obtain $x^{<1>} * y^{(1)} \in R$, by applications of (0.10), (1.10) and (1.4.2). Finally, in the same way as in the first considered case ($x \neq y^n$ or m > n+1) one can obtain that $x^{(p+1)} * y^{(p+1)} \in R$.

Thus we have the following:

PROPOSITION 1.1. $\mathbf{R} = (R, *)$ is a groupoid.

Below we will show that $(R, *) \in \mathcal{V}_{m,n}$. First, denote by u_*^k $(u \in R, k \ge 1)$ the corresponding k-th power of u in \mathbf{R} , i.e.

$$u_*^1 = u$$
, $u_*^{k+1} = u_*^k * u$.

$$u_{*}^{1} = u, u_{*}^{k+1} = u_{*}^{k} * u.$$
By (0.9) and (1.8): $k \le m \Rightarrow u_{*}^{k} = u^{k}$, and thus:
$$u_{*}^{m} = u^{m}, u_{*}^{n} = u^{n}, u_{*}^{} = u^{}, u_{*}^{(p)} = u^{(p)}, (1.15)$$

for all $u \in R$, $p \ge 0$. This implies:

$$u_*^m * v_*^n = u^m * v^n = x^{(p+1)} * y^{(p+1)}, \tag{1.16}$$

where $u, v \in R$, [u, v] = p, $u = x^{}$, $v = y^{(p)}$.

If $u, v \in R$, then *uvm will be an abbreviation for the product $z_1 * z_2 * \cdots * z_m$, where $z_i = u$ when i is odd, and $z_j = v$ when j is even. (Note that $\underline{uvm} \in F$, $\underline{*uvm} \in R$ and it is possible $\underline{*uvm} \neq \underline{uvm}$.)

From (0.9), (0.10) and (0.11) we obtain

$$\frac{*xym}{*x^{}} = x^{<1>} * y^{(1)},$$

$$\underbrace{*x^{}}_{y^{(p)}m} = \left(x^{<1>} * y^{(1)}\right) \underbrace{x^{<1>}y^{(1)}m - 2} \cdots \underbrace{x^{}}_{y^{(p)}m - 2}.$$
(1.17)

(For example, if (m = 4, n = 2) or $(m = 4, n = 3, x \neq y^3)$, then:

$$*xy4 = ((x*y)*x)*y = xyxy = x^{(1)}*y^{(1)}.$$

If $p \ge 1$, then

$$\frac{ \underset{*}{z} \cdot x^{} y^{(p)} 4}{= ((x^{} * y^{(p)}) * x^{}) * y^{(p)} = xyxyx^{< 1 >} y^{< 1 >} ... x^{} y^{(p)}}{= (x^{< 1 >} * y^{(1)}) x^{< 1 >} y^{(1)} ... x^{} y^{(p)}}.$$

In the case n + 1 = m = 4, $x = y^3$, $[y]_n = r$, $y = z^{(r)}$, we have: $*xy4 = ((x*y)*x)*y = z^5 = x^{<1>}*y^{(1)}$.

$$\frac{*x^{}y^{(p)}4}{=((x^{}*y^{(p)})*x^{})*y^{(p)}=z^5x^{<1>}y^{(1)}\dots x^{}y^{(p)}}{=(x^{<1>}*y^{(1)})x^{<1>}y^{(1)}\dots x^{}y^{(p)}}.$$

So, the following equation holds:

$$u^m * v^n = * uvm, (1.18)$$

and therefore we obtain:

PROPOSITION 1.2. $R \in \mathcal{V}_{m,n}$. \diamondsuit

The following statement "inspired" the definition of R and *, and it will be used in the proof of Pr. 1.4, as well.

PROPOSITION 1.3. If $G = (G, \cdot) \in \mathcal{V}_{m,n}$, then the following implications hold:

- a) $p \ge 1 \Rightarrow x^{(p+1)}y^{(p+1)} = xym \ x^{(1)}y^{(1)}m 2 \dots x^{(p)}y^{(p)}m 2.$
- b) $m = 3 = n + 1 \Rightarrow y^3 y^2 = \overline{y^3}$.
- c) $m = 4 = n + 1, r \ge 0 \Rightarrow (z^{(r+1)})^4 z^{(r+1)} = z^5.$
- d) $m = n + 1 \ge 5, r \ge 0 \Rightarrow$

$$(z^{(r+1)})^m z^{(r+1)} = z^{m+1} z^{(1)} z^m - 2 \dots z^{(r+1)} z^{(r)} m - 2.$$
 \diamond

PROPOSITION 1.4. If $G = (G, \cdot) \in \mathcal{V}_{m,n}$ and $\varphi: F \to G$ is a homomorphism from **F** into **G** then the restriction ψ of φ on R is a homomorphism from R into G.

Proof. By using Pr. 1.3 and the definition of *. \diamondsuit

As a consequence we obtain Th. 1, i.e. the following

PROPOSITION 1.5. R is free in $V_{m,n}$ with the (unique) basis B.

Proof. First, by the definition of R and *, B is the set of primes in **R** and B generates **R**. Let $G = (G, \cdot) \in \mathcal{V}_{m,n}$ and $\lambda : B \to G$ be a mapping. If φ is the homomorphism from **F** into **G** which extends λ , then by Pr. 1.4, the restriction ψ of φ on R is a homomorphism from \mathbf{R} into $\mathbf{G}.\diamondsuit$

Below we show a variant of Th. 1 concerning the variety $V_{1,n}$.

PROPOSITION 1.6. $V_{1,1}$ is the variety of left-zero groupoids.

PROPOSITION 1.7. If m = 1, $n \geq 2$, then $[u]_n \leq 1$ for every $u \in R(=R_{1,n})$. If an operation * is defined by:

$$u * v = \begin{cases} uv, & \text{if } [v]_n = 0, \\ u, & \text{if } [v]_n = 1, \end{cases}$$

$$then \mathbf{R} = (R, *) \text{ is a groupoid which is free in } \mathcal{V}_{1,n} \text{ with the basis } B.$$

$$(1.19)$$

Proof. It is clear by (0.8) that $[v]_n \geq 2$ implies $v \notin R$. Therefore, by (1.19), we obtain:

$$v_*^n = \left\{ \begin{array}{ll} v^n, & \text{if} & [v]_n = 0, \\ v, & \text{if} & [v]_n = 1, \end{array} \right.$$

and so:

$$u * v_*^n = \begin{cases} u * v^n = u, & \text{if } [v]_n = 0, \\ u * v = u, & \text{if } [v]_n = 1. \end{cases}$$

Thus, $\mathbf{R} \in \mathcal{V}_{1,n}$.

2. Some properties of the class $\mathcal{V}_{m,n}^{\mathfrak{o}}$ Given a groupoid $\mathbf{H}=(H,\cdot)$, by $\mathbf{H}^{\mathfrak{o}}$ will be denoted the groupoid (H, \square) defined by $a \square b = a^m b^n$ (2.1)

(The right-hand side of (2.1) has the usual meaning in H.)

In Pr. 2.1-Pr. 2.5, m, n are (arbitrary) positive integers. **PROPOSITION 2.1.** $\mathbf{G} \in \mathcal{V}_{m,n}^{\mathsf{G}}$ iff there exists a groupoid $\mathbf{H} \in \mathcal{V}_{m,n}$ such that G is a subgroupoid of H° . \diamondsuit

Propositions 2.2 and 2.3 are special cases of more general results. (For example: [3], IV.5 and IV.6; [8], V.11.2.)

PROPOSITION 2.2. Let $G = (G, \circ)$ be a groupoid and R = (R, *)be a free groupoid in $V_{m,n}$ with the basis G. Let \approx be the least congruence on R with the property (2.2)

$$a \circ b = c \Rightarrow a^m * b^n \approx c$$
.

Then: $\mathbf{G} \in \mathcal{V}_{m,n}^{\mathbf{q}}$ iff the following condition is satisfied:

$$(\forall a, b \in G)[a \approx b \Rightarrow a = b].$$
 \diamondsuit

PROPOSITION 2.3. $V_{m,n}^{\mathbf{q}}$ is a quasi-variety, i.e. there exists a system of axioms of $\mathcal{V}_{m,n}^{\square}$ each of which is a quasi-identity.²⁾ \diamondsuit .

$$x \circ x = y \circ y \Rightarrow x \circ z = y \circ z$$
 (2.3)

is true in each groupoid $\mathbf{G} = (G, \circ) \in \mathcal{V}_{m,n}^{\mathfrak{a}}$. \diamondsuit PROPOSITION 2.5. $\mathcal{V}_{m,n}^{\mathfrak{a}}$ is a proper subclass of the class of groupoids.

Proof. Let $G = (\{a, b\}, \cdot)$ be a two-element groupoid such that ba = b, and xy = a in every other case. Then (2.3) is not satisfied in G. \diamondsuit

Below we will establish some properties of the groupoid $\mathbf{R}^{\mathbf{u}} = (R, \square)$, assuming that $m > n \ge 2$. First recall that

$$u \square v = u^m * v^n, \tag{2.1'}$$

for all $u, v \in R$.

2) Pr. 2.2 is almost obvious and Pr. 2.3 is a corollary of it. Moreover, we can use Pr. 2.2 to obtain a convenient axiom system for $\mathcal{V}_{m,n}^{\square}$. Such a procedure is exposed in [2], where it is found an axiom system of quasi-identities for the quasi-variety of algebras $\mathbf{A} = (A, \Omega)$ which can be embedded in semigroups $\mathbf{S} = (S, \cdot)$ in such a way

that $f(a_1, \ldots, a_n) = a_1 \ldots a_n$, for each n-ary operator $f \in \Omega_n$ $(n \ge 2)$. In the Pr. 2.6-2.11 we assume that $m > n \ge 2$. They are corolaries of

the definitions of R and R, and the injectivity of F.

PROPOSITION 2.6. x^n is a prime in R^{α} , for each $x \in \mathbb{R}$. \diamondsuit

PROPOSITION 2.7. If $(m, n) \notin \{(3, 2), (4, 3)\}$, then \mathbf{R}° is injective. \Diamond

PROPOSITION 2.8. Let $u, v, \gamma, \delta \in R$ and $(u, v) \neq (\gamma, \delta)$.

1) If (m, n) = (3, 2), then:

 $u \square v = \gamma \square \delta \text{ iff } \{(u, v), (\gamma, \delta)\} = \{(y^2, y), (y, y)\}, \text{ for some } y \in R.$

2) If (m, n) = (4, 3), then: $u \square v = \gamma \square \delta$ iff

$$\{(u, v), (\gamma, \delta)\} = \{(z^{(r+1)}, z^{(r)}), (z^{(s+1)}, z^{(s)})\},\$$

for some $z \in R$ and $0 \le r < s$. \diamondsuit

PROPOSITION 2.9. The subgroupoid Q of R generated by the basis B of \mathbf{R} is injective. ³⁾

Proof. If $(m, n) \in \{(3, 2), (4, 4)\}$, the assertion is a corollary from Pr. 2.6 and Pr. 2.8; in the case m>n+1 or $m\geq 5$ we can apply Pr. 2.7. \diamondsuit

PROPOSITION 2.10. Only trivial identities hold in $\mathcal{V}_{m,n}^{\mathbf{o}}$. \diamondsuit

PROPOSITION 2.11. $V_{m,n}^{\mathbf{a}}$ is not a variety.

Proof. If $\mathcal{V}_{m,n}^{\mathbf{a}}$ were a variety, then by Pr. 2.10, it would be defined by a trivial identity, for example x = x. This would imply that $\mathcal{V}_{m,n}^{\mathbf{a}}$ is the class of all groupoids, which contradicts Pr. 2.5.

Thus the proof of Th. 2 is completed.

The following two propositions are corollaries of Pr. 1.6–1.7 and the definitions of $\mathcal{V}_{2,n}$ and $\mathcal{V}_{2,n}^{\mathfrak{o}}$. We see from them that the condition $m \geq 3$ is essential for Th. 2.

PROPOSITION 2.12. For every $n \geq 1$, $V_{1,n}^{\mathsf{u}}$ is the variety of left-zero groupoids. ٥.

PROPOSITION 2.13. For every
$$n \ge 1$$
, $V_{2,n}^{a} = V_{2,n}$.

3. $V_{m,n}$ -reduced sets

Assume that V is a (non-trivial) variety of groupoids, and $\mathbf{F} = (F, \cdot)$ a free groupoid with the basis B. Let $\approx_{\mathcal{V}}$ (furter on: \approx) be the least congruence on \mathbf{F} such that $\mathbf{F}/_{\approx} \in \mathcal{V}$. If $u \in F$, then we denote by $u/_{\approx}$ the \approx -class containing u. We say that a subset S of F is V-reduced iff the mapping $u \mapsto u/_{\approx}$ is a bijection from S onto $F/_{\approx}$. Thus:

PROPOSITION 3.1. Let S be a V-reduced set of F and the operation is defined on S as follows:

$$u, v, w \in S \Rightarrow (u \bullet v = w \Leftrightarrow uv \approx w).$$
 (3.1)

Then $u \mapsto u/_{\approx}$ is an isomorphism from $S = (S, \bullet)$ onto $F/_{\approx}$, and S is free in V with the basis B. \diamondsuit

PROPOSITION 3.2. $R_{m,n}$ is $V_{m,n}$ -reduced set iff: m = 1 or $m > n \ge 2$.

Proof. If $m > n \ge 2$ or m = 1, then from Th. 1 and Pr. 1.6–1.7 follows that $R_{m,n}$ is a $\mathcal{V}_{m,n}$ -reduced set. Namely, the rewriting system (on \mathbf{F}) induced by elementary transformations: $u^m v^n \to \underline{uvm}$ is a terminating Church–Rose system ([5], 2.9), and $R_{m,n}$ consists of the normal forms in this system.

Let
$$m \ge 2$$
, $n = 1$ and $a \in B$.
If $m = 2$, then:
$$(a^2)^2 a \to a^2 a \to aa = a^2 \in R_{2,1},$$

$$(a^2)^2 a = (a^2 a^2) a \to (aa^2) a \in R_{2,1}.$$

3) We note (see, for example: [3], IV.4.4) that **Q** is free in $\mathcal{V}_{m,n}^{\mathbf{0}}$ with basis B.

If m > 3, then:

$$(a^m)^m a \to \underline{a^m a m} = a^m a \, \underline{a^m a m - 2} \to a^m a^m \, \underline{a a^m m - 3} \to \underline{a a^m m \, \underline{a a^m m - 3}} \in R_{m,1} ,$$
 $(a^m)^m a = a^m a^m \, \underline{a^m a^m m - 2} \, a \to \underline{a a^m m} \, \underline{a^m m} \, \underline{a^m m - 2} \, a \in R_{m,1} .$

 $(a^m)^m a = a^m a^m \underline{a^m a^m m - 2} a \to \underline{aa^m m} \underline{a^m a^m m - 2} a \in R_{m,1}$ If $m = n \geq 2$, then:

If $m = n \ge 2$, then:

$$(a^{n})^{n+1} = (a^{n})^{n} a^{n} \to \underline{a^{n} a n} \in R_{n,n},$$

$$(a^{n})^{n+1} = a^{n} a^{n} \underline{a^{n} a^{n} n - 1} \to a^{n} \underline{a^{n} a^{n} n - 1} =$$

$$= (a^{n})^{n} \to (a^{n})^{n-1} \to \cdots \to a^{n} \in R_{n,n}.$$

Finally, if $2 \le m < n$, then:

$$\begin{split} (a^n)^m (a^n)^n &\to \underline{a^n a^n m} = (a^n)^m \in R_{m,n} \,, \\ (a^n)^m (a^n)^n &= (a^n)^m \left((a^n)^m a^n \right) \underline{a^n a^n n - m - 1} \to \\ &\to (a^n)^m (\underline{a^n a m} \, \underline{a^n a^n n - m - 1}) \in R_{m,n} \,. \end{split}$$

Therefore, if m>n=1 or $2\leq m\leq n$, then there exist $u,v\in R_{m,n}$ such that $u\neq v,\,u\approx v,$ i.e. $R_{m,n}$ is not $\mathcal{V}_{m,n}$ -reduced. \diamondsuit

From Pr. 3.2 follows that the definition of $R_{m,n}$ is "unsuccessful" if m > n = 1 or $2 \le m \le n$.

References

- R. H. Bruck: A Survay of Binary Systems, Berlin-Götingen-Heidelberg, 1956
- [2] N. Celakoski: On Semigroup Associatives, Macedonian Academy of Sciences and Arts, Contributions IX 2 (1977), 5-19.
- [3] R. M. Cohn: Universal Algebra, Harpers Series in Modern Mathematics, 1965.
- [4] G´ Čupona, N. Celakoski: Polyadic Subsemigroups of Semigroups, Algebraic Conference Skopje 1980, 131–152.
- [5] O. G. Kharalampovich, M. V. Sapir: Algorithmic Problems in Varieties, International Journal of Algebra and Computation, Vol. 5 (1995), 379-602.
- [6] S. Markovski: On quasivarieties of generalized subalgebras, Algebraic Conference Skopje 1980, 125-129.
- [7] M. D. Prešić, S. B. Prešić: On the Embedding of Ω -algebras in Groupoids, Publ. de l'Inst. Math. Nouv. sèrie, tome 21(35), 1977, 169–174.
- [8] А. И. Мальцев: Алгебраические системы, Москва 1970.

СЛОБОДНИ ОБЈЕКТИ ВО НЕКОИ МНОГУОБРАЗИЈА ГРУПОИДИ Резиме

Во работава се дава каноничен опис на слободните објекти во многуобразието групоиди $x^m y^n = xyx \cdots$, каде што $m > n \ge 2$, а на десната старана се појавуваат m фактори, по ред: x, y, x, y, \ldots