FREE GROUPOIDS WITH (zy)? = 2%
IMpuno3n, mar.-tex. Hayku, MAHY, Ckomje, XVII 1-2 (1996), 5-17
G. Cupona and N. Celakoski

A bstract: We investigate free objects in the variety V of
groupoids which satisfy the law (zy)? = £2y2 1), The main results
and necessary preliminary definitions are stated in Introduction.
Corresponding generalizations, concerning the law (zy)™ = z"y",
are considered in the last part of the paper.

0. Introduction

First we state some necessary preliminaries.

Let G = (G,') be a groupoid, i.e. an algebra with a binary operation:
(z,y) — xzy on G. If a, b, ¢ € G are such that a = be, then we say that b and ¢
are divisors of a in G. A sequence aj, aa, ...of elements of GG is a divisor chain
in G if a4 is a divisor of a;. We say that a € G is a prime in G if the set of
divisors of @ in G is empty. Thus, primes in G can be only the last members of
divisor chains in G.

Throughout the paper we will always write "a free groupoid” instead of "a
free groupoid in the variety of all groupoids”. It will be denoted by F = (F, -),
and its basis by B. (We write F = F(B) when it is necessary to emphasize the
basis B.) It is well known (see, for example, [1], I.1) that the following properties
characterize F:

a) ab=cd = a=c, b=d, ie the mapping (a, b) — ab is injective.

b) Every divisor chain in F is finite.

Then the set B of primes in F is nonemptly and it is the unique basis of F.

If G = (@, ) is a given groupoid, then for any nonnegative integer k we define
a transformation (k): z — z(*) of G in the following way:

20 — z, pU+1) — (k) (k) (0.1)

From the condition a) we obtain that, in a free groupoid F, (k) is injective, for
any k£ > 0. Thus, for each k£ > 0, there exists an injective partial transformation
(—k): o — 2{=*%) defined in F as follows:

y["’” =a:¢->y=x(k)A (0.2)

For any u € F, there exists the largest integer [u] = m, such that v'=™ € F
(The integer [u] will be called the exponent of u in F.)

The following subset R of F' will play an important role in the paper. Namely,
if B is the basis of I, then we define R as the least subset of F' such that B C R,
and if u=vw € F\B, then:

u€E RS [v,weR and (v=wor min{[v], [w]} = 0)]. (0.3)
Recall that we denoted by V the variety of groupoids which satisfy the law
(zy)? = =% (0.4)

I[f G € V, then we call G a V-groupoid, and if it is free in V, we say that it is
V-free. _

Now we are ready to state the main results.

Theorem 1. If u, v € R, m = min{[u], [v]} and u * v is defined by:

uxv = (u{_’")v‘-"")) " (0.5)

then R = (R, *) is a V-free groupoid and the set. B (i.e. the basis of F') is the
unique basis of R.
Theorem 2. A V-groupoid H = (H, -) is V-free iff the following counditions
hold
(i) Every divisor chain in H is finite.
(i’ =y >z =y.
()zy=uv, s #y, u#Fv=>z=u, y=v.
(iv) 22 =yz, y# 2= (3u, v) (z = uv, y = u?, z =v?).

2)

1) As usual: 2 = zx.
2} "p, g, ..." weans "plqk ...



Then the set P of primes in H is nonempty and the unique basis of H.

Theorem 3. If H is a V-free groupoid, then there exist subgroupoids G, Q
of H such that G is not V-free, and Q is V-free with an infinite rank.

The next results concern a sequence of functors in the variety V. Namely,
if G is a groupoid and k is a nonnegative integer, then we define the groupoid

G'*) = (G, (k)) as follows: 2 () y = (z)®); (0.6)

(Note that the same symbol (k) is used in (0.6) with two different meanings: as
an operation of GG on the left, and as a transformation on the right side.)

Theorem 4. If H is a V-free groupoid and k£ > 1, then:

1) H® ey

2) H*) is not V-free, and

3) The subgroupoid Q of H¥) generated by the basis B of H is a V-free
groupoid with the basis B.

In §, 1 <i < 4, we prove Th. 7, and in §5 we consider the law (zy)" = 2" y",
where n > 3.

1. A canonical description of V—-free groupoids

First we will introduce a norm of the elements of F' and state some lemmas
in order to prove Th. 1. (As was mentioned in Introduction, we denote by B the
basis of a given free groupoid F = (F, -).)

The norm in F is defined as the homomorphism u +— |u| from F into the
additive groupoid of positive integers, which is an extension of the mapping B —

1}. Thus:
{1} lvw| = |v| + |w|, bl =1, (1.1)
forallv, we F, be B.
In the proof of Th. 1 we will use some of the following relations, where u,v € F
and k, m are integers.

e FPek+u>0 (1.2)

k+[u] > 0= [u®] = 2|y (1.3)

k+[u]>0, k+m+[u>0= (um)("" = ulk+m) (1.4)
E+(u] >0 m—k+[v] > 0= (u® = o™ & u =™k (1.5)
k+uW>0= (v e ReueR) (1.6)

We will also use the following two lemmas, which can be also easily shown.
Lemma 1.1, If ¢: Q — G is a homomorphism, then

zeEQ, Mm>0=9 (:{"") =p(z)™. 0O
Lemma 1.2. f GeV and z, y € G, m > 0, then
(:y)[m] — g(m) y{rri]_ o

Now we can prove Theorem 1.
First, if u € R is such that [u] = m, then by (1.4) we have

wsu= (u-m ut-m) ) _ ((u(—m))“’)(m) = u?. (1.7)

Let u, v € R be such that u # v, and min{[u], [v]} = m. Then [u(-™)] =0
or [v(=™)] = 0, wich implies u(~™) v(~™) € R, and by (1.6) we obtain uxv € R.
Thus: Y VERSuULVER, (1.8)
ie. R = (R, %) is a groupoid.

Moreover, if min{[u], [v]} = m, then:

(usv)* (uxv) =(u*v)? = (usv)V = (u(_”‘] v(=™)

L}

)(m+1]
m+1
(usu)*(vev) =u? v’ = ((uz)(_m‘”(vz)('"‘"))( )

= (ut-m U{—m))“"*”

and this implies that R € V.

If u, v € R are such that uv € R, then u = v or min{[u], [v]} = 0, and thus
we have: u, v, uv € R=>u*xv=uv, (1.9)
and so B is a generating set of R. Clearly, B is the set of primes in R.



By (0.5) and (1.3) we obtain:
u* o] = 2™ |ul=") o=™)| = 2™ (27 |u| + 2™ |v]) = |u + |v], (1.10)
i.e the restriction of the norm on R is a homomorphism from R onto the additive
groupoid of positive integers. This restriction will be called the norm on R.
Let G = (G, ) € V, A:B — @ be an arbitrary mapping, and ¢: F — G be
the homomorphism which is an extension of A. Denote by 1 the restriction of ¢
on R. If u, v € R and m = min{[u], [v]}, then:

Yluxv) =¢ ((u(‘m) U(_m))th):({p (ul—m) v(—m)))(m)

= (5o () =(e (4m) o ()

= (™) ™) (™)™ )= o) =) ¥(o)

l.e. ¥: R — G 1s a homomorphism.

Thus R is a free groupoid in V, with a basis B. B is the unique basis of R,
for it is a subset of any generating subset of R. This completes the proof of Th. 1.

Remark. The above proof of Th. 1 is almost a direct consequence of the
previously given definitions and results. Of course, some more general results could
be used, but they would make the corresponding proof even more complicated. We
will not include here discussions of that kind, and the interested reader is addressed
to the corresponding books and papers (for example: [2], II1.5; [4], §10; [5], 1.4;
[6], 2.9).

2. An aziom sysltem for V-free groupoids

The main object of this section is the proof of Th. 2.

Proposition 2.1. Every V-free groupoid satisfies the conditions (1)-(iv) of
Th. 2.

Proof. By Th. 1., it is enough to show that R = (R, *) satisfies (i)—(iv).

Below we assume that z, y, z, u, v € R.

1) By (1.10), if z * y = z, then |z] > |z|, |z] > |y|, and this implies that R
satisfies (i).

2) If zxx=y+y, then (according to (1.7)) z2=y?, and so z=y; thus (ii) holds.

Assume that z * y = u * v and min{[z], [¥]} = p < ¢ = min{[u], [v]}. Then,

by (0.5) and (1.5): -
z(=P) y(_p) = (u(_‘” v(_Q))w g . (2.1)

If p = q, then z(~P) y(=P) = y(=P) y(=P) which implies £ = u, y = v.
If p < g, then by (2.1):

—p— 2
2(-P) y(-P) = ((uf—q)v(w))” ? ”) )

which implies 2(=P) = y(=P) je. 2 =y.
Thus we have:
rzxy=ux*v, FyY, uFv=>z=u, y=mur, ie (ii) is satisfied.
Finally, assume:
Yzxr=y*xz,y#:z.

Then, if ¢ = min{[y], [z]}, by (0.5) and (1.7), we have z? = (y{~¢ z("‘”){‘”,

(g=1)
= (y(-n z(-q)) RV CE R CEV

Thus: 2 = u v, y = u?, z = v?, where u =y~ v =2(-1_ O

Now we will show the following

Lemma 2.2. Let G = (G, -) be a groupoid which satisfies the condition (i)
of Th. 2 and the following one:

(v) The set div(a) of divisors of an arbitrary element a € G is finite.

Then, for arbitrary a € G, the set of lengths of divisor chains with the first
member a is bounded.

(We denote by L(a) the largest member of this set, and we say that L(a) is
the length of a.)

Proof. Consider the oriented graph of which the nodes are the elements of
(', and for a, b € G there exists an edge with the initial node a and the terminal

i.e.



node & iff b is a divisor of a. From the given conditions it follows that every node
of the graph is a "source® of finitely many edges and that every (directed) path
in the graph is finite. Then, by Konig’s Lemma (for example, [3,4]), one obtains
that the set of path lengths, of which the origin is a given node, is bounded. 0O

To complete the proof of Th. 2 we have to show the following

Proposition 2.3. If a V-groupoid H satisfies the conditions (i)-(iv), then
H is V-free, and the set B of primes in H is the basis of H.

Proof. First, (i) implies that the set B of primes in H is nonempty. By
(ii), (iii) and (iv), for each a € H, div(a) consists of at most 3 elements; thus the
conclusion of L. 2.2 holds. By induction on L(a) we obtain that B is the least
generating subset of H.

Let G = (G,:)€V, and A\: B — G be an arbitrary mapping. Again by
induction on L(a) we will show that there is a (unique) homomorphism ¢: H — G
which is an extension of A. First we put ¢(b) = A(b) if b € B. Assume that, for
any ¢ € H such that L(z) < k, ¢(z) € G is well defined, and if z = uv, then
w(2) = p(u)p(v). Let t € H be such that L(t) = k + 1. Then { is a product,
t = uv, where L(u), L(v) < k; and, there exist at most two distinct such pairs.
Then we can put (1) = @(u)g(v). If t = £ = yz, where y # z, then, by (iv),
there exist u, v such that: z = uv, y = u?, z = v?, and thus:

o(z?) = ¢(z) p(z) = (p(u) p(v)* = e(u)? p(v)? = P(u?) P(v?) = o(y) P(2).
Thus ¢(t) € G is well defined. Moreover, we have ¢(uv) = ¢(u) p(v), for each u, v
such that L(uv) < k+ 1. So, there exits a homomophism ¢: H — G which is an
extension of A. O

The additive groupoid of positive integers belongs to V, and this implies:

Proposition 2.4. If H is a V-free groupoid with the basis B, then there
exists a (unique) mapping z — |z| from H into the set of positive integers such

that: b =1, |lzyl = |z| + |y, (2.2)
for each b € B, z, y € H. (We say that |z| is the norm of z.) O
Now we will show the following:
Proposition 2.5. Every V-free groupoid H is a cancellative groupoid.
Proof. First we will show that:
ety =2 Fay, 2 £y, (2.3)
Namely, (2.3) is clear if x, y € B. Assume that z, y € H are such that = # y,
z? = zy and |:4 is the least possible. Then, by (iv), there exist u, v € H such that
r=uv, 2 =1u? y=v> u#v. Therefore u®> = uv, u# v and |u| < |z|.
By symmetry, ¢ # y = z2 # yz.
Let zy = zz (or yz = zz). f ¢ # y, = # z, then by (ili): y = z. If z = y,
then: 22 = zz = z = z. Thus:
TYy=xz Or yr=2zx => yYy=2=z, (2.4)
i.e. H is cancellative. 0O
Below we assume that H is a given V-free groupoid.
As a concequence of (i) we obtain:
Corollary 2.6. For every k > 0, the mapping = — z*) is injective. O
As in (0.2), the equality z = y(—%) is equivalent with y = z(¥), where k > 0.
Thus, for every & € H, there exists the largest nonnegative integer m such that
2(=m) € H; it will be denoted by [z]. Therefore, we have a mapping = — [z] from
H into the set of nonnegative integers. It can be easily seen that if we replace
F by H in (1.2)—-(1.5) we obtain relations which hold in a V-free groupoid H.
Moreover, we obtain the following property which is an ”extension“ of L. 1.2).
Proposition 2.7. If z, y € H and m are such that [z]4+m > 0, [y]+m > 0,

then [-l'y] +m 2 0 and: (xy)(m] = x(fﬂ) y(m)' ]

We note that: .
z,y€ H = [zy] = min{[z], [v]}. (2.5)
Remark. Th. 2 could be stated in a weaker form, i.e. without the assumption
H € V, replacing (iv) by:
(iva) 22 = yz, y# 2 (Bu,v) z=uv, y=u?, z=10% u#v.

3. Subgroupoids of V-free groupoids

Below we assume that H is a given V-free groupoid with the basis B, and Q
is a subroupoid of H with the carrier Q.

From Th. 2 one obtains:

Proposition 3.1. Q € V and it satisfies the conditions (i), (ii) and (iii) in
Th.2. 0O

Proposition 3.2. The set of primes in Q is nonempty and it is the least
generating subset of Q. O



According to L. 2.2, we have:

Proposition 3.3. If a € @, then there exists a positive integer Lg(a) such
that Lg(a) is the largest length of divisor chains in Q with the first member a.
Moreover: Lg(a) < L(a). O

We will show:

i Proposition 3.4. If b € B and Q is generated by b2, b%b, then Q is not
~free.

Proof. Clearly: b, b € Q, (b*)%6* = (b*b)® € Q and b* # b*b, but there
is no v € Q such that 4> = v?. Thus Q does not satisfy (iv), i.e. Q is not V—free.
({6%, b%b} is the set of primes in Q.) O

By Th. 2 and Pr. 3.1, we have:

Proposition 3.5. Q is V-free if:

uZv,weQulv’eQ = u,veq, (3.1)
foranyu,ve H. O

As a concequence of Pr. 3.5 we have:

Propositon 3.6. Each of the following conditions is sufficient for Q to be
V- ree: PeQ=zeQ, (3.2)

uFEv, WER=>u,ve@. O (3.3)

The following property will help to complete the proof of Th. 3.

Propositon 3.7. If [u] = 0 for every prime in Q, then Q is V-free.

Proof. It is enough to show that Q satisfies the condition (3.2) and this can
be shown by induction on Lg(z?). O

Propositon 3.8. Let b € B, a; = b%b, ayy) =agb, A={ax | k> 1}. If Q
is generated by A, then Q is V—{ree with an infinite rank.

Proof. All the elements of A are primes in Q, and then apply Pr. 3.7. O

Propositon 3.9. Let C = {b?} U A, where A is as in Pr. 3.8. If S is the
groupoid generated by C, then S is not V-free, and all the elements of C are
primes in S. O

4. Some properties of the functors (k) in V

The proofs of the following three statements are obvious.

Propositon 4.1. GeV=G*® V. O

Propositon 4.2. 1 G =(G,-), S=(5,) € V and ¢:G — S is a homo-
morphism from G into S, then @: G(*) — 8(¥) is a homomorphism from G¢*) into
S*) as well. O

Thus for every k > 0, (k) is a functor in V.

Propositon 4.3. If k, n > 0 and G € V, then (G*))") = g(An+n) g

Below we assume that H is a V-free groupoid, with the basis B, and that k
is a positive integer. The subgroupoid of H'*¥) generated by B will be denoted by
Q. Also (1), (ii), (iii) and (iv) are the conditions stated in Th. 2.

The following statements 4.4-4.6 are obvious or they can be easily shown.

Propositon 4.4. If x, y, u, v € H, then: z(k)y = u(k)v & zy=uwv. 0O

E§oposit0n 4.5. If k£ > 1, then B is a proper subset of the set P of primes
in H(k),

(Each element b € B is prime in H*) and for every u € H, b € B, we have
ube P, ubg¢ B.) O

Propositon 4.6. H(*) satisfies (1), (ii) and (iii) of Th. 2, but for k > 1, H'¥)
1s not V-{ree. )

(Namely, if b € B, then: b%b(k)b%*b = (b2)2 (k) b2, (b%)* # b%, but b% is a
prime in H*) | for k > 1. Thus H*) does not satisfy (iv).) O

In order to complete the proof of Th. 4, first we will show the following

Lemma 4.7. If z, y, 2 € Q, y # z and z? = yz, then there exist 7, § € Q
such that v # & and = = (y8)(%).

Proof. The equality z? = yz implies that [yz] > 1, and (by (2.5)) we have
[W,[z] 2 1 and z = (yz)"Y =y~ 2= Thus: z € Q\B, and so there exist
v, 6 € Q such that z = (k)6 = (v6)*¥). It remains to show that there exist
different v, &§ with the above property.



Suppose that different v, & with the mentioned property do not exist and
put £ = ag. Then there exists a (unique) a; € @ such that ag = a‘lk"'”. Let
the sequence wg, ey, ..., @, ... be such that a; = ai—k';'“, for every i. Since
|evi| > |eviy1], the sequence is finite. Let a, be its last member. By the definition
of the sequence we have:

0 = (=1 -1

an = yl—2k=3) (~2k=3)

ary = AN H=h=3)

an =Y
By the last equlity, there exist u, v € @ such that a, = u(k)v = (uv)*). Clearly,
u # v (since ay, is the last member of the sequence). From the equality (uv)*) =
y[—nk—n—ljz[—nk—n—l) we have:
— y(—nk—n—k—l]

(nk+4+n4k41)

(=nk=n=1) 2(—!11:—:-:— 1)

A—nk—n—-k=1)

(nk+n+4+k41)

u U= 1.e.

y=u

T=0

Therefore: (nk+n+k)  (nktn+k) _

2=ag=y "V =y
k
— (u(nk+u]v(nk+n})[ ) — (Té}“” ,

where y = u(nk+n) # pink+n) — 5 g

Propositon 4.8. Q is V-{ree.

Proof. Let z, y, z € Q be such that 22 = uz, y # z. By L. 4.7, there exist
v, & € @ such that v # &, z = (v8)*). By 2? = yz it follows that (k+1) §(k+1) —
yz, ie y = g+ 2 = §E+1) Therefore: x = v(k)6, yv = v(k)vy, z = 8(k)6.
Thus Q satisfies the condition (iv), and from Pr. 4.6 it follows that Q satisfies (i),
(ii), (ii1) as well. O

5. On the equation (ry)" = z"y"
Denote by V,, the variety of groupoids which satisfy the identity

o o (e =amy (5.1)
where n is a given positive integer. Here the powers are defined in the usual way,
l.e. by:

o4 zl=12z, Tl = gkp (5.2)

By the above considerations, Vi is the variety of all groupoids, and Vs, the
variety V. Further on we assume that n is a fixed integer and n > 2.

Define z'*}, for k£ > 0, by: &

20 =g, ekt = .7:””) i (5.3)
Note that (5.3), for n = 2, coincides with (0.1).

As before, F = (F, -) denotes a free groupoid with the basis B. Since the
implication k=y™ = z=y, k=m (5.4)
is true in F, the mapping  +— (™) is an injective transformation of F. Thus we
can define z(~*) and [z], as in the special case n = 2.

It is easy to show that (1.2)—(1.6), L. 1.1 and L. 1.2 are true for any n > 2.

Now we will define F,, as the least subset of F' such that B C F,, and:

vw € F, ¢ [(we€F,, v=w""") or (v,w€F, and min{[v],[w]}=0)]. (5.5)

Therefore, F» = R where R is defined by (0.3). Note that the implication
vw € F,, = v, w e [, for n > 3, is not true. (For example, if b € B and n = 3,
then b(2) = (62)” - b € F3, but (b°)° ¢ Fs.)

The following statement is a generalization of Th. 1.

- Theorem 1'. F,, = (Fy, *) is a V,—free groupoid with the unique basis B.
ere:
wsv = (™ p=m)™

where u, v € F}, and m = min{[u], [v]}. O.

This generalization is obtained by substituing R by F,. The situation with
the other theorems is similar, except with Th. 4. Namely, the definition of the
operation (k), given by (0.6), does make sense for n > 3 also, but it is easy to
show that FLH & V,, forn > 3.

The statements (ii), (iii) and (iv) of Th. 2, in the formulation of Th. 2’ (besides
the substitution of V by V,), obtain the following forms:

(iiY 2" =y" =2 =y.

(iiiY) ey =uv, 2#y* ! u#v" = r=u y=no

(iv) 2" =yz, y# 2" 1 = (Qu, v)z =uv, y=u", z=1v".

According to Th. 3’, note that if H is a V,-free groupoid and if Q is the
subgroupoid of H generated by A = {a,|p > 1}, where a, = b"*? (b is an element
of the basis B), then A is the basis of Q. Therefore, Q has an infinite rank. If S,



is generated by {b", a, }, then S, is not V,—free, and {b,, ap} is the set of primes
in S;. The groupoid S generated by C' = {b"} U A is not V,,~free, and C is the set
of primes in S.

For a given positive integer n, there are (2n — 2)!/n!(n — 1)! = A,, different
possibilities of defining n-th powers, i.e. transformations z — z" in groupoids (see,
for example [2], II1.2, or [7], 1.4). Therefore, there exist A, varieties of groupoids
each of which is defined by an equality of the form (5.1).
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Peiume
CAOBO/IHM IPYTIOH/IM CO PABENCTBO (xy)? = x%y?

Ce pa3rnegyBaat cnobofuute 06jeKTH BO MHOryoGpaineTo rpynoHaH WTo ro
sagoBonyBaatT paseHcTBoTo (xy)? = x2y2, TnaHMTE pelynTaTH ce (HOPMYNHPAAT BO
BOBEJOT. BO HApe[HUTE HETHPH pa3jlein ce MCIUTYBAAT CBOjCTBATA HA cnobGogHMTE
06jeKTH M ce JaBaaT JOKAIM Ha pelynTaTHTe hopMynaupanu Bo BosejoT. Bo mocneguuor
pa3len ce paijrfedyBa MOOMIUTHOT CAYYAj HA TPYMOMAM WITO roO 3ajOBONYBaaT pPaBeH-
crsoTo (xy)" = 2"y"



