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Abstract: Inseveral papers (e.g. [1] and [3]) the usefulness of
the Post Coset Theorem for investigating polyadic groups is
pointed out. The aim of this paper is to illustrate the method of
using binary groups for investigating vector valued groups,
refering to the main results in [11].

In [3] the method of proving theorems on n-groups using the Post Coset
Theorem is called an "indirect method". We also refer to a method of proving
theorems for (n, m)-groups as an "indirect one" if it uses binary groups. In [5,
Cor 8.4] the following result is proved:

"An (n, m)-semigroup (Q, f) is an (n, m)-group iff the condition 4) in
Theorem 1 (in this paper) holds."

This result will be used below to illustrate the usefulness of the "indi-
rect method".

However, many authors prefer the "direct method" of proving (i.e.
without using Post Coset Theorem or its consequences). This also refers to pro-
fessor USan, one of the most prolific current researchers on n-groups. (He is, to
our knowledge, the first one who gave a characterization of n-groups as alge-
bras of type (n, n—1, n=2) ([9]) which generalizes the well known result on
groups as algebras of type (2, 1, 0).) In his paper ([11]), which appeared several
months ago, an axiom system for (n, m)-groups is obtained when 2m <n < 3m
(Theorem 3.1), and n =3m (Theorem 3.2), which is a generalization of the
axiom system of [9]. Each of these axiom systems consists of four equations: in
two of them a corresponding partial associativity of the "main operation” f is
assumed and the other two equations connect the operation f with the operations
e and ¢, called by the author neurral and inverse one, respectively.

In this paper, using the condition 4) in Theorem 1, and supposing that
(Q. ) is an (n, m)-semigroup (where n, m are any positive integers such that
n—m=k = 1), we prove that (Q, f) is an (n, m)-group iff for some positive inte-
ger s, such that sk = m, there are operations e, t, which satisfy the correspond-
ing equations (6), below. Therefore, by 4% of Theorem 1, if k= m, one can
choose s = 1, and then ¢, 4 are the neutral and inverse operations e, ', respec-
tively, mentioned in Theorem 3.1 and Theorem 3.2 of [11]; for & < m, each s
with the above property is strictly greater than 1. The existence of neutral and
inverse operations is shown in [11] only for X = m. In this paper we show that
there are corresponding neutral and inverse operations e, and ¢ for k < m, as
well, but the least s in this case is greater than 1.

Now we state some necessary preliminaries. )

Assuming that Q is a nonempty set, we denote by Q' the i-th Cartesian
power of @, and Q'=ulQi|£20}, ot=0’ \QO. The elements of Q° will be
denoted by a, b,..., x,..., and |a| = i will mean that @ € Q'; we will also write a|
instead of @ = (a,,..., a;), where a, € Q. Considering that Q" (Q") is a free monoid
(semigroup) with the basis Q, the equation ab...c =d, wherea, b,...,c,d € Q°,
will have the usual meaning.

We also assume below that n, m, k are given positive integers such that
n=m+ k.
If fis a mapping from Q" into Q™, then the pair (Q, f) is called an (n, m)-
groupoid. If, moreover, fis associative, i.e. the following equations
SUf(x)y)=f f(u)y) )
hold, for any x, y, f, u, v € Q°, such that |x| = n = |u| and xy = tuv, |y| = tv| = &,
then (Q, /) is called an (n, m)-semigroup.
To any (n,m)-semigroup Q = (Q, f), a semigroup Q" = (Q", -) is associ-
ated as follows.
Let = be the least congruence on Q" such that
fla@a=b=a=>b 2)



Then the quotient semigroup Q;- is called a universal covering of Q and is de-
noted by (Q", ).

Proposition 1. Let (Q, f) be an (n, m)-semigroup, 7: Q" — Q" be the
canonical homomorphism, and Q; = T(Q"). Then [5; Th. 7.3., Pr. 7.4., page 55]:

a)Q =u{Qi|1<i< m+k-1}.

b) The restrictions of Ton Q and Q™ are injections.

)} Qi N Q= &, forany 0 =i <j=< k-1.

d) Q"= {Qmi | 0<i <k} is an ideal of Q.

e) If m= 2, then Q” is not a group. ]

Forany f: Q" — Q™ we define f°: Q™ — Q" by: f! = fand

£ = FF @, ©)
where |[x| = m + sk, |y| = k. By induction one obtains that, if (Q, f) is an (n, m)-
semigroup. then £ T = £ v )

for any positive integers r, s and x, y, z € Q" such that |y| = m + rk, |xz| = sk.

As a corollary one obtains:

Proposition 2. If (O, /) is an (m + k, m)-semigroup, then (Q, *) is an
(m + sk, m)-semigroup, as well (see [5; Pr. 5.5]). O

An (n, m)-semigroup (Q, f) is called an (n, m)-group if the following

condition holds: E i m
(Vae Q",be Q")(3x,ye Q™) f(ax)=b= f(ya). )

Next Theorem gives some characterizations of (n, m)-groups.

Theorem 1. If (Q, f) is an (n, m)-semigroup, then the following condi-
tions are equivalent:

1) (Q, f) is an (n, m)-group.

2) QY is a subgroup of Q.

3) For some positive integer s, (Q, f°) is an (m + sk, m)-group.

4) For some positive integer s such that sk =2 m, and any a € Q
groupoid (Q", @) defined by (Vx,y € Q")x @ y =f*(xay), is a group.

5) For some positive integer s such that sk = m, there are mappings
e: Q%™ Q" 1: Q% — Q"such that:

(Vae Q™™ xe Q™) f(xa e(@) =x & f*(xa wax)) =e(@)]. (6)

Moreover, the conditions 37), 4°) and 5°), which would be obtained by
the replacement of "some" by "any" in 3), 4) and 5) respectively, hold as well.

Proof. In [5; Th 5.8, Cor 8.1, 8.4] it is shown that the conditions 1), 2),
3), 4), 37) and 4°) are equivalent. To show that 5) is equivalent to any of these
conditions, we will prove that 1) = 5) and 5) = 4).

Assume that (Q, f) is an (n, m)-group and s a positive integer such that
sk=m.Letae Q™" ue Q" By4), (Q", @) is a group. Let e(a) (respectively
W(au)) be the neutral element (the inverse of u) in (Q™, @). Then (6) holds. Thus
1)=5).

Assume now that there is a positive integer s such that sk = m, and
there are mappings e: Q%™ — Q", 1 : Q* — Q™ which satisfy (6). Ifa € Q™™
u € Q" then by (6), e(a) is a right neutral element, and (au) a right invers of
u € (Q", @); therefore (Q™, @) is a group. Thus 5) = 4). O

We note that neutral operations for n-groupoids ((n, m)-groupoids) are
introduced in [7] and [8], respectively; inverse operation for n-groups is intro-
duced in [10], and for (n, m)-groups in [11]. Theorem 1 implies that each of
them depends on s, and, for a given s, they are unique. In other words, the sets
{e,|s =1, sk = m} of neutral operations, and {zs|s = 1, sk = m} of inverse opera-
tions in an (n, m)-group (Q, f) are infinite. Moreover, from the proof of Theo-
rem 1 it follows that, if @ € O™ and x € Q™ are given, then e(a) is the identity
in the group (Q", @), and 1{ax) is the inverse of x in the same group.

It seems that the group Q, called a universal covering group of the
(n, m)-group (Q, f), is more convenient for obtaining more suitable expressions
of e(a) and i(ax). For that purpose, in the Proposition that follows, we state
some properties of Q" (see [5; §8]), where p is the least nonnegative integer,
such that m + p = 0(mod k).

Proposition 3. If (Q, f) is an (n,m)-group and (Q, -) its universal cover-
ing group, then the following statements are satisfied.

sk—rm

, the



a) Eachx € Q" isaproduct x=x," ... Xpni» where x,€ Q,0<i<k.

b)Ifxi ... " Xm=Y1" c-- " Yms X WwE Q, then xi =¥y, «oc s Xm = Ym-
c) If 1 is the identity in QY, then 1 = xy ... * Xpup, for some xy,... , Xpmip€ Q.
d) Let x€ Q. Then
d.l).l."I X oo Kt A JOT SOTIEK g o0 o gapii €O Af P Z1,5
d2)x"=x... Xmik-1, fOr some xy, ... , Xmar—1 € Q, if p = 0.
&) If Xisoiis Xis Vijows V€ 10 thén
X1 s X =Y et Y Qzn,e - 2 G0 2D =F G, 2D O
As a corollary, it follows that
e@) = (ai... aum) ', Uax) = (@i... AomXi-.. XmQ1- .. Agiom) s (7)

for any positive integer s, such that sk = m,a = a*"e OF " x=x"e Q"

(Clearly, (7) could be written in the following way:

e(@)=a’', 1 (ax) = (axa)™', (7"
but then @ and x in the right-hand side would be "products" in 0", and elements
of O, in the left-hand one.)

The equality sk — m = 0 is possible only if k|m, and then p = 0, i.e. there
are unique yi,... ,ym € @ such that 1 =y, ... - y,,. Then we have:

e=( e V) IR =01 ool X (8)

In the case when m = 1, the (n, 1)-group (Q, f) is an n-group, k=n — 1

and thus Q” = 0" The equations (7) now have the following form:
e@=(ay ... a2) ", t@)=(ay ... @Gua xay ... a,2)". 75

Remark 1. Since in Theorem 3.1 and Theorem 3.2 of [11] only partial
associativity of the operation f is assumed, these theorems are not corollaries of
Theorem 1 of this paper. However, Theorem 1 could be used to unite both
Theorem 3.1 and Theorem 3.2 and after the associativity of f has been estab-
lished, the conclusion would be a consequence of Theorem 1. Theorem 1 covers
any relation between the positive integers & and m, while in [11] only the case
k= m is solved. Thus, the question which axioms for partial associativity are
sufficient in the case k& < m remains open.

We note that any commutative n-groupoid which satisfies a correspond-
ing partial associativity is an n-semigroup. The same is true for the fully com-
mutative (n, m)-groupoids ([6. p.7]). Thus, in this case, any partial associativity
of f and the requirement for existence of operations e, and &, under the condi-
tion sk =m can be taken as an axiom system for a fully commutative (n,m)-
group (Q, .

Remark 2. The equations (77) could be used to determine neutral and
inverse operation in the additive n-group of an (n, m)-ring (R; f, g). First recall
that (R; f, g) is an (n, m)-ring if (R, f) is an Abelian n-group, and g an m-
operation on R distributive with respect to f. In this case, the universal covering
group R" of the n-group (R, f) is commutative, and, with the additive notation,
we have: A

R=RU2RuU ...uU(n-1R.

Then there is a unique extension g" of g such that (R“, +, gh) is a (2, m)-
ring ([2, p.7]).

According to the additive notation, the relations (7") obtain the follow-

ing forms:
& e(ay,... , ap2)=—(a; +...+ a,2),

ay,... ,apa, x)=—a, +..+a, 2+ x+a, +...+a,3) =
=—2a, +...+ 2a, ; + x).
These relations imply distributivity of g with respect to e and z ([12]).
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Peaume

HEKOHW INPMUMEHH HA I'PYIIHU 3A UCITUTYBAIBE
HA (n, m)-rPYIIH
IMonzara oj TMocTroeaTa Teopema 3a UCNUTYBAaKE HA MOAHALUYHH TPYNH € HC-
TaKHaTa BO HeKoJKY paboTu, Ha nipumep [1] u [3]. LlenTa na oBaa paGoTa e j1a ce HIYCTPH-

pa MeTooT Ha KOpUCTEH:e OMHAPHH I'PYIM 33 HCIIHTYBahe BEKTOPCKO BPEJIHOCHH TPYITH,
MMajKH I npeBu/| rNaBHATE pesyaTaTy Bo [11].



