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Abstract. The subject of this paper are varieties U(M;N) of
groupoids defined by the following system of identities
{:L'm"'l.y:my: mEM}U{m-y”"‘l =zy:nc N},

where M, N are sets of positive integers. The equation U(M;N) =
U(M'; N") for any given pair (M, N) is solved, and, among all solutions,
one called camonical, is singled out. Applving a result of Evans ([6])
it is shown for finite M and N that: if M and N are nonempty and
ged(M) = ged(M U N), or only one of M and N is nonempty, then the
word problem is solvable in U(M; N).

0 Introduction
A groupoid is an algebra G = (¢, ¢) with one binary operation e : (a, b) — ab.
(We will often omit the operation sign.) Assuming the usual meanings of other
algebraic notions, we do not define them explicitly.

By a result of P. Hall (see, for example, [3], 111.2, Ex.2, p.125,0r [10], pp 39-

40), for any positive integer k there exist k!m;;% )!, k-th groupoid powers x — x”.
In this paper, we assume the groupoid power x* defined as follows:

1 k1 k
zl =z, x = xka.
So a® = x%x = (zx)x. ’

A formula xktly = zy (xykt! = xy), will be called a left (right) equa-
tton. (Here, and further on, m,n, k, p, 4,7, s are assumed to be positive inte-
gers, and xy*tl stands for x -y, and 2™ Tly for x™T! . 4.) The varieties
U(M; ), LU(D; N, LU(M; N), where M # @ and N +# 0, are said to be lefi, right,
two-sided, respectively. (Throughout the paper “variety” will mean “left, right,
or two—sided variety”.)

Below, U(mq,mea, ms, - ;n1,n2,n3,---) will be an abbreviation for
U{m1, ma, mg -} {n1, 12,13, -+ - }).

The paper consists of three sections. In Section 1 we show that each variety
U(M; N) admits a canonical axiom system. In Section 2 we solve the equation
U(M; N) =U(M'; N'"). Finally, in Section 3, we consider “incomplete /(M ; N)-
groupoids”, and applying a result of Evans ([6]) we show that the word problem
is solvable in U (M; N) for finite M and N in each of the cases: (i) N = 0,(ii)
M =@, (ili) M £ 0, N #£0, ged(M)=ged(M U N)!

1 A Canonical Axiom System for U (M:N)

The main result of this section is the following
Theorem 1 If M, N are nonempty sets of positive integers, then
() U(M; 0) = U(ged(M); D).
(r) UB; N) = U(B; (N)).?
() U(M; N) = U(ged(M); ged(M U N)).
In order to prove this theorem we will show some lemmas, where m.,n,k,p,,7,s
are assumed to be positive integers as above, and ¢ a nonnegative integer.

Lemma 1.1 If1 < k <m, then
U(m; B) |= o R — ghtl 3
Proof. Clearly, ™12 = z2 ... 22Tl — ™11 are true in U(m; @); then
the proof follows by induction on ¢ and k. O
As a corollary, we obtain:

L gcd{ M) is the greatest common divisor of A
e (N} is the additive groupoid of integers generated by N.
V |= 71 = 72 means: the equation 7 = 73 is true in the variety V.
Lemma 1.2 If m|n, then U(m; Q) C U(n;P). * O
Lemma 1.3 [f gcd(M) = d ¢ M, then there ewists a nonempty set M, of
positive integers such that

UM; Q) = UM; 0), d = ged(M;), min(M;) < min(M). > (1)



Proof. Let p — min(M). The assumption d ¢ M implies that d < p and
thus there exists an n € M such that p is not a divisor of n. Then n = gp + k,
dlk, k< pand, if M, = (M \ {n})U{k}, the relations (1.1) hold. O

As a corollary of Lemma 1.2 and Lemma 1.3 we obtain the equality (/).

The equality () is an obvious corollary of the following
Lemma 1.4 U(0; m,n) CU(D; m + n).

Proof. U(®;m) | (z™ 1) = 2”7, and therefore U{@; m, n) (1) Tl=
2™t Thus, if Ge U(0; m, n), then:

wm+ﬂ+1y — (£m+l)n+1 — w'erly = xy, ie G c u(@ m + _n)_ 0

It remains to prove ({).

Lemma 1.5 [f L = {ged(m,n) : n € N}, then U(m; N) = U{m; L).

Proof. By a similar argument as in Lemma 1.2, U(m; L) C U(m; N). If
n € N and d — gcd(m,n), then there exist ¢,7 such that ém +d — jn. By
Lemma 1.1, L (m;n) | 297! = x#T4T1 and therefore U(m; n) |=ay™ =xy.0
5 In [C(])inpleting the proof of (#) we will use the following result (for example
3| or |9]).

Lemma 1.6 If S is an additive groupoid of positive integers and d — ged(S),
then:
(1) ged(N) = d for any generating subset N of S.
(ii) There exists the least generating subset K = {ni,na,---,ne} of S, and K
w8 finite.

(iii) There exists s € S such that for each positive integer 7, s +jd < S. O
Lemma 1.7 If dy,ds,---,dj, are divisors of m, and d = ged(dy,ds,--,dy,), then
U(m; dy, da, - -+, dy) = U(m; d).

Proof. The inclusion U(m;d) C U(m;d;,ds,---,d;) follows as in Lemma
1.5. For the converse inclusion, denote by S the additive groupoid of posi-
tive integers generated by {di,ds,---,dr}. By Lemma 1.6 (i) and (r) we have
ged(S) = d, and U(m; dy, da, - -+, di) — U(m; S). By Lemma 1.6 (iii) there exists
5.5 such that ms+dcS and thus, by Lemma 1.1, i (m; S) |y Tdtl—ydrl O

Finally, by (I), (), Lemma 1.5 and Lemma 1.7, it follows that

U(M; NY = U(m; n),
where m = ged(M) and n = ged(M U N). This completes the proof of ({).
We note that the following equality holds in ¢ (m; m)
(wﬂ?»+l)m+1 — wm,JrI, (2)
(or more generally, in U (m;n), where n|m, the equality (z*" )™ =z holds.)
The results obtained in Theorem 1 suggest saying that
2"y — zy, {zy" T =2y :nc K}, {a™ Ty = xy, 2y = 2y}
is the canonical aziom system of U(M; @), U(D; N), U(M; N), respectively,
where M, N are nonempty sets of positive integers, m ged(M), K is the
least generating subset of {N), and n = ged(M U N).

As a corollary of Theorem 1 (for example [2]) we obtain

Corollary 1.1 For any pair (M, N) the variety U(M; N) is finitely based. O

2 Closed Sets of Equations in U(M;N)

The main result of this section is the following
Theorem 2 [f M, N, M’', N' are nonemply sets of positive integers, then.
(i) UM, D) = UM'; Q) — ged(M) = ged(M').
(il) U(@; N) =U(D; N') — (N} = (N').
(iii) UM N)=U(M';N") <= ged(M)=ged(M") & ged(MUN)=ged(M'UN").
4 m|n denotes that m is a divisor of n.
® min{ M) denotes the least element in M.
(iv) UM; 0y AU, N); UM; ) AUM'; N'); UG, N)Y A£U(M'; N').

The <-parts of (i), (ii), (iii) hold by Theorem 1. The corresponding =>-parts
and (iv) are corollaries of the following statement, shown in [4] (Proposition 3.5).
Proposition 2.1 Let H be a free groupoid in the wvariety U(M; N). Then the
followtng statements hold.:

() If M 40, N=0, ged(M) — m, then a left equation x" 1y — xy holds
in H +ff m|n, no right equation holds in H.

1




Gi) If M = @, N £ 0, then a right equation xy™ 't = xy holds in H iff
n € (N); no left equation holds wn H.
(iiiy If M #£ 0, N £ 0 and m = ged(M), n = ged(M U N), then o'y = xy
iff mli, and xy? "t = xy off nlj, hold in H. O
(We note that only-if parts of (i) and (iii) in Proposition 2.1 follow from the
fact that C,, € U(n; 0)NU(kn; n), where C,, is the groupoid that is the reduction
of the cyclic group of order n to its binary operation.)
A set ¥ of equations is said to be closed if, for every equation £, the following
implication holds: Slke) = (ce).

Proposition 2.2 (i) Assume thal Y. is a sel of equations containing at least one
left equation and at least one right equation. Then Y is a closed set tff
there exist two positive integers m and n such that n is a divisor of m and

Y={am My =gy iz 1} U{xy" T =ay: 5> 1)
(ii) A set X of left equations is closed iff there is a posilive integer m such that
L={zmty=xy:i>1}.
(iii) A set X of right equations is closed iff there is an additive groupoid S of
positive integers such that
Y={xy"t =xy:necS} O
The lattices U, U,., U (of all left, right, two—sided varieties, respectively) can
be characterized as follows:

Proposition 2.3 () U, is tsomorphic to the lattice of positive integers, where

m < n iff m|n.
(r) U, is antiisomorphic to the lattice of additive groupoids of positive integers.
(&) U s isomorphic to the lattice of pairs (m,n) ofpositive integers such thal
n s divisor of m, and:
(m,n) < (m',n') = m|m’ & n|n'. O

3 Incomplete U(M; N)— Groupoids and Varieties U (M; N)
with Solvable Word Problem

We investigate here the class of incomplete 4 (M; N)-groupoids and by applying
the main result of Evans’s paper [6], we solve the word problem for some varieties
U(M; N).

The term “incomplete groupoid’ ([6]) has the same meaning as “halfgroupoid’
(|1]) or “partial groupoid’ (|8]). Namely, if G is a nonempty set, D a subset of
G x G, and - : (x,y) — xy a map from D into &, then the pair G = (&, ) is
called an incomplete groupord with the domain D.

A groupoid H = (1, e) is called an extension of the incomplete groupoid G
if G C H and aeb = ab, for every (a,b) € D. If G° = G U {0}, where 0 ¢ G,
then the groupoid G?¢ = (G?, ) defined by
zy, if (z,y) e D
0, otherwise
is an extension of G. We call G° the trwwal extension of .

If M, N are sets of positive integers such that M U N = @, then we denote
by TU(M; N) the class of incomplete groupoids G, such that the corresponding
trivial closure G satisfies the following implications:

"l eG=amMey=xey, ylecG=xey" T =xey, (4)
foranymc M,nc N,z y ¢ G.

Let G be an incomplete groupoid and K a set of positive integers. We define

an equivalence ~p on G as follows. If K = @, then ~ is the equality on G. If

K # 0, we define a relation — g on G by:

c—pd — d:ck-H, (5)
for ¢,d € G and some k € K, and we put: ¢ =i d — (¢ =g dor c+—k d).
We denote by ~x the reflexive, symmetric and transitive closure of — on G,
i.e., the equivalence on G generated by — .

By (3),(4), and (5), we obtain the following characterization of the class ZL(M;N):
GcIU(M;N)e Ve, 2’y cGWax ~y o & y~ny =2y=2a"y) (6)
Let G € ZU(M; N) and define
A={acG | @G, for every k€ MUN}, B =G\ 4; (7)
clearly, B={bec G | bF" ¢ G, for some ke M UN}.

ey —

(3)



By (3), (4) and (7) it follows that
GecTU(M;N) & A=G = G° cU(M;N). (8)
Note that, in the special case when M = {m}, N = {n}, and n|m, we have
A=JaecG|lam™t e Gland B={be G | b £ G}
The following proposition is true.
Proposition 8.1 (i) If G € ZU(m; D), then for each a € A, q > 0, and
1< k< m, the equality a?™tEtl — gFtL polds.
(ii) If G € ZU(m; n), nlm, and a € A, then (o T1)ymTl = gintl
(iii) ZLA(@; r, 1) = ZUD; r, 4,7 +4). O
Using (5) and Proposition 3.1 we obtain the following
Lemma 3.1 Let G € TU(m; n) and n|m. Then
(l) T~ Y = .(1m+1 — yrn-i—l;
() @~y = x,yc AVae =y < B, where ~,;, stands for ~{my.
Proof. Let * ~,, y. If = y, then ™! = y™mTl  If x # y, then
T oy = (o, b1, ts € Gl =tg < &1 «— --- — s = y, where +— stands
for «>{m}. The proof is given by induction on s. If s = 1, then ™! — g 7L,
and x,y € A. If s = 2, we have the following four cases:
1) x -t — y; then t = 2™, y ="t ¢ = (xm )Tl = pmtl
(by Proposition 3.1), and thus 311 = (pmtlyml — pmtl,
2) x — t « y; then ™™t = ¢ — ymtl.
3) ¥ «+— t « gy; then ™11 = 4™ follows by symmetry of 1);
4) x —t — y; then x = ™ = g
and in each case x,y € A.
If s > 2, then applying 1)—4), the sequence tg, {1, - -, ts can be reduced to a
sequence with less than s + 1 elements. O
As a corollary of Lemima 3.1 we obtain the following
Proposition 3.2

G c TU(m;n) & nlm = Vb, b € B)(b ~,, ¥ =b=1"¥). 0O (9)
If b € B, then we denote by p(b) the positive integer p, such that
b £ 0, BT =0, (10)

Now we are ready to prove the main result.
Theorem 3 If the pair (M, N) satisfies one of the following condiiions
(i) M =0, N0, (ii) M ={m}, N=40; (ili) M = {m} = N,
then for each (finite) G € TU(M; N) there exists a (finite) H € U(M; N) that
18 an extension of G.

Proof. If B = @, then G? is an extension of G, finite if 7 is finite, such
that, by (8), G°eU(M; N). Thus, it remains to build an extension H=(H,e)
€ U(M; N), assuming that B # @.

Consider first the case (i): M =@, N £ ¢.

Let L be a set such that L N G? = @, and let b — b be a surjection from B
onto L with the following property:

(Vb,ce BY(b=¢ <= b~ c & b’ =), (11)
where ~ is an abbreviation for ~n, p = p(b), ¢ = p(c). Define an operation e
on H = G°U L as follows:

1) If z,y € ¢, b € B, then:

1.1) z ey = zy, for zy ¢ G
1.2) xey = b, for x — b,y ~ b.
2) If x € G,b < B, then:
2.1) bex = b, for & ~ b,
2.2) xeb=xeb, if zebis defined by 1.1) or 1.2).

3) Ifbce B,and b ~ ¢, then bec =10

4) x ey = 0, in any other case.

Using (11) and (6) one can directly show that e is a well-defined operation on f.

It follows by 1.1) that H is an extension of GG, and so it remains to show
that H € 2/(9; N).

First, by (11) and the definition of ® we obtain the following properties:

5) fac A, be B, z€ LU{0}, n N, p=p(b), then:

5.1) aptl = gn+1,

52) b2t =81 forn+ 1< p;
53) bttt =b,forn+ 1> p;
5.4) zF — z foreach kc ZT.



(Here, 3¥ is the k-th power of y in H, i.e. y) — 4, oFT' — P ey)

Now, by using properties 3) and the definition of e, we can show that:
6) xe(yrtl)y =z ey, foreach x,y ¢ H, nc N, i.e. H<c U(0; N).

Thus we have proved Theorem 3 in the case (i).

Now, consider the cases (ii) M = {m}, N =@ and (iii) M = N = {m}. The
construction of a groupoid H € U (M; N} that is an extension of G € ZU(M; N)
is formally the same in case (ii) as in case (iii). In both cases we will denote the
equivalence ~3s in G by ~; and == is the equality in G in case (ii), and = is the
same as ~ in case (iii).

Let L={(bi):bec B,pb) <i<m)}
and H = G°U L. (The union defining H is assumed to be disjoint.)

Define an operation e in H as follows.

1) If x,y € G, then:
1.1") zey=xy, if zy € G
1.2y zey=>b,ifbec B, o ~b™, p(b) =m, y=~b;
1.3 wey = (b,p(b)+ 1), if & ~ 6?0 p(b) < m, y~b.
2y Ifbe B, y< G, y= b, then:
2.1") (b,m) ey = b;
2.2") (b,i)ey = (b,i+ 1), if p(b) <i < m.
3) Ifx e L, then rex = x.
4"y x ey = 0, in any other case.

Thus we obtain an extension H = (H,e) of G. (The product x e y for (i)
in the cases 1.2') and 1.3') is well-defined by (9).)

It remains to show that H € (M ; N).

For that purpose, note first that the following statements hold.

5) Ifac A, x € BULU{0}, then
51 a™t =amt € &7
520 Tt = .
(Here, as in 5), ¥ is the k-th power of  in H.)
We will now show that:
6') x" ey =xey, forany x,y € H.

Namely, if zx € BU LU{0} or y € LU {0}, then the equality 6") follows from
3'), 4') and 5.2"). There remains the case x € A, y € G. Here, by 5.1') and the
definition 1.17), 1.2), 1.3") and 4’), we obtain the desired equality 6).

Hence (in the case M = {m}, N = 0), H c L/(m; D).

It remains to show that, for M=N={m}, the following identity holds in H:

T) xe (YT ) =zey.

By the same reasoning as for 6'), the equality 7’) is true whenever y €
BULU{Oorz =0. Forw € GUL and y € A, one can show that 7') is also
true, in the same way as for 6').

Hence (in the case M = N = {m}), H € U(m; m), and this completes the
proof of Theorem 3.

The following statement is a special case of the main result of the paper [6]:
Proposition 3.3 If the pair (M, N) 4s such that for every G < TU(M; N)
there exists an extension H € U(M; N), then the word problem is solvable in
the vartety U(M; N). O

As a corollary of Theorem 1, Proposition 3.3 and Theorem 3, we obtain the
following
Theorem 4 If M U N s finite and one of the following conditions holds:

(i N=0; (ii) M #£0, N £0, and ged(M) = ged(M U N); (iii) M = 0,
then the word problem is solvable in the variety U(M; N). O

Remarks

1. Theorem 1 and Theorem 2 suggest the following two questions:

a) s the implication

N UM; N) = U(M'; N') = TU(M; N) = TUM'; N')

b) Is it true that, for every pair (M, N), every G € TU(M; N) has an
extension H € U(M; N)?

The answer to both questions, in general, is negative, as the following
example shows.

Let M be a nonempty set of positive integers, ged(M) = m and G =
{1,2,--,m+1,m+ 2}. Let G = (G, ®) be an incomplete groupoid such
that the corresponding canonical extension G? is defined as follows:



ay) tel =i+ 1, ife=1,2---,m+1;

as) le(m-+2)—1;

az) (m+1)e(m+2)=m+ 1,

ay) x ey =0, otherwise.

If m & M and p = min(M) > m + 1, then ="l = 0 for every = €
G, n € M, and thus, by (3.3), G € ZU(M; (). On the other hand, we
have 17" ' @1 = (m+1)e1 = m+ 2 +# 2 = 1 e 1, which implies that
G ¢ Ti(m:0). Hence, ZU(m;0) € TU(M; (), i.e. the answer to the
question a) is negative.

Also, G € TU(M; @) cannot be embedded in an H € U (M; @) (= U(m; 0)),
because (17771 ) el =m+2+#2=1el.

Theorem 3 and the main result of [7] imply that, for each of the cases: i)
M A0, N=0;ii) M #£0+# N, ged(M) = ged(M U N); iii) M =@, N #
@, the embeddability problem: “For a finite G € ZU(M; N), is there an
extension H € U(M; N)?” is solvable.

. In connection with Theorem 4, the authors conjecture that, applying the

main result of [7], one can obtain the following variant of Theorem 4:
“If M U N s finite, then the word problem is solvable in U(M; N).”
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