VARIETIES OF GROUPOIDS WITH AXIOMS OF THE

FORM $x^{m+1}y = xy$ **AND/OR** $xy^{m+1} = xy$

Glasnik Mat., 37 (57) (2002), 235–244

G. Čupona, N. Celakoski, B. Janeva

Abstract. The subject of this paper are varieties $\mathcal{U}(M;N)$ of groupoids defined by the following system of identities

 $\{x^{m+1} \cdot y = xy : m \in M\} \cup \{x \cdot y^{n+1} = xy : n \in N\},$ where M, N are sets of positive integers. The equation $\mathcal{U}(M; N) = \mathcal{U}(M'; N')$ for any given pair (M, N) is solved, and, among all solutions, one called canonical, is singled out. Applying a result of Evans ([6]) it is shown for finite M and N that: if M and N are nonempty and $\gcd(M) = \gcd(M \cup N)$, or only one of M and N is nonempty, then the word problem is solvable in $\mathcal{U}(M; N)$.

Introduction

A groupoid is an algebra $\mathbf{G} = (G, \bullet)$ with one binary operation $\bullet : (a, b) \mapsto ab$. (We will often omit the operation sign.) Assuming the usual meanings of other algebraic notions, we do not define them explicitly.

By a result of P. Hall (see, for example, [3], III.2, Ex.2, p.125,or [10], pp 39-40), for any positive integer k there exist $\frac{(2k-2)!}{k!(k-1)!}$ k-th groupoid powers $x \mapsto x^k$. In this paper, we assume the groupoid power x^k defined as follows:

 $x^1 = x, \ x^{\hat{k}+1} = x^k x.$

So $x^3 = x^2x = (xx)x$. A formula $x^{k+1}y = xy$ $(xy^{k+1} = xy)$, will be called a *left (right) equa*tion. (Here, and further on, m, n, k, p, i, j, s are assumed to be positive integers, and xy^{n+1} stands for $x \cdot y^{n+1}$, and $x^{m+1}y$ for $x^{m+1} \cdot y$.) The varieties $\mathcal{U}(M;\emptyset),\ \mathcal{U}(\emptyset;N),\ \mathcal{U}(M;N),$ where $M\neq\emptyset$ and $N\neq\emptyset$, are said to be *left, right*, two-sided, respectively. (Throughout the paper "variety" will mean "left, right, or two-sided variety".)

Below, $\mathcal{U}(m_1, m_2, m_3, \dots; n_1, n_2, n_3, \dots)$ will be an abbreviation for $\mathcal{U}(\{m_1, m_2, m_3 \cdots \}; \{n_1, n_2, n_3, \cdots \}).$

The paper consists of three sections. In Section 1 we show that each variety $\mathcal{U}(M;N)$ admits a canonical axiom system. In Section 2 we solve the equation $\mathcal{U}(M;N) = \mathcal{U}(M';N')$. Finally, in Section 3, we consider "incomplete $\mathcal{U}(M;N)$ groupoids", and applying a result of Evans ([6]) we show that the word problem is solvable in $\mathcal{U}(M; N)$ for finite M and N in each of the cases: (i) $N = \emptyset$,(ii) $M = \emptyset$, (iii) $M \neq \emptyset$, $N \neq \emptyset$, $\gcd(M) = \gcd(M \cup N)^{1}$

A Canonical Axiom System for $\mathcal{U}(M;N)$

The main result of this section is the following

Theorem 1 If M, N are nonempty sets of positive integers, then

- (1) $\mathcal{U}(M; \emptyset) = \mathcal{U}(\gcd(M); \emptyset)$.
- (r) $\mathcal{U}(\emptyset; N) = \mathcal{U}(\emptyset; \langle N \rangle)$.²
- (t) $\mathcal{U}(M; N) = \mathcal{U}(\gcd(M); \gcd(M \cup N))$.

In order to prove this theorem we will show some lemmas, where m, n, k, p, i, j, sare assumed to be positive integers as above, and q a nonnegative integer.

Lemma 1.1 If $1 \le k \le m$, then

$$\mathcal{U}(m;\emptyset) \models x^{qm+k+1} = x^{k+1}$$
. 3

Proof. Clearly, $x^{m+2} = x^2, \dots, x^{2m+1} = x^{m+1}$ are true in $\mathcal{U}(m; \emptyset)$; then the proof follows by induction on q and k. \square

As a corollary, we obtain:

 $\begin{array}{l} \frac{1}{2}\gcd(M) \text{ is the greatest common divisor of } M \\ \frac{2}{2}\left\langle N\right\rangle \text{ is the additive groupoid of integers generated by } N. \end{array}$

 $^3\mathcal{V} \models \tau_1 = \tau_2$ means: the equation $\tau_1 = \tau_2$ is true in the variety \mathcal{V} . **Lemma 1.2** If m|n, then $\mathcal{U}(m;\emptyset) \subseteq \mathcal{U}(n;\emptyset)$.

Lemma 1.3 If $gcd(M) = d \notin M$, then there exists a nonempty set M_1 of positive integers such that

$$\mathcal{U}(M;\emptyset) = \mathcal{U}(M_1;\emptyset), \ d = \gcd(M_1), \ \min(M_1) < \min(M).^5$$
 (1)

Proof. Let $p = \min(M)$. The assumption $d \notin M$ implies that d < p and thus there exists an $n \in M$ such that p is not a divisor of n. Then n = qp + k, d|k, k < p and, if $M_1 = (M \setminus \{n\}) \cup \{k\}$, the relations (1.1) hold. \square As a corollary of Lemma 1.2 and Lemma 1.3 we obtain the equality (l).

The equality (r) is an obvious corollary of the following

Lemma 1.4 $\mathcal{U}(\emptyset; m, n) \subseteq \mathcal{U}(\emptyset; m+n)$.

Proof. $\mathcal{U}(\emptyset; m) \models (x^{m+1})^i = x^{m+i}$, and therefore $\mathcal{U}(\emptyset; m, n) \models (x^{m+1})^{n+1} =$ x^{m+n+1} . Thus, if $\mathbf{G} \in \mathcal{U}(\emptyset; m, n)$, then: $x^{m+n+1}y = (x^{m+1})^{n+1} = x^{m+1}y = xy$, i.e. $\mathbf{G} \in \mathcal{U}(\emptyset; m+n)$. \square

It remains to prove (t).

Lemma 1.5 If $L = \{\gcd(m, n) : n \in N\}$, then $\mathcal{U}(m; N) = \mathcal{U}(m; L)$.

Proof. By a similar argument as in Lemma 1.2, $\mathcal{U}(m;L) \subseteq \mathcal{U}(m;N)$. If $n \in N$ and $d = \gcd(m, n)$, then there exist i, j such that im + d = jn. By Lemma 1.1, $\mathcal{U}(m; n) \models x^{d+1} = x^{im+d+1}$, and therefore $\mathcal{U}(m; n) \models xy^{d+1} = xy$. \square In completing the proof of (t) we will use the following result (for example

Lemma 1.6 If S is an additive groupoid of positive integers and $d = \gcd(S)$,

- (i) gcd(N) = d for any generating subset N of S.
- (ii) There exists the least generating subset $K = \{n_1, n_2, \dots, n_k\}$ of S, and Kis finite.
- (iii) There exists $s \in S$ such that for each positive integer j, $s + jd \in S$. \square

Lemma 1.7 If d_1, d_2, \dots, d_k are divisors of m, and $d = \gcd(d_1, d_2, \dots, d_k)$, then $\mathcal{U}(m; d_1, d_2, \cdots, d_k) = \mathcal{U}(m; d).$

Proof. The inclusion $\mathcal{U}(m;d) \subseteq \mathcal{U}(m;d_1,d_2,\cdots,d_k)$ follows as in Lemma 1.5. For the converse inclusion, denote by S the additive groupoid of positive integers generated by $\{d_1,d_2,\cdots,d_k\}$. By Lemma 1.6 (i) and (r) we have $\gcd(S)=d$, and $\mathcal{U}(m;d_1,d_2,\cdots,d_k)=\mathcal{U}(m;S)$. By Lemma 1.6 (iii) there exists $s \in S$ such that $ms+d \in S$ and thus, by Lemma 1.1, $\mathcal{U}(m;S) \models y^{ms+d+1} = y^{d+1}$. \square Finally, by (l), (r), Lemma 1.5 and Lemma 1.7, it follows that

$$\mathcal{U}(M; N) = \mathcal{U}(m; n),$$

where $m = \gcd(M)$ and $n = \gcd(M \cup N)$. This completes the proof of (t).

We note that the following equality holds in $\mathcal{U}(m; m)$ $(x^{m+1})^{m+1} = x^{m+1}$,

$$(2)^{m+1})^{m+1} = x^{m+1},$$

(or more generally, in $\mathcal{U}(m;n)$, where n|m, the equality $(x^{in+1})^{m+1} = x^{in+1}$ holds.) The results obtained in Theorem 1 suggest saying that

$$x^{m+1}y = xy, \ \{xy^{n+1} = xy : n \in K\}, \ \{x^{m+1}y = xy, xy^{n+1} = xy\}$$

is the canonical axiom system of $\mathcal{U}(M;\emptyset)$, $\mathcal{U}(\emptyset;N)$, $\mathcal{U}(M;N)$, respectively, where M, N are nonempty sets of positive integers, $m = \gcd(M), K$ is the least generating subset of $\langle N \rangle$, and $n = \gcd(M \cup N)$.

As a corollary of Theorem 1 (for example [2]) we obtain

Corollary 1.1 For any pair (M, N) the variety $\mathcal{U}(M; N)$ is finitely based. \square

Closed Sets of Equations in $\mathcal{U}(M;N)$

The main result of this section is the following

Theorem 2 If M, N, M', N' are nonempty sets of positive integers, then:

- (i) $\mathcal{U}(M; \emptyset) = \mathcal{U}(M'; \emptyset) \iff \gcd(M) = \gcd(M')$.
- (ii) $\mathcal{U}(\emptyset; N) = \mathcal{U}(\emptyset; N') \iff \langle N \rangle = \langle N' \rangle.$
- (iii) $\mathcal{U}(M; N) = \mathcal{U}(M'; N') \iff \gcd(M) = \gcd(M') \& \gcd(M \cup N) = \gcd(M' \cup N').$

(iv) $\mathcal{U}(M;\emptyset) \neq \mathcal{U}(\emptyset;N); \ \mathcal{U}(M;\emptyset) \neq \mathcal{U}(M';N'); \ \mathcal{U}(\emptyset;N) \neq \mathcal{U}(M';N').$

The ←-parts of (i), (ii), (iii) hold by Theorem 1. The corresponding ⇒-parts and (iv) are corollaries of the following statement, shown in [4] (Proposition 3.5). **Proposition 2.1** Let **H** be a free groupoid in the variety $\mathcal{U}(M; N)$. Then the following statements hold:

(i) If $M \neq \emptyset$, $N = \emptyset$, $\gcd(M) = m$, then a left equation $x^{n+1}y = xy$ holds in **H** iff m|n; no right equation holds in **H**.

 $[\]frac{4}{m|n}$ denotes that m is a divisor of n.

 $^{^{5}}$ min(M) denotes the least element in M.

- (ii) If $M=\emptyset$, $N\neq\emptyset$, then a right equation $xy^{n+1}=xy$ holds in ${\bf H}$ iff $n \in \langle N \rangle$; no left equation holds in **H**.
- (iii) If $M \neq \emptyset$, $N \neq \emptyset$ and $m = \gcd(M)$, $n = \gcd(M \cup N)$, then $x^{i+1}y = xy$ iff m|i, and $xy^{j+1} = xy$ iff n|j, hold in H. \square

(We note that only-if parts of (i) and (iii) in Proposition 2.1 follow from the fact that $C_n \in \mathcal{U}(n; \emptyset) \cap \mathcal{U}(kn; n)$, where C_n is the groupoid that is the reduction of the cyclic group of order n to its binary operation.)

A set Σ of equations is said to be *closed* if, for every equation ε , the following implication holds: $(\Sigma \models \varepsilon) \Rightarrow (\varepsilon \in \Sigma).$

Proposition 2.2 (i) Assume that Σ is a set of equations containing at least one left equation and at least one right equation. Then Σ is a closed set iff there exist two positive integers m and n such that n is a divisor of m and $\Sigma = \{x^{im+1}y = xy : i \ge 1\} \cup \{xy^{jn+1} = xy : j \ge 1\}.$

- (ii) A set Σ of left equations is closed iff there is a positive integer m such that $\Sigma = \{x^{im+1}y = xy : i \ge 1\}.$
- (iii) A set Σ of right equations is closed iff there is an additive groupoid S of positive integers such that

The lattices $\mathcal{U}_l, \mathcal{U}_r, \mathcal{U}$ (of all left, right, two–sided varieties, respectively) can be characterized as follows:

Proposition 2.3 (l) U_l is isomorphic to the lattice of positive integers, where $m \leq n \text{ iff } m | n.$

- (r) \mathcal{U}_r is antiisomorphic to the lattice of additive groupoids of positive integers.
- (t) U is isomorphic to the lattice of pairs (m,n) of positive integers such that n is divisor of m, and:

 $(m,n) \leq (m',n') \iff m|m' \& n|n'. \square$

Incomplete U(M; N)— Groupoids and Varieties U(M; N)with Solvable Word Problem

We investigate here the class of incomplete $\mathcal{U}(M; N)$ -groupoids and by applying the main result of Evans's paper [6], we solve the word problem for some varieties $\mathcal{U}(M;N)$.

The term "incomplete groupoid" ([6]) has the same meaning as "halfgroupoid" ([1]) or "partial groupoid" ([8]). Namely, if G is a nonempty set, D a subset of $G \times G$, and $\cdot : (x,y) \mapsto xy$ a map from D into G, then the pair $\mathbf{G} = (G,\cdot)$ is called an *incomplete groupoid* with the domain D.

A groupoid $\mathbf{H} = (H, \bullet)$ is called an *extension* of the incomplete groupoid \mathbf{G} iff $G \subseteq H$ and $a \bullet b = ab$, for every $(a, b) \in D$. If $G^o = G \cup \{0\}$, where $0 \notin G$, then the groupoid $\mathbf{G}^o = (G^o, \bullet)$ defined by

$$x \bullet y = \begin{cases} xy, & \text{if } (x,y) \in D\\ 0, & \text{otherwise} \end{cases}$$
(3)

is an extension of **G**. We call \mathbf{G}^{o} the *trivial extension* of **G**. If M, N are sets of positive integers such that $M \cup N \neq \emptyset$, then we denote by $\mathcal{IU}(M; N)$ the class of incomplete groupoids G, such that the corresponding

trivial closure
$$G^{\circ}$$
 satisfies the following implications: $x^{m+1} \in G \Rightarrow x^{m+1} \bullet y = x \bullet y, \quad y^{n+1} \in G \Rightarrow x \bullet y^{n+1} = x \bullet y,$ for any $m \in M, n \in N, x, y \in G$. (4)

Let G be an incomplete groupoid and K a set of positive integers. We define an equivalence \sim_K on G as follows. If $K = \emptyset$, then \sim_K is the equality on G. If $K \neq \emptyset$, we define a relation \rightarrow_K on G by:

$$c \to_K d \iff d = c^{k+1}, \tag{5}$$

for $c, d \in G$ and some $k \in K$, and we put: $c \leftrightarrow_K d \iff (c \to_K d \text{ or } c \leftarrow_K d)$. We denote by \sim_K the reflexive, symmetric and transitive closure of \to_K on G, i.e., the equivalence on G generated by \rightarrow_K .

By (3), (4), and (5), we obtain the following characterization of the class $\mathcal{IU}(M;N)$:

$$\mathbf{G} \in \mathcal{IU}(M; N) \Leftrightarrow (\forall x, x', y, y' \in G)(x \sim_M x' \& y \sim_N y' \Rightarrow xy = x'y')$$
 (6) Let $\mathbf{G} \in \mathcal{IU}(M; N)$ and define

 $A = \{a \in G \mid a^{k+1} \in G, \text{ for every } k \in M \cup N\}, B = G \setminus A;$ (7)

clearly, $B = \{b \in G \mid b^{k+1} \notin G, \text{ for some } k \in M \cup N\}.$

By (3), (4) and (7) it follows that

$$\mathbf{G} \in \mathcal{IU}(M; N) \& A = G \Rightarrow \mathbf{G}^{\circ} \in \mathcal{U}(M; N).$$
 (8)

Note that, in the special case when $M = \{m\}$, $N = \{n\}$, and n|m, we have $A = \{a \in G \mid a^{m+1} \in G\} \text{ and } B = \{b \in G \mid b^{m+1} \notin G\}.$

The following proposition is true.

Proposition 3.1 (i) If $G \in \mathcal{IU}(m; \emptyset)$, then for each $a \in A, q \geq 0$, and $1 \leq k \leq m$, the equality $a^{qm+k+1} = a^{k+1}$ holds.

- (ii) If $\mathbf{G} \in \mathcal{IU}(m; n)$, n|m, and $a \in A$, then $(a^{in+1})^{m+1} = a^{in+1}$.
- (iii) $\mathcal{IU}(\emptyset; r, i) = \mathcal{IU}(\emptyset; r, i, r+i)$. \square

Using (5) and Proposition 3.1 we obtain the following

Lemma 3.1 Let $G \in \mathcal{IU}(m; n)$ and n|m. Then

- (i) $x \sim_m y \Rightarrow x^{m+1} = y^{m+1}$;

(ii) $x \sim_m y \Rightarrow x, y \in A \lor x = y \in B$, where $\sim_m stands$ for $\sim_{\{m\}}$. **Proof.** Let $x \sim_m y$. If x = y, then $x^{m+1} = y^{m+1}$. If $x \neq y$, then $x \sim_m y \iff (\exists t_0, t_1, \cdots t_s \in G)x = t_0 \leftrightarrow t_1 \leftrightarrow \cdots \leftrightarrow t_s = y$, where \leftrightarrow stands for $\leftrightarrow_{\{m\}}$. The proof is given by induction on s. If s = 1, then $x^{m+1} = y^{m+1}$,

- and $x, y \in A$. If s = 2, we have the following four cases:

 1) $x \to t \to y$; then $t = x^{m+1}$, $y = t^{m+1}$, $y = (x^{m+1})^{m+1} = x^{m+1}$ (by Proposition 3.1), and thus $y^{m+1} = (x^{m+1})^{m+1} = x^{m+1}$;

 2) $x \to t \leftarrow y$; then $x^{m+1} = t = y^{m+1}$;

 3) $x \leftarrow t \leftarrow y$; then $x^{m+1} = y^{m+1}$ follows by symmetry of 1);

 4) $x \leftarrow t \to y$; then $x = t^{m+1} = y$;

and in each case $x, y \in A$.

If s > 2, then applying 1)-4), the sequence t_0, t_1, \dots, t_s can be reduced to a sequence with less than s+1 elements. \square

As a corollary of Lemma 3.1 we obtain the following

Proposition 3.2

$$\mathbf{G} \in \mathcal{IU}(m; n) \& n | m \Rightarrow (\forall b, b' \in B)(b \sim_m b' \Rightarrow b = b'). \square$$
(9)

If $b \in B$, then we denote by p(b) the positive integer p, such that

$$b^p \neq 0, \ b^{p+1} = 0.$$
 (10)

Now we are ready to prove the main result.

Theorem 3 If the pair (M, N) satisfies one of the following conditions

(i) $M = \emptyset$, $N \neq \emptyset$; (ii) $M = \{m\}$, $N = \emptyset$; (iii) $M = \{m\} = N$, then for each (finite) $\mathbf{G} \in \mathcal{IU}(M; N)$ there exists a (finite) $\mathbf{H} \in \mathcal{U}(M; N)$ that is an extension of G.

Proof. If $B = \emptyset$, then \mathbf{G}° is an extension of \mathbf{G} , finite if G is finite, such that, by (8), $\mathbf{G}^o \in \mathcal{U}(M; N)$. Thus, it remains to build an extension $\mathbf{H} = (H, \bullet)$ $\in \mathcal{U}(M; N)$, assuming that $B \neq \emptyset$.

Consider first the case (i): $M = \emptyset$, $N \neq \emptyset$.

Let L be a set such that $L \cap G^o = \emptyset$, and let $b \mapsto \underline{b}$ be a surjection from B onto L with the following property:

$$(\forall b, c \in B)(\underline{b} = \underline{c} \iff b \sim c \& b^p = c^q), \tag{11}$$

where \sim is an abbreviation for \sim_N , p=p(b), q=p(c). Define an operation \bullet on $H=G^o\cup L$ as follows: 1) If $x,y\in G,\ b\in B$, then:

- - 1.1) $x \bullet y = xy$, for $xy \in G$;
 - 1.2) $x \bullet y = \underline{b}$, for $x = b^p$, $y \sim b$.
- 2) If $x \in G, b \in B$, then:
 - 2.1) $\underline{b} \bullet x = \underline{b}$, for $x \sim b$;
 - 2.2) $x \bullet \underline{b} = x \bullet b$, if $x \bullet b$ is defined by 1.1) or 1.2).
- 3) If $b, c \in B$, and $b \sim c$, then $\underline{b} \bullet \underline{c} = \underline{b}$.
- 4) $x \bullet y = 0$, in any other case.

Using (11) and (6) one can directly show that \bullet is a well-defined operation on H. It follows by 1.1) that **H** is an extension of **G**, and so it remains to show

that $\mathbf{H} \in \mathcal{U}(\emptyset; N)$.

First, by (11) and the definition of \bullet we obtain the following properties:

- 5) If $a \in A, b \in B, z \in L \cup \{0\}, n \in N, p = p(b)$, then:
 - 5.1) $a_{\bullet}^{n+1} = a^{n+1};$
 - 5.2) $b_{\bullet}^{n+1} = b^{n+1}$, for $n+1 \le p$;
 - 5.3) $b_{\bullet}^{n+1} = \underline{b}$, for n+1 > p;
 - 5.4) $z_{\bullet}^k = z$, for each $k \in \mathbb{Z}^+$.

```
(Here, y_{\bullet}^k is the k-th power of y in H, i.e. y_{\bullet}^1 = y, y_{\bullet}^{k+1} = y_{\bullet}^k \bullet y.)
    Now, by using properties 5) and the definition of \bullet, we can show that:
   6) x \bullet (y_{\bullet}^{n+1}) = x \bullet y, for each x, y \in H, n \in N, i.e. \mathbf{H} \in \mathcal{U}(\emptyset; N).
    Thus we have proved Theorem 3 in the case (i).
    Now, consider the cases (ii) M = \{m\}, N = \emptyset and (iii) M = N = \{m\}. The
construction of a groupoid \mathbf{H} \in \mathcal{U}(M; N) that is an extension of \mathbf{G} \in \mathcal{IU}(M; N)
is formally the same in case (ii) as in case (iii). In both cases we will denote the
equivalence \sim_M in G by \sim; and \approx is the equality in G in case (ii), and \approx is the
same as \sim in case (iii).
    Let
                                 L = \{(b, i) : b \in B, p(b) < i \le m\}
and H = G^{\circ} \cup L. (The union defining H is assumed to be disjoint.)
    Define an operation \bullet in H as follows.
   1') If x, y \in G, then:
       1.1') x \bullet y = xy, if xy \in G;
       1.2') x \bullet y = b, if b \in B, x \sim b^m, p(b) = m, y \approx b;
       1.3') x \cdot y = (b, p(b) + 1), if x \sim b^{p(b)}, p(b) < m, y \approx b.
  2') If b \in B, y \in G, y \approx b, then:
       (b, m) \bullet y = b;
       (2.2') (b,i) \bullet y = (b,i+1), if p(b) < i < m.
  3') If x \in L, then x \bullet x = x.
   4') x \bullet y = 0, in any other case.
    Thus we obtain an extension \mathbf{H} = (H, \bullet) of \mathbf{G}. (The product x \bullet y for (ii)
in the cases 1.2') and 1.3') is well-defined by (9).)
     It remains to show that \mathbf{H} \in \mathcal{U}(M; N)
    For that purpose, note first that the following statements hold.
  5') If a \in A, x \in B \cup L \cup \{0\}, then 5.1') a_{\bullet}^{m+1} = a^{m+1} \in G; 5.2') x_{\bullet}^{m+1} = x.
(Here, as in 5), y_{\bullet}^{k} is the k-th power of y in \mathbf{H}.)
   We will now show that:

6') x^{m+1} \bullet y = x \bullet y, for any x, y \in H.
Namely, if x \in B \cup L \cup \{0\} or y \in L \cup \{0\}, then the equality 6') follows from 3'), 4') and 5.2'). There remains the case x \in A, y \in G. Here, by 5.1') and the definition 1.1'), 1.2'), 1.3') and 4'), we obtain the desired equality 6'). Hence (in the case M = \{m\}, N = \emptyset), \mathbf{H} \in \mathcal{U}(m; \emptyset). It remains to show that, for M = N = \{m\}, the following identity holds in \mathbf{H}:
   7') \ x \bullet (y_{\bullet}^{m+1}) = x \bullet y.
By the same reasoning as for 6'), the equality 7') is true whenever y \in B \cup L \cup \{0\} or x = 0. For x \in G \cup L and y \in A, one can show that 7') is also
true, in the same way as for 6').
    Hence (in the case M = N = \{m\}), \mathbf{H} \in \mathcal{U}(m; m), and this completes the
proof of Theorem 3.
     The following statement is a special case of the main result of the paper [6]:
Proposition 3.3 If the pair (M,N) is such that for every G \in \mathcal{IU}(M,N)
there exists an extension \mathbf{H} \in \mathcal{U}(M; N), then the word problem is solvable in
the variety \mathcal{U}(M; N). \square
    As a corollary of Theorem 1, Proposition 3.3 and Theorem 3, we obtain the
following
Theorem 4 If M \cup N is finite and one of the following conditions holds:
    (i) N = \emptyset; (ii) M \neq \emptyset, N \neq \emptyset, and gcd(M) = gcd(M \cup N); (iii) M = \emptyset,
then the word problem is solvable in the variety \mathcal{U}(M; N). \square
     Remarks
    1. Theorem 1 and Theorem 2 suggest the following two questions:
        a) Is the implication
                       \mathcal{U}(M; N) = \mathcal{U}(M'; N') \Rightarrow \mathcal{I}\mathcal{U}(M; N) = \mathcal{I}\mathcal{U}(M'; N')
        b) Is it true that, for every pair (M,N), every \mathbf{G} \in \mathcal{IU}(M;N) has an
        extension \mathbf{H} \in \mathcal{U}(M; N)?
        The answer to both questions, in general, is negative, as the following
        example shows.
        Let M be a nonempty set of positive integers, gcd(M) = m and G = m
        \{1, 2, \dots, m+1, m+2\}. Let \mathbf{G} = (G, \bullet) be an incomplete groupoid such
```

that the corresponding canonical extension \mathbf{G}^{o} is defined as follows:

- $\begin{array}{lll} a_1) & i \bullet 1 = i+1, \ \text{if} \ i = 1, 2, \cdots, m+1; \\ a_2) & 1 \bullet (m+2) = 1; \\ a_3) & (m+1) \bullet (m+2) = m+1; \\ a_4) & x \bullet y = 0, \ \text{otherwise}. \\ \text{If} \ m \notin M \ \text{and} \ p = \min(M) > m+1, \ \text{then} \ x^{n+1} = 0 \ \text{for every} \ x \in G, \ n \in M, \ \text{and thus, by (3.3), } \mathbf{G} \in \mathcal{IU}(M;\emptyset). \ \text{On the other hand, we have} \ 1^{m+1} \bullet 1 = (m+1) \bullet 1 = m+2 \neq 2 = 1 \bullet 1, \ \text{which implies that} \\ \mathbf{G} \notin \mathcal{IU}(m;\emptyset). \ \text{Hence,} \ \mathcal{IU}(m;\emptyset) \not\subseteq \mathcal{IU}(M;\emptyset), \ \text{i.e. the answer to the} \end{array}$
- question a) is negative. Also, $\mathbf{G} \in \mathcal{IU}(M; \emptyset)$ cannot be embedded in an $\mathbf{H} \in \mathcal{U}(M; \emptyset)$ (= $\mathcal{U}(m; \emptyset)$), because $(1^{m+1}) \bullet 1 = m + 2 \neq 2 = 1 \bullet 1$.
- **2.** Theorem 3 and the main result of [7] imply that, for each of the cases: i) $M \neq \emptyset$, $N = \emptyset$; ii) $M \neq \emptyset \neq N$, $\gcd(M) = \gcd(M \cup N)$; iii) $M = \emptyset$, $N \neq \emptyset$, the embeddability problem: "For a finite $\mathbf{G} \in \mathcal{IU}(M;N)$, is there an extension $\mathbf{H} \in \mathcal{U}(M;N)$?" is solvable.
- **3.** In connection with Theorem 4, the authors conjecture that, applying the main result of [7], one can obtain the following variant of **Theorem 4**: "If $M \cup N$ is finite, then the word problem is solvable in $\mathcal{U}(M; N)$."

References

- [1] R. H. Bruck: A Survey of Binary Systems, Berlin-Göttingen-Heidelberg, 1956
- [2] S. Burris, H. P. Sankappanavar: A Course in Universal Algebra, Springer-Verlag, Grad. Texts in Math., New York-Berlin, 1981
- [3] P. M. Cohn: Universal Algebra, Harper's Series in Modern Math., 1965
- [4] G. Čupona, N. Celakoski, B. Janeva: Free Groupoids with Axioms of the Form $x^{m+1}y=xy$ and/or $xy^{n+1}=xy$, Novi Sad J. Math, Vol. 29, No 2, 1999, 131-147, Proc. VIII Int. Conf. "Algebra & Logic" (Novi Sad, 1998)
- [5] D. Dimovski: Semigroups of Integers with Addition (in Macedonian), Maced. Acad. Sci. and Arts, Contributions, IX 2-Nat. Sci and Math, 1977, 21-26
- [6] T. Evans: The Word Problem for Abstract Algebras, J. London Math. Soc. 26 (1951), 64–71
- [7] T. Evans: Embeddability and the Word Problem, J. London Math. Soc, 28(1952), 76–80
- [8] G. Grätzer: Universal Algebra, D. Van Nostrand Co., 1968
- [9] A. I. Mal'cev: Algoritmi i Rekursivnie funkcii (in Russian), Moskva 1965
- [10] S. Markovski: Finite Mathematics (in Macedonian), Skopje 1993