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Abstract

The subject of this paper is the variety (denoted by Afass) of mono-
agzociative groupoids, i.e. groupoids m which every cyclic subgroupoid  is
a subsemigroup. A description of fiee objects in  Aass  iv given. Using a
covenient definition of injective groupoids in - Afass . it is shown that a
groupoid H iz freein Mass iff A iz injective in Maszss and the set of
prime elements in H generates & (Thig property is named Bruck Theorem
for Adass ) Neither of the classes Adassin (Iyective omjects in Adass ) and
MaszziF (free objects m Adass ) is hereditary. A charactenization of free sub-
groupoids of a groupoid H € Maszfi iz obtained. It iz shown that every
groupoid HEMassiF with a two-element bagis has a sugroupoid ¢ Massi
with an infinite basis.

1. Preliminaries
A groupoid is a pailr ¢ = (G, ), where & is a nonempty set and 7 -7
is a mapping (z.vy) — zy, from G? into (. G is said to be injective ifl:

(Va,y,u.v € Glay = ve = (x,y) = (u.v)). (.1
An element a € &' is prime! in G iff @ € GG, where
(7 = {.?'y | 2,y € (_;}. (1.2)
T'he following statement is well known (for example; [1: L.1.5}).
Proposition 1.1{Bruck Theorem}. A groupoid I =( F,-) is absolutely

free (i.e. [ree in the variety of groupoids) iff the [ollowing conditions hold:

a) I’ is injective.

I) The set & of primes in £ is nonemply and generates £,

Below we assume that £ is a given absolutely free groupoid with the
basis B. The length |v|, the sct P(v) of parts and the conten! en{v) of an
element = € F, are defined as follows:

bl = 1. |tu| = |1] + |ul: P(b) = {b}. Pltu) = {tu} U P(L)U Plu):
cn(b) = {b}., cn(fu): en(f) U enlw). (1.3)
for anv be B, t,ue .

We will also use an absolutely free groupoid £ (F£,-) with a one-
element basis {e}, assuming that N7 = @ Elements of /2 will be denoted
by f.g.h. ... and will be called (groupoid) powers. 1t should be noted that
(1.3) makes meaningfil notions "the length | f]7 and "the set P(f) of parts”
of an element f & [\,

If & is a groupoid, then each f € E induces a transformation f<
¢ — (< defined by:

=) = @ f),
where ¢, : E -/ 15 the homomorphism from £ into  such thal
wrle) = x. Therefore: ) . P . e
S ) ., (fh 'J’_?( )= fe2(x) IETENE (1.4)

for any fLh € I, o e (/. (We will usually write fa) instead of % 2) when
we work with a fixed groupoid ¢/.)

The lollowing statement is clear.

Proposition 1.2. If (i is a groupoid and a € &/, then { f(a) | f !

is the subgroupid of (& generated by a.

In the [ollowing sections we will use a subset D) of £ defined as follows:
1) = {e n € N}, TR
where N is the set ol positive integers and
=1 o ekt — R, 16
The fact that I is injective implies that F has the following property:
(Vt,ue F, mneN)(t""'=uvH' s t=ul m= n). (1.7)

'The notions as subgroupoid, semigroup. variety of groupoids ... have usnal meanings.



If ¢+ is a groupoid, and b € ¢ is such that
(Vee G, ne N)(n>2=bz#c"), (1.8)
then we say that b is a base element (or, shortly: a base) in G.
2. Monoassociative groupoids
We say that a groupoid &G = (G, -) is menoassociative iff. for any a € &,
the subgroupoid @ of G generated by « is associative, i.e. a subsemigroup
of . (The class of monoassociative groupoids will be usually denoted by
Mass.)
The proofs of the following statements are obvious corollaries from the
definition of Mass. _
Proposition 2.1. € Mass ifffor any f € E and = € &, the following
equation 171 i
flz)== (2.1)
holds in G. (] _
Proposition 2.2. If (¢ € Mass, then
R‘“ _L_ﬂ. —_ 1.'3'N'+'ﬂ. [,L_?'??.)Ti. — .“'HIH. {2 2)
for any z € G, m.n € N. ] .
Proposition 2.3. If (¢ is a groupoid, then the following statements
are equivalent:
(a) G € Mass.
{b) G is a union of subsemigroups of G.
{c) G is a union of cyclic subsemigroups of (. (m]
Proposition 2.4. Mass is a variety of groupoids and:
{f(z) =2 | feE} (2.3)

is an axiom system for this variety. o

3. Free monoassociative groupoids

Assuming that # is a nonempty set, and &7 an absolutely free groupoid
with the basis B, we are looking for a groupod £ = (. *) with the following
properties:

(1) b R C k.

{ii) t € R = Pl1)C R;

(liiyt,u.tue R =1+u=tu;

(ivy f2 is a [ree groupoid in Mass with the basis f3.

Proposition 2.1 suggesis the following set 2 as a candidate for the
carrier of the desired groupoid i2:

R=4{elr|(VfeFE\D.axec ) fle)¢ P(1)}. (3.1)

The following properties of 12 are obvious corollaries of (3.1).

Proposition 3.1. {a) R satislies (1) and (ii).

(byte & mneN, n>2 = t"" ¢ R.

(cyte ' & m,neN, m>2.n>2 = (t")" & R.

() {t,u) CR&Stud R=(Jac R.m>1,n>22)tu=a™a™. ]

Now we will describe conditions under which ™ € £,

Proposition 3.2. Il { € F and n>2 | then:

(" R <= te R&1t is a base in F.

Proof. Assume that ¢ € I and £ is a base in £, By Proposition 3.1
(dj.t? € R. Assuming that t* € . also by Proposition 3.1 {d}, we obtain
thtl — gkt e R.

Conversely, ¢ € 2, by Proposition 3.1 {(a). (d). implies: ¢t € R and { is
a base element in I, a

Now we define an operation = on 1, as follows. If ¢.u € R. then:

txu = {tu];H.” LA B:" = ; (3.2)
@ tu=a™a®, m,neN, n>2.

Proposition 3.3. R = (R, *) is a groupod which satisfies the condi-
tions (iii) and (iv).

Proof. 1) By (3.2) and Proposition 3.2, R is a groupoid that B is the
sel of primes in &, and the least generating subset of R, as well. Moreover,
we have:



It * u| = |t| + |u]| = |tu], (3.3)
for sny 1, u:€ B. cn(t «+u) = cn(d) U cnfu). (3.-1)
2YIfte R. ne€ N. f e F, then t7, f,.(f) are defined as follows:
tl=1, 1P =%t (3.5)
eult) =1, (frfa)alt) = (D)) * (fau(t)). (3.6)
By (3.2), (3.5), (3.6) and Proposition 3.2, we obtain that for any ¢ € &
is a base in £, and any m.,n € N, f € F, the following equations hold:
2w, fAE) =V, (3.7)
(r?)l }r-n i rwnn’ f,‘(f’n) o fm[fi_ {:{.R)
Finally. from (3.7) and (3.8). by Proposition 2.1, we obtain that
R € Mass.
3) It remains to show that R is free in Mass with the basis B.

Let G € Mass, A : B — (5. and  be the homomorphism from I into
. which extends A. Then, for any t.u € R. we have:
(t%u) e(tu) = @(t)e(u), tu € R.
txu)=
& X @a™ ") =p(a)"e(a)* =p(t)s(u), tu=a™a™, m,neN,n>2.

and this implies that the restriction v* = 2| R of ¢ on R is a homomorphism
from K into G, which extends A. O

The following properties of R can be also easily shown.

Proposition 3.4. If ¢t € I?, then { is a base element in R iff  is a base
element in F. 0

Propositon 3.5. If w € R, then there exists a unique pair
(t,k) € R x N such that ¢ is a base in R and u = t5(= t*). 0

We say that ¢ is the base, and % is the exponent of uw in f. In the case
k > 2, the equation v = v % w holds in Riff v =17, w =1(*, and r + s = k.

Proposition 3.6. If ©« € R is a base element and v« € R\ B, then
there is a unique pair {v,w) € E? such that w = v % w(= vw) ; Mmoreover, v
and w have different bases. O .

Proposition 3.7. If t,u, v € 7, then:

fa)ydi=w = w+t ¢ and w have the same base.

(by(t#u)xv =10+ (uw=xv) iff t, u. and v have the same base. O

Proposition 3.8. If 7 = {J} is a one element sct. then
B ={b"|n =1}, and b™ « b® = b" . (Therefore, R is isomorphic with
the additive semigroup of positive integers.) o

4. Injective objects in the variety of monoassociative groupoids

Looking for a convenient class of "injective groupoids™ in a variety V of
groupoids we chioose as axioms of such a class corresponding properties of
free objects in V' that are "near” the statement (1.1). In the case of Mass,
such statements are Proposition 3.5 and Proposition 3.6, and that is why
we give the following definition.

We say that a groupoid H € Mass is injective in Mass, i.e. it is in
Massin, iff it satisfies the following conditions: _

(i} For any a € I thereis a unique pair (b, &) € # x N such that ¢ = b*
and b 1s a base in f. { We say that b is the base and L is the coponent of a
in A, and write b = F{a), kb = =(a).)

(1) Let & If be not prime in M.
(i1 Wb = 3{a) and £(a) = 2. then

a=cd=F(c)=p3(d)=0 & el{c)+e(d) ==(a).)

(11.2) If e.d € I are such that gie) # 3(d). then gled) = ed. and:
cd = d = (e, dv = ('d').

As corollaries ol the given definition and Propositions 3.5-3.7. we ob-
tain the following poperties of Massin.

Proposition 4.1. T'he class of free groupoids in Mass (shortlyv:
Mrezssfr)y is a subclass of MWassin. [l

Proposition 4.2. A groupoid HeMassin containsg only one base
element iff £/ is isomorphic to the additive semigroup of positive integers.0



Proposition 4.3. Fach H € Massin is infinite. m]

Proposition 4.4. DEvery groupoid H € Massin contains infinitely
many subgroupoid*; that are not injective.

Namely, if b is a base in # . then for any ¢ > 2. ={b"|n>i}isa
subgroupoid of  and Q & Massin. m}

Proposition 4.5. rlfrmsfr is a proper subclass of Massin.

Proof. Let A be an infinite set and let # = A x N. Instead of
{a,n) € H we will write a™, and moreover, a instea.d of a'. The fact that
A is infinite implies that A, H and

C={(a™b")|a,be A, a« Zb, m,n€ N},)
have the same cardinality. Let ¢ : ' —= H be an injective mapping and
define a groupoid H = (fl,e) as follows:
(Va.b € A, a # b, m,n € N) a™ ea’ = a™t", a™ e b = (a™, b))

Then H € Massin.

Namely, a = @(a*), k = £(a®), for each @« € A, & € N. And,
if a”, b € H, a # b, then a™ o b = @(a™,b") is a base that is not
prime in M. The injectiveness of ¢ implies that the condition (ii) of
the definition holds as well. Then, H \ im(¢) is the set of primes in H.
Therefore, if ¢ is bijective, then the set of primes in H is empty, and then
I ¢ Massfr. O

Proposition 4.6. If H € Massin is such that there exist at least two
distinct base elements in . then the set of base elements in H is infinite.

Proof. Let b, ¢ be base elements in H and b # ¢. Then, {b% |k > 1}
is an infinite set of base elements in /. O

As a corollary we obtain the following.

Proposition 4.7. If H € Massin, then the following conditinons are
equivalent:

(a) H is commutative;

(b} H is associative;

(c) H is i‘-.omorphic to the additive semigloup of positive integers:

(d) There is ouly one base element in f;

(e) H € Massfr with one-element basis. O

Below we assume that # € Massin. () is a subgroupoid of H and the
following notation: o

BH)Y={dla)|lac H}, C=0Qn3(H),
D={bep(H)\Q|(3aeQ)b=3(a)
ry, = min{k | b* € Q}. where be D.

Proposition 4.8. If D = 0, then @ € Massin.

Proof. This is a consequence from the definition of Massin. O

Proposition 4.9. If D # {, then the following statements are true.

1) For every b € D, the element 0% is prime in ).

2) If, for every b e D, 0% € Q hmplies 7y | s, then @ € Massin.

3) If there are b € D and s € N such that », does not devide s and
b® e @, and if s is the least integer with this property, then #° is prime in
Q and @ ¢ Massin.

Proof 1)y I b (»# = rp) were not prime in Q then we wonld have
b" = b'b/ for some b*, b7 € @, i + 7 = r, and this contradicts the choice of r.

2) Suppose that ¢ € @ is such that b = g(a) € D. By 1), 0" (r = 7)) is
the base of a in @ and the exponent of a in @ is s(a)|r. Thus Q € Massin.

3) Let s =min{k e N | b* € Q and r does not devided k}. Then b° is
prime in Q. (Namely, if b were not prime, then we would have b% = bib7
for some b', b3 € Q, (i +j = 7). By 1). | ¢ and = | j, which implies » | =, a
contradiction with the choice of s.) T"hus the elements 5", b* are prime in
Q. Since (b7)* = b"F% = (b%)", we have that d""* has two distinct bases in
@. and thus @ ¢ Massin. O
~ As a corollary of Propositions 4.8-4.9, we obtain.

Proposition 4.10. @ ¢ Massin il there is b € F(H) and r.s € N
such that 2 < » < s and b7, b are prime in Q. O

5. Bruck Theorem for the variety of monoassociative groupoids

Below we show the following proposition, analogous to Proposition 1.1,
that we call Bruck Theorem for the variety of monoassociative groupoids

([41)-



Proposition 5.1. A groupoid I € Mass is free in Mass iff the fol-
lowing, two conditions are satisfied:
(a) H € Massin.
(b) The set. B of primes in H generates fi.
Proof. If H € Massfr then, by Ploposﬂ.lon 4.5, H € Massin, and, by
Proposition 3.3, . the set /3 of primes generates M.
Let I € zlfa.ssin. and the set B of primes generates 7.
If B = {b}, then H = {b" | n > 1}, and b is the unique base element
in I and, by Proposition 4.2, H is free in Mass with the basis {b}.
It remains the case when B contains at least two distinct elements. As
in §4 we denote by 3(H) the set of bases in H. Clearly, each prime in H
belongs to 3(H), and thus B = By C 3(H). By (ii) of the definition of
injectiveness, we also have By C g( I ), where
By ={amb" |a,be By. a # b, m,ne N}.
Assume that: By, By...., By are nonempty sets of bases such that
B B; =0ifi# j. Define Byyy by:
Biyr ={c™d" |m,me N, e#d, {c,d} C BoU...U By, {e.d} N By # 0}.
By (ii) of the definition, we have By C3(H), Bry1 #0 and Brya N B, =0,
for each ¢ € {1,2,...,k}. Moreover, the fact that B(= I3y) generates fI
implies that B(H)=U{B, | s > 0}.
& ={a’|a€ B;, s € N}.
then 7 # j implies B/ N B = 0 and
H=u{B|i>1}.
Let & € Mass and A : B — (/. Define a sequence of mappings
it BN — G as follows:
b€ By, n 2 1= po(b®) = (A(b))*:
cd* € By, n 2 1= @ ((e™d")7) = ((wole)) " (wold))™)*;
c™d" € Bigy, € € Bi,d € By = @1 ((¢7d™)?) = ((wile))" (p;(d))")*.
Then, the union ¢ = U2y is a homomorphism of A into & that extends
the given mapping A : B — G. ]
Below we assume that I = (f1.-) € Massfr, ¢ is a subgroupoid of Il
Below we assume that Il = (/.-) € Massfr, Q is a subgroupoid of /I
and B is the set ol primes (i.e. B is the basis) of /f.
Using the fact that any groupoid Il = (H.-) € Massfr with the basis
13 is isomorphic with the groupoid R constructed in §3, and the statements
{3.3) and (3.4), we can state the following
Proposition 5.2. There exist a mapping z v |&| of H into N, and a
mapping z ~ cn(x) of H into the set Lg of all finite nonempty subsets of

2, such that 1) |bl=1, |eyl = ||+ |yl
2y en(d) = {b}, cn{ay)=cn{z)Uen(y).
forany be B, x,ye . 0O°?

'\olc that the existence of such appings can be shown without using the
free groupoid S8 Namely, the fact that (N, 43 € dfass implies that there oxists a
homomorphism | | @ 8 — N such that |6 = | for cach & € /3. Also, the Tact that
(L) € Mass implies that there is a homomorphism  cn @ M — Ly, such that
cn(fh) = {b} for each b & B,

Proposition 5.3. T'he set /7 of primes in € is nonemply and gene-
rales (). o

Proof. Assumne that p € €2 is such that

|p| = min{|e] | v € @}

Then pis a prime in ¢, and thus the sel 7 of primes in ? is nonempty.

Denote by 1 ll]l'm:-ljl)o’[()l]l')ﬂlfl of Q generated by P and assume that
for cach a € @@ such that |a] < k., we have @ € 7. (In the case lal = 1. we
have a € P.) '["Iwu il d € @Q is such that |d| = & + 1. we have: d € T if
de P,and if d € 2% . then there exist b.e € () l(h that o = be. Then.
by Proposition 5.2.1), b].|¢] < k. and therelore b. ¢ € 7. which implies that
de’l. O

As a corollary of Propositions 4.8- 4.9, Proposition 5.1. and Proposi
tion 5.3, we obtain the following characierization of [ree suberoupoids of
groupoids in Massfr.




Proposition 5.4. If I € Massfr and Q is a subgroupoid of /. then
the following conditions are equivalent: o

{a) Q € Massin;

(b)) Q = Massfr:

{c) There are no prime elemenents 6. 0% in (), where 6 is a base in A
and 2 < r < s 0O o

A corollary of Proposition 4.2 is the following

Proposition 5.5. If /Il € Massfr is with one-element basis and @ is
a subgroupoid of H. then: @ € Massfrr iff Q is cvclic. a o

Proposition 5.6. Let I € Massfr with the two-element basis
I3 = {a.b} and @ be the subgroupoid of #f generated by

¢ = {a*0* | k e N}.

Then @ € Massfr with the infinite basis C'.

Proof. The assumplion a # & implies that each element ¢ € " is a
base in H; moreover, a™b™ = «™b" lmplies m = n, i.e. the set €' is infinite.

Note that. by (3.4). (Vt € Q)en(t) = {a.b}), and thus a*, L% &
. Therefore, every ¢ € €' is prime in ) and, by Proposition 5.4 (c).
Q € Massfr. O T
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3A MOHOACOUMJATVMBHAWTE I'PYIIOM .
Pezmnwvme

Ipeaver na orsaa pabora e muoryobpasvero (osnaverno co AMass)
O/l MOHOACONW]ATUBHW U'PYILOMIM, T.€. I'PYIOHIN BO KOW CeKO] HK-
JHMYeH TOArPYITONT ¢ noayrpyna. Jflanen e onwme va cuoboapnre ob-
JjerTr Bo Mass., RopueTe]in coosBeTHa JedMUIMIM]a na TOUMOT M-
jerTHBen Tpynown po Mass, ce noramkyBa ieka eden rpyoownia e
cnobogen o Mass ako 1 camo ako fI e mujerrtuped Bo Mass ¥ oano-
HKECTBOTO NPOCTH crexMednTu Bo M ro remepupa H. (Osa csBojocTBO @
napedeno Teopewma na Dhpar 3a Mass. ) Hwuenma on wknacure Massin
(1T.e. Kaacata wijexTtupim objertr Bo Mass) w Massfr (T.e. wnacarta
cunobonnu objextr Bo Mass) me e nacnenana. JMHobuenma e KapawTepu-
3anMia Ha cHoSoHKMTe NOMrPYHowIm on enen rpynowa H € Massfr u
NMOKAKAHO e JHeKa cero] rpyuonn H € Mass co npoenmcuentia daza HMua
mosrpymow ) € Mass/r co Deckoneuna Daza,




