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Abstract: A canonical description of free objects in the variety V  of groupoids
defined by the identity xx® =x’x? is given. Injective groupoids in V and sub-
groupoids of free groupoids in V are considered. It is shown that the class of free
groupoids in V is a proper subclass of the class of injective groupoids in ¥V and
that both classes are hereditary.

0. Introduction

Throughout the paper we denote by F = (F, - ) a given absolutely free groupoid
with a basis B (i.e. groupoid free in the class of all groupoids). It is well-known
([1;L.1.5.]) that the following two conditions caracterizes F: a) F is injective" ; b) the
set B of prime elements in F is nonempty and generates F.

The subject of this paper is the variety of groupoids of rank 1,” defined by the
identity ¥

= xtxt (0.1)

which we denote by V. The paper is divided into three sections.

In Section 1 we give a description of V -free groupoids and show that they may
be different.

In Section 2, the notion of V -injective groupoid (i.e. groupoid mjective i V ) is
mtroduced. It is shown that: the class of V -injective groupoids is hereditary, every V -
injective groupoid is infinite and the class of V -free groupoids is a proper subclass of the
class of injective groupoids.

In Section 3 are considered subgroupoids of V -free (i.e. free in V ) groupoids.
We prove that: Bruck Theorem for V holds, the class of V -free groupoids is hereditary
and that every V -free groupoid contains a subgroupoid with an infinite basis.

1. Free objects in V
For a construction of a free object in a variety V of groupoids with an axiom f= g,
the following "procedure" is often convenient. We consider one of the two parts of the
axiom of V as "more suitable", and, as a candidate for the carrier of the desired free
object, we choose the set R of all elements € F * which contain no parts with a form
of the "unsuitable side of the axiom".
Here we consider the variety V with an axiom xx* = x*x* . Choosing the left
side as "unsuitable", we obtain:
R={teF: (YaeF) ac’ ¢P()}.” (1.1)
By (1.1) immediately we obtain:
a) (VtueF)Y{tueR< tueR & u#t"}.
b) tueR = {flugRu=t"}.
¢) teR =>(VkeN) t*eR} ¥ (t"isdefinedin F by: ! =1, "1 =1"7).
Define an operation * on R by:
"We do not define here the notions as: injective groupoid, prime element, length [v]and set
P(v) of paits of v € F, ... (see, for example [2]).
A variety defined by identities wich contain only one variable is called a variety of rank 1.
Here we use the usual abbreviations: xx™ =x(xx), xx° = (x)(xx).
F=(F,-), as above, is an absolutely free groupoid with the free basis B.

P(?) is the set of parts (i.e. subterms) of 7.
N is the set of positive integers.
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tu, if tueRr
&), if u=r’

By a direct verification we obtain that R = (R, *) is a groupoid, the equality
(0.1) holds in R (1e. t=(t=t)=(t*t)=(t*t) 1s an identity in R) which means that
R €V and for any mapping A:B— G ", there is a homomorphism ¢: F — G which
extends A. Therefore:

Theorem 1. R = (R, *) is a free groupoid in V with the basis B, and B
coincides with the set of primes in R. []

Bellow we will state some properties of the groupoid R, but first we will

consider the groupoid power x, k=0, defined by:
£ © (kD) _ (0 () o (B)y2 (1.3)

tueR= r*u:{ (1.2)

=x, x"7=x"x
~ By induction on m and n one can show that, n any groupoid G = (G, -), the
following statement 1s true:

(VxeG, m,n>0) (x")? =xmm, (1.4)
If G <V, thenby (1.3) and (0.1) one obtains:
(VxeG. pz0) xPxED =xF, (1.5)

We say that an element a G isapowerin G ifthereare beG and k=1,
such that a=b" . If hcG isnotapowerin G, ie. (VeeG) (c=b" = p=0),
then we say that bisa basein G.

As a special case of ¢), one obtains:

) teRk=1= tPeR.

Note that, if 7€ R, " isthe n-th power of # in F; in this sence, ,” is the
n-th power of ¢ in R, defined by: ¢.' =¢, £."" =1, *t.

From (1.2) and ¢'), by induction on %, we obtain:

d) (VteR k>0) P =t® and for k=>1: tf=1".

As a concequence of d), we obtain the following two statements.

Proposition 1.1. (VY u € R)A(#, p) e Rx N,) Du=1"  where tis a base in R.

Proposition 1.2. a) If xe R\ B (i.e. x is not prime in R) and if x is not a
power, then there exists a unique pair (u,v)e R”, such that x=u*v. (In this case
x=uv.)

(We say that (u,v) is the pair of divisors of x and write (u,v) ‘ x)

b)If xe R is apower, x =t%*", p>0, then x=1t" =P and ([(p), t(p))
is the pair of divisors of x. []

The class of groupoids free in V will be denoted by V.. . We will show the
following

Propopsition 1.3. If R is defined by (1.2), then there exists a mapping x —
‘x‘ from R into N such that

| b ‘ SHi , (1.6)

cd‘2|c‘+|d

forany beB, c,deR.

Proof. Tet R= (R, *) bethe V -canonical groupoid with the basis B (con-
structed above, Th.1) and let x — |x | be the restriction of the mapping :F— N. Let
t, u €R. Smece t, u cF, 1t follows that ‘tu |:|i ‘+|u| and ‘trz :3|r\. From (1.2) we
obtain:

iueR:‘r*u = i‘
meR = u=1 =[x |=| (")
This shows that |t*u|2‘t‘+|u‘. 0

+lul,
: :4\r|>3|t|.

The carrier of a given groupoid § is denoted by the same (light) letter S.
® N, is the set of nonnegative integers.



Remark 1.4. When one decides which side of the identity xx* = x*x* to
consider as "suitable” one, it is natural to choose the "shorter" side, i.e. xx*, and expect a
shorter construction of V -free groupoid. However, it turns out the opposite, the

construction is longer and more complicated.
Namely, let the first candidate for the carrier of V -free groupoid be the set F,,
defined by:

F={teF:(NYaeF) (*)* ¢P@®)}.
If we define an operation *; on F; by:

tu, if tue K
tuck = 1*u= S ,
oo, if t=u=a"

then we obtain that F; = ( F;, *, ) is a groupoid. However, the equality (0.1), which has
the form here

tr (s ) =% ) * (L% 1) (1.7)
is not satisfied in F, ,ie. F; ¢ V. Namely, if ¢ =", the lefi side of (1.7)is o’ (aa?)
and the right one is (x*)” . This result implies that

a(aa) = (aa?)? (1.7
is an identity in V . This sugests a definition of a new "candidate" F, = (Fs, *;) :
F,={teF:(VaeFE) (aa’) ¢ P(t)},
t*ou, if txuelk,
o (ae?), if t=u=aa®
Checking (1.7) (when *; 1s substituted by *, ), we obtain F, ¢V and one more
identity in V :

tuel,= f*zu—{

CZD CHCER B (CACZE. (L.7")

Continuing this procedure, we can see a regularity in the concequences of the
<>

identity (1.7), which sugests to ntroduce a special kind of groupoid power x >x™"",
defined by:

x<0> = x, x<1> — x2’ x<k+2> — x<k>x<k+1> ) (18)
Using this, we defne the following infinite set of groupoids {F,=(F,,*,) : n=1}:
tu, if uek

1= 7

Fi={teF: (VacF ) o™ )Y ¢P( 1)}, tueF, = t*u= o
oo, if t=u=a"
tx u, if mekF,

<n+2> <n+l> °
(24

Fuei={teFy: (YaeF, Yo )Y eP( 1)}, tucFn-; =ty u= { _
,if t=u=«
One can show that Fy.; is a groupoid such that Fy.; ¢ V.
Using the fact that F D F, D..DF, D... and that F,.,; is "better" than F,,
we obtain the following definition of the carrier R’ of a free groupoid in V :
R' ={teF: (NVaeF,n>l) (™) ¢P®)} =EN{E, n>1}).
(Note that it is not necessary to define the whole sequence, because the desired

"good candidate" can be noticed after several steps.)
We define an operation * on R’ by

tu, if tueR'

<n+l>
(04

<nz>
>

if t=u=« n>1

>

t,ueR'= t*u—{

and obtain:



Proposition 1.5. R’ is a V -free groupoid with the basis B. [1
Therefore, there exist at least two distinct V -free groupoids, R and R'. Since
R and R' have the same basis B, they are isomorphic.
2. Injective groupoids in V
We obtain the class of injective groupoids in V from the class of V -free grou-
poids in the same way as in the variety of all groupoids (and, namely, by omiting the
condition that the set of primes is a generating set).
) Using Pr.1.1 — 1.2, we come to the following definition of injective groupoids
n
We say that a groupoid H = (H,-) € V is injective in V (1.e. V—injective) iff
the following conditions are satisfied:
(i) (Vae HYEUb.p)e HXN,) a= b'” and b isa basein H.
(We say that b is the base and p the exponent of a.)
(i) b7 =cd iff [c=d=b" or (c=b" & d=b"")].
(ii) If b isabase in H, then: b =cd < c=d=b.
(iii)) If ae H 1s a base which is not prime in H, then
ANe,d)eH*) a=cd,c#d.
The pair of divisors (c,d) of an element a € H which is not prime in H (we
write: (c,d) ‘ a) is defined as follows.
DIf b isabasein H and p=>0, then (b7, b'7) ‘ By,
2)If a=cd isabasein H, then (c,d)‘ a.
We denote by V;,; the class of injective groupoids. By Pr.1.1-1.2 we obtain:
Proposition 2.1. V5., C V;; .1
Proposition 2.2. Let HeV,;, Q<H, a —pP ¢ O and bgQ, where b is
the base of a in H.If r=min{k:b"® €O}, then b isaprimein Q.0
As a corollary of Pr.2.2, we obtain the following
Proposition 2.3. The class Vi is hereditary. [
If ¢ =49 and ¢, d are bases in He Vi, then ¢ =d & p = g. Therefore, if
a is a base in H, then the powers a("), n>1, are mutually distinct and thus the set
{a,a",a®, .} is infinite. Therefore:
Proposition 2.4. Every He V,,; is infinite. [
Bellow we will give a construction of V -injective groupoids (and show that
there are V -injective groupoids which are not V —free).
Let 4 be an infinite set and H = 4xN,. Define a partial operation ® on / by:

(a.p)e(a,p)=(a,p+1), (a.p)e(a,p+1)=(a,p+2)

_ D={((a,p),(b,q)): azb or (a=b & qe{p, p+1}}.
Since 4 and D have the same cardinality, there is an injection ¢: D— 4 and we

can put
(V(a, p).(b.q) € D) (a,p)* (b.q) = (¢((a, p).(5,9)), 0) -
Then we obtain that (H, #) is a groupoid mjective in V .
If ¢ is a bijection, then the set 4x{0} \ im@ of primes in H is empty, and thus
(H, ) isnot free in V. This and Cor.2.1 proves the following

Theorem 2. The class V4., is a proper subclass of Vy,; .0

and put

3. Subgroupoids of V —free groupoids

In this section we will show that the class V 4., is hereditary, but first we will
give a caracterizatin of V -free groupoids (analogous to a), b) in Introduction, for absolu-
tely free groupoids).

Theorem 3 (Bruck Theorem for V). A groupoid HSV isV -fiee iff:



(1) H is V—injective.

(i1) The set B of primes in H is nonempty and generates H.
Proof. If H isV -free with the basis B, then Hel,,; (by Th.2), B is the set of primes in
H and generates H.

For the converse, define an infinite sequence of subsets By, B, ... of H:

Bi=B, By={cd: c,d e B},

B, ={acHH: (c,d)|a:‘>{c,d} c B U..UB, &{c,d} B, #}.

Then the following statements are true:

) (Vkz)B,#D; 2) prq—=>B,NB,=0; 3) H=U{B,:kz1}.

Let GeV and A : B — G be a mapping. Defining a sequence of mappings
O : Br — G inductively (@;= 2;...) and continuing in a similar way as in [2; Th.1],
one can show that the mapping ¢ =U{p, :£ =1} isahomomorphism from H into G
which extends A. O

Below we assume that R is as above and @ is a subgroupoid of R.

Proposition 3.1. The set P of primes in Q is nonempty and generates Q.

Proof. By Pr.1.3, there is a mapping in R with the property (1.6). Let ¢ € Q be
such that

|¢|={min |a|:acQ} (3.1
By (1.6) and (3.1), ¢ is prime in . Thus the set P of primes in Q is nonempty.

Denote by T the groupoid generated by P. Clearly, 7' Q. We will show that
Q c T, using induction on length.

Firstofall, PcT.If b Q and |b|:1,thenbisprimeinR,andthusbisprime
in @, i.e. beP. Therefore beT. Suppose ceQ & c|£k = cel.LetceQ and
|c =k+1.If ce P,then c € T. Therefore letc € Q \P. Then c¢=de (d,ec(Q),and

c|:|de|2|d|+|el = d|,|e|£k = d,ecT= c=decT.

Thus Q ¢ I" and theretore P generates Q. O

Proposition 3.2. Qe V,,. .

Proof. ByPr2.1, He Vg, implies He V,, , and by Pr.2.3, @ €V, . Now,
applying Bruck Theorem for V we obtain that Q€V,, .00

As a corollary of Pr.3.2 we obtain

Proposition 3.3. The class Vs.. is hereditary. [

Finaly, we will prove the following

Proposition 3.4. If He Vj., , then there is a subgroupoid Q such that Q has an
infinite basis.

Proof. Let B be the basis of H and a< B. Put

€ =a-d, C; =C/A, .y Cpy =Cpd,...

and let @ be the subgroupoid of H generated by theset C={c, :£>0}. Then: 1) Cis
infinite; 2) all the elements in C are prime in @ ; 3) C is a basis of Q. Namely, the
elements of C are mutually distinct (¢, =¢, = p =¢g) and thus C'is infinite. Secondly,

every element ¢, € C isabasein Q: ¢, =aa=a’, but a¢ Q and thus ¢, isa basein Q,
Gi= a‘a=a’, a’ €Q,but ag O, and thus c, is a base in Q; inductively, i = aa is
a base in Q. Thirdly, C is the set of primes in Q, C # & and generates (. Therefore, C'is
the basis of Q. [
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