ON A VARIETY OF GROUPOIDS OF RANK 1

Збор. труд., Втор конгрес мат. и инф. Македонија Охрид 2000 (Сојуз мат. Макед., Скопје 2003), 17-23

Ġ.Čupona , V. Celakoska-Jordanova

Abstract: A canonical description of free objects in the variety V of groupoids defined by the identity $xx^2 = x^2x^2$ is given. Injective groupoids in V and subgroupoids of free groupoids in V are considered. It is shown that the class of free groupoids in V is a proper subclass of the class of injective groupoids in V and that both classes are hereditary.

0. Introduction

Throughout the paper we denote by $F = (F, \cdot)$ a given absolutely free groupoid with a basis B (i.e. groupoid free in the class of all groupoids). It is well-known ([1; L.1.5.]) that the following two conditions caracterizes F: a) F is injective F; b) the set B of prime elements in F is nonempty and generates F.

The subject of this paper is the variety of groupoids of rank 1,20 defined by the

$$xx^2 = x^2x^2, (0.1)$$

 $xx^2 = x^2x^2$, which we denote by V. The paper is divided into three sections.

In Section 1 we give a description of V-free groupoids and show that they may be different.

In Section 2, the notion of V-injective groupoid (i.e. groupoid injective in V) is introduced. It is shown that: the class of V -injective groupoids is hereditary, every V injective groupoid is infinite and the class of V -free groupoids is a proper subclass of the class of injective groupoids.

In Section 3 are considered subgroupoids of V-free (i.e. free in V) groupoids. We prove that: Bruck Theorem for V holds, the class of V-free groupoids is hereditary and that every V-free groupoid contains a subgroupoid with an infinite basis.

1. Free objects in V

For a construction of a free object in a variety V of groupoids with an axiom f = g, the following "procedure" is often convenient. We consider one of the two parts of the axiom of V as "more suitable", and, as a candidate for the carrier of the desired free object, we choose the set R of all elements $t \in F^{-4}$ which contain no parts with a form of the "unsuitable side of the axiom".

Here we consider the variety V with an axiom $xx^2 = x^2x^2$. Choosing the left side as "unsuitable", we obtain:

$$R = \{ t \in F : (\forall \alpha \in F) \ \alpha \alpha^2 \notin P(t) \}.^{5}$$
 (1.1)

By (1.1) immediately we obtain:

- a) $(\forall t, u \in F) \{ tu \in R \Leftrightarrow t, u \in R \& u \neq t^2 \}$.
- b) $t, u \in R \implies \{tu \notin R \Leftrightarrow u = t^2\}$.
- c) $t \in R \Rightarrow (\forall k \in N) \ t^k \in R$ 6) $(t^n \text{ is defined in } F \text{ by: } t^1 = t, \ t^{n+1} = t^n t).$ Define an operation * on R by:

N is the set of positive integers.

We do not define here the notions as: injective groupoid, prime element, length |v| and set we do not define here the notions as: injective groupoid, prime element, length |v| and se P(v) of parts of $v \in F$, ... (see, for example [2]).

A variety defined by identities wich contain only one variable is called a *variety of rank* 1.

Here we use the usual abbreviations: $xx^2 = x(xx)$, $x^2x^2 = (xx)(xx)$. $F = (F, \cdot)$, as above, is an absolutely free groupoid with the free basis B.

P(t) is the set of parts (i.e. subterms) of t.

$$t, u \in R \Rightarrow t * u = \begin{cases} tu, & \text{if } tu \in R \\ (t^2)^2, & \text{if } u = t^2 \end{cases}$$
 (1.2)

By a direct verification we obtain that $\mathbf{R} = (R, *)$ is a groupoid, the equality (0.1) holds in R (i.e. t*(t*t) = (t*t)*(t*t) is an identity in R) which means that $R \in V$ and for any mapping $\lambda: B \to G^{(7)}$, there is a homomorphism $\phi: F \to G$ which extends λ . Therefore:

Theorem 1. R = (R, *) is a free groupoid in V with the basis B, and Bcoincides with the set of primes in \mathbf{R} . \square

Bellow we will state some properties of the groupoid \mathbf{R} , but first we will consider the groupoid power $x^{(k)}$, $k \ge 0$, defined by: $x^{(0)} = x, \quad x^{(k+1)} = x^{(k)}x^{(k)} = (x^{(k)})^2$ By induction on m and n one can show that, in any groupoid $\mathbf{G} = (G, \cdot)$, the following statement is true:

$$x^{(0)} = x, \quad x^{(k+1)} = x^{(k)}x^{(k)} = (x^{(k)})^2$$
 (1.3)

following statement is true:

$$(\forall x \in G, m, n \ge 0) (x^{(m)})^{(n)} = x^{(m+n)}.$$
 (1.4)

If $G \in V$, then by (1.3) and (0.1) one obtains:

$$(\forall x \in G, p \ge 0) \quad x^{(p)} x^{(p+1)} = x^{(p+2)}.$$
 (1.5)

We say that an element $a \in G$ is a *power* in G if there are $b \in G$ and $k \ge 1$, such that $a = b^{(k)}$. If $b \in G$ is not a power in G, i.e. $(\forall c \in G)$ $(c = b^{(p)} \Rightarrow p = 0)$, then we say that b is a base in G.

As a special case of c), one obtains: c') $t \in R, k \ge 1 \implies t^{(k)} \in R$.

Note that, if $t \in R$, t^n is the *n*-th power of *t* in F; in this sence, t_*^n is the *n*-th power of t in \mathbf{R} , defined by: $t_*^1 = t$, $t_*^{n+1} = t_*^n * t$.

From (1.2) and c'), by induction on k, we obtain: d) $(\forall t \in R, k \ge 0)$ $t_*^{(k)} = t^{(k)}$ and, for $k \ge 1$: $t_*^k = t^k$.

As a concequence of d), we obtain the following two statements.

Proposition 1.1. $(\forall u \in R)(\exists (t, p) \in R \times N_0)^{8} u = t_*^{(p)}$, where t is a base in **R**. \Box

Proposition 1.2. a) If $x \in R \setminus B$ (i.e. x is not prime in R) and if x is not a power, then there exists a unique pair $(u,v) \in \mathbb{R}^2$, such that x = u * v. (In this case x = uv.)

(We say that (u,v) is the pair of divisors of x and write $(u,v) \mid x$.)

b) If $x \in R$ is a power, $x = t^{(p+1)}$, $p \ge 0$, then $x = t^{(p)} * t^{(p)}$, and $(t^{(p)}, t^{(p)})$ is the pair of divisors of x. \square

The class of groupoids free in V will be denoted by V_{free} . We will show the following

Propopsition 1.3. If **R** is defined by (1.2), then there exists a mapping $x \mapsto$ |x| from R into N such that

$$|b|=1, |cd| \ge |c|+|d|,$$
 (1.6)

for any $b \in B$, $c, d \in R$.

Proof. Let R = (R, *) be the V-canonical groupoid with the basis B (constructed above, Th.1) and let $x \mapsto |x|$ be the restriction of the mapping $|\cdot|: F \to N$. Let $t, u \in \mathbb{R}$. Since $t, u \in \mathbb{F}$, it follows that |tu| = |t| + |u| and $|tt|^2 = 3|t|$. From (1.2) we obtain:

$$tu \in R \Rightarrow |t * u| = |t| + |u|,$$

$$tu \notin R \Rightarrow u = t^{2} \Rightarrow |t * t^{2}| = |(t^{2})^{2}| = 4|t| > 3|t|.$$

$$|t * u| \ge |t| + |u|.$$

This shows that

 $^{8)}N_0$ is the set of nonnegative integers.

 $[\]overline{{}^{7)}$ The carrier of a given groupoid S is denoted by the same (light) letter S.

Remark 1.4. When one decides which side of the identity $xx^2 = x^2x^2$ to consider as "suitable" one, it is natural to choose the "shorter" side, i.e. xx^2 , and expect a shorter construction of V -free groupoid. However, it turns out the opposite, the construction is longer and more complicated.

Namely, let the first candidate for the carrier of V-free groupoid be the set F_1 , defined by:

$$F_1 = \{ t \in F : (\forall \alpha \in F) (\alpha^2)^2 \notin P(t) \}.$$

If we define an operation $*_1$ on F_1 by:

$$t, u \in F_1 \Rightarrow t *_1 u = \begin{cases} tu, & \text{if } tu \in F_1 \\ \alpha \alpha^2, & \text{if } t = u = \alpha^2 \end{cases}$$

 $t,u\in F_1 \Rightarrow t*_1 u = \begin{cases} tu, & \text{if } tu\in F_1\\ \alpha\alpha^2, & \text{if } t=u=\alpha^2 \end{cases}$ then we obtain that $F_1=(F_1,*_1)$ is a groupoid. However, the equality (0.1), which has the form here

$$t *_{1}(t *_{1} t) = (t *_{1} t) *_{1}(t *_{1} t)$$
(1.7)

is not satisfied in F_1 , i.e. $F_1 \notin V$. Namely, if $t = \alpha^2$, the left side of (1.7) is $\alpha^2(\alpha\alpha^2)$ and the right one is $(\alpha \alpha^2)^2$. This result implies that

$$\alpha^2(\alpha\alpha^2) = (\alpha\alpha^2)^2 \tag{1.7'}$$

is an identity in V. This suggests a definition of a new "candidate" $F_2 = (F_2, *_2)$:

$$F_2 = \{ t \in F_1 \colon (\forall \alpha \in F_1) \ (\alpha \alpha^2)^2 \notin P(t) \},$$

$$t, u \in F_2 \Rightarrow t *_2 u = \begin{cases} t *_1 u, & \text{if } t *_1 u \in F_2 \\ \alpha^2 (\alpha \alpha^2), & \text{if } t = u = \alpha \alpha^2 \end{cases}.$$
Checking (1.7) (when *_1 is substituted by *_2), we obtain $F_2 \notin V$ and one more

identity in V:

$$(\alpha \alpha^2)(\alpha^2(\alpha \alpha^2)) = ((\alpha^2(\alpha \alpha^2))^2. \tag{1.7"}$$

Continuing this procedure, we can see a regularity in the concequences of the identity (1.7), which suggests to introduce a special kind of groupoid power $x \mapsto x^{\langle n \rangle}$, defined by:

$$x^{<0>} = x$$
, $x^{<1>} = x^2$, $x^{< k+2>} = x^{< k>} x^{< k+1>}$. (1.8)

Using this, we define the following infinite set of groupoids $\{F_n = (F_n, *_n) : n \ge 1\}$:

Using this, we define the following infinite set of groupoids
$$\{F_n = (F_n, ^*)\}$$

 $F_1 = \{t \in F : (\forall \alpha \in F)(\alpha^{<1>})^2 \notin P(t)\}, \quad t, u \in F_1 \implies t^*_1 u = \begin{cases} tu, & \text{if } tu \in F_1 \\ \alpha \alpha^2, & \text{if } t = u = \alpha^{<1>} \end{cases}$

$$F_{n+1} = \{t \in F_n : (\forall \alpha \in F_n)(\alpha^{< n>})^2 \notin P(t)\}, \quad t, u \in F_{n+1} \Rightarrow t^*_{n+1}u = \begin{cases} t^*_n u, & \text{if } tu \in F_{n+1} \\ \alpha^{< n+2>}, & \text{if } t = u = \alpha^{< n+1>} \end{cases}.$$

One can show that F_{n+1} is a groupoid such that $F_{n+1} \notin V$. Using the fact that $F \supseteq F_1 \supseteq ... \supseteq F_n \supseteq ...$ and that F_{n+1} is "better" than F_n , we obtain the following definition of the carrier R' of a free groupoid in V:

$$R' = \{ t \in F : (\forall \alpha \in F, n \ge 1) \ (\alpha^{< n >})^2 \notin P(t) \} \ (= \bigcap \{F_n : n \ge 1\}).$$

(Note that it is not necessary to define the whole sequence, because the desired "good candidate" can be noticed after several steps.)

We define an operation * on R' by

$$t, u \in R' \Rightarrow t * u = \begin{cases} tu, & \text{if } tu \in R' \\ \alpha^{< n+1>}, & \text{if } t = u = \alpha^{< n>}, & n \ge 1 \end{cases}$$

and obtain:

Proposition 1.5. R' is a V-free groupoid with the basis B. \square

Therefore, there exist at least two distinct V-free groupoids, R and R'. Since R and R' have the same basis B, they are isomorphic.

2. Injective groupoids in V

We obtain the class of injective groupoids in V from the class of V-free groupoids in the same way as in the variety of all groupoids (and, namely, by omiting the condition that the set of primes is a generating set).

Using Pr.1.1-1.2, we come to the following definition of injective groupoids in V

We say that a groupoid $H = (H, \cdot) \in V$ is injective in V (i.e. V-injective) iff the following conditions are satisfied:

(i₁) $(\forall a \in H)(\exists !(b, p) \in H \times N_0)$ $a = b^{(p)}$ and b is a base in H. (We say that b is the *base* and p the *exponent* of a.)

- (i_2) $b^{(p+2)} = cd$ iff $[c = d = b^{(p)}]$ or $(c = b^{(p)}) & d = b^{(p+1)}$.
- (ii) If b is a base in **H**, then: $b^{(1)} = cd \Leftrightarrow c = d = b$.
- (iii) If $a \in H$ is a base which is not prime in H, then

$$(\exists!(c,d)\in H^2)$$
 $a=cd, c\neq d$.

The pair of divisors (c,d) of an element $a \in H$ which is not prime in H (we write: $(c,d) \mid a$) is defined as follows.

- 1) If b is a base in **H** and $p \ge 0$, then $(b^{(p)}, b^{(p)}) \mid b^{(p+1)}$.
- 2) If a = cd is a base in H, then $(c,d) \mid a$.

We denote by V_{ini} the class of injective groupoids. By Pr.1.1–1.2 we obtain:

Proposition 2.1. $V_{free} \subseteq V_{inj}$.

Proposition 2.2. Let $H \in V_{inj}$, $Q \leq H$, $a = b^{(p)} \in Q$ and $b \notin Q$, where b is the base of a in H. If $r = \min\{k : b^{(k)} \in Q\}$, then $b^{(r)}$ is a prime in Q. \square

As a corollary of Pr.2.2, we obtain the following

Proposition 2.3. The class V_{inj} is hereditary. \square If $c^{(p)} = d^{(q)}$ and c, d are bases in $H \in V_{inj}$, then c = d & p = q. Therefore, if a is a base in H, then the powers $a^{(n)}$, $n \ge 1$, are mutually distinct and thus the set $\{a, a^{(1)}, a^{(2)}, ...\}$ is infinite. Therefore:

Proposition 2.4. Every $H \in V_{ini}$ is infinite. \square

Bellow we will give a construction of V-injective groupoids (and show that there are V-injective groupoids which are not V-free).

Let \tilde{A} be an infinite set and $H = A \times N_0$. Define a partial operation \bullet on H by:

$$(a, p) \bullet (a, p) = (a, p+1),$$
 $(a, p) \bullet (a, p+1) = (a, p+2)$

and put

$$D = \{((a, p), (b, q)): a \neq b \text{ or } (a = b \& q \notin \{p, p+1\}\}.$$

Since A and D have the same cardinality, there is an injection $\phi: D \to A$ and we can put

$$(\forall (a,p),(b,q) \in D) \ (a,p) \bullet (b,q) = (\varphi((a,p),(b,q)),0).$$

Then we obtain that (H, \bullet) is a groupoid injective in V.

If φ is a bijection, then the set $A \times \{0\} \setminus \text{im} \varphi$ of primes in H is empty, and thus (H, \bullet) is not free in V. This and Cor.2.1 proves the following

Theorem 2. The class V_{free} is a proper subclass of V_{ini} . \square

3. Subgroupoids of V-free groupoids

In this section we will show that the class V_{free} is hereditary, but first we will give a caracterizatin of V -free groupoids (analogous to a), b) in Introduction, for absolutely free groupoids).

Theorem 3 (Bruck Theorem for V). A groupoid $H \in V$ is V-free iff:

- (i) \mathbf{H} is V –injective.
- (ii) The set B of primes in H is nonempty and generates H.

Proof. If **H** is V -free with the basis B, then $H \in V_{inj}$ (by Th.2), B is the set of primes in \boldsymbol{H} and generates \boldsymbol{H} .

For the converse, define an infinite sequence of subsets $B_1, B_2, ...$ of H:

 $B_1 = B$, $B_2 = \{cd : c, d \in B_1\}$,

 $B_{k+1} = \{a \in HH : (c,d) \mid a \Rightarrow \{c,d\} \subseteq B_1 \cup ... \cup B_k \& \{c,d\} \cap B_k \neq \emptyset\}.$

Then the following statements are true:

1) $(\forall k \ge 1) B_k \ne \emptyset$; 2) $p \ne q \Rightarrow B_p \cap B_q = \emptyset$; 3) $H = \bigcup \{B_k : k \ge 1\}$.

Let $G \in V$ and $\lambda : B \to G$ be a mapping. Defining a sequence of mappings $\varphi_k : B_k \to G$ inductively $(\varphi_1 = \lambda; ...)$ and continuing in a similar way as in [2; Th.1], one can show that the mapping $\varphi = \bigcup \{\varphi_k : k \ge 1\}$ is a homomorphism from H into Gwhich extends λ . \square

Below we assume that R is as above and Q is a subgroupoid of R.

Proposition 3.1. The set P of primes in Q is nonempty and generates Q.

Proof. By Pr.1.3, there is a mapping in R with the property (1.6). Let $c \in Q$ be

 $|c| = \{ \min |a| : a \in Q \}$ (3.1)

By (1.6) and (3.1), c is prime in Q. Thus the set P of primes in Q is nonempty.

Denote by T the groupoid generated by P. Clearly, $T \subseteq Q$. We will show that $Q \subseteq T$, using induction on length.

First of all, $P \subseteq T$. If $b \in Q$ and |b| = 1, then b is prime in R, and thus b is prime in Q, i.e. $b \in P$. Therefore $b \in T$. Suppose $c \in Q$ & $|c| \le k \Rightarrow c \in T$. Let $c \in Q$ and |c| = k+1. If $c \in P$, then $c \in T$. Therefore let $c \in Q \setminus P$. Then c = de $(d, e \in Q)$, and $|c| = |de| \ge |d| + |e| \Rightarrow |d|, |e| \le k \Rightarrow d, e \in T \Rightarrow c = de \in T$. Thus $Q \subseteq T$ and therefore P generates Q. \square

Proposition 3.2. $Q \in V_{free}$.

Proof. By Pr.2.1, $H \in V_{free}$ implies $H \in V_{inj}$, and by Pr.2.3, $Q \in V_{inj}$. Now, applying Bruck Theorem for V we obtain that $Q \in V_{free}$.

As a corollary of Pr.3.2 we obtain

Proposition 3.3. The class V_{free} is hereditary. \square

Finaly, we will prove the following

Proposition 3.4. If $H \in V_{free}$, then there is a subgroupoid Q such that Q has an infinite basis.

Proof. Let B be the basis of H and $a \in B$. Put

$$c_1 = a \cdot a, \ c_2 = c_1 a, ..., \ c_{k+1} = c_k a, ...$$

and let Q be the subgroupoid of H generated by the set $C = \{c_k : k \ge 0\}$. Then: 1) C is infinite; 2) all the elements in C are prime in Q; 3) C is a basis of Q. Namely, the elements of C are mutually distinct $(c_p = c_q \implies p = q)$ and thus C is infinite. Secondly,

every element $c_k \in C$ is a base in \mathbf{Q} : $c_1 = aa = a^2$, but $a \notin Q$ and thus c_1 is a base in \mathbf{Q} ; $c_1 = a^2 a = a^3$, $a^2 \in Q$, but $a \notin Q$, and thus c_2 is a base in Q; inductively, $c_{k+1} = a^k a$ is a base in Q. Thirdly, C is the set of primes in Q, $C \neq \emptyset$ and generates Q. Therefore, C is the basis of Q. \square

- [1] R. H. Bruck: A Survey of Binary Systems, Springer-Verlag 1958
- [2] G. Čupona, N. Celakoski, B. Janeva: Injective groupoids in some varieties of groupoids (this volume)