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Cl?-CONNECTEDNESS AND Cl−Cl?-CONNECTEDNESS IN

IDEAL TOPOLOGICAL SPACES

B. K. TYAGI, MANOJ BHARDWAJ, AND SUMIT SINGH

Abstract. In this paper, new types of connectedness of ideal topologi-
cal space X and their relationships with other existing connectednesses
are discussed.

1. Introduction

The concept of an ideal topological space was introduced by Kuratowski
[6] and Vaidyanathswamy [10]. An ideal I on a set X is a nonempty col-
lection of subsets of X which satisfies (i) A ∈ I and B ⊂ A implies B ∈ I
and (ii)A ∈ I and B ∈ I implies A ∪ B ∈ I. For a subset A of X, the
local function of A is defined as follows [3, 4]: A? = {x ∈ X : U ∩ A /∈ I
for every U ∈ τ(x)}, where τ(x) is the collection of all nonempty open sets
containing x. The study of ?-topology is done by Jankovic and Hamlett
[4, 5], Modak and Bandyopadhyay [7, 8] in detail. Its one of the powerful
base is β(I, τ) = {V \ A : V ∈ τ,A ∈ I} [4]. It is also denoted as τ?(I)
[4, 5] and its closure operator is defined as Cl?(A) = A ∪ A?. It is known
that τ ⊂ τ?(I). The elements of τ?(I) are called ?-open sets and their
complements are called ?-closed to differentiate them from open and closed
sets in X. If an ideal satisfies I ∩ τ = {∅},then the ideal is termed as
codense ideal by Dontchev, Ganster and Rose [1]. An ideal I is compat-
ible [5] with the topology τ written as I ∼ τ [5] if for any A ⊂ X there
is an open cover Ωx of A such that for x ∈ A, there is a Ux ∈ Ωx with
Ux ∩ A ∈ I, then A ∈ I. The study of connectedness as ?s-connectedness
and ?-connectedness in an ideal topological space was introduced by Ekici
and Noiri in [2]. The authors Sathiyasundari and Renukadevi [9] studied
it further in detail. The authors Modak and Noiri [11] introduced some
different types of connectedness as ??-connectedness, ?−Cl-connectedness
and ? − Cl?-connectedness with the help of the ideal topological spaces.
In this paper we introduced some different types of connectedness in ideal
topological spaces and interrelated with earlier existing connectedness of
Ideal topological spaces.We studied the notions of Cl?-connected sets and
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Cl − Cl?-connected sets in ideal topological spaces.

This paper is organised as follows. In Section 2, the relationships between
the new types of connectedness and existing connectedness in literature, are
developed. In Section 3, the basic properties of Cl?-connected spaces and
Cl − Cl?-connected spaces are discussed. It covers the concept of Cl?-
component and Cl − Cl?-component.

2. Preliminaries

Let (X, τ) or X be a topological space or a space. We will denote by
Cl(A) and Int(A) the closure of A and the interior of A, for a subset A of
X, respectively. Through out the paper, by subset A of an ideal topological
space (X, τ, I), always refers to a subset of X.

Definition 1. Nonempty subsets A,B of an ideal space (X, τ, I) are called

(1) ??-separated ([11]) if A? ∩B = A ∩B? = A ∩B = ∅.
(2) ?-separated ([2]) if Cl?(A) ∩B = A ∩ Cl(B) = ∅.
(3) separated if Cl(A) ∩B = A ∩ Cl(B) = ∅.

Definition 2. Nonempty subsets A,B of an ideal space (X, τ, I) are called

(1) ?− Cl-separated ([11]) if A? ∩ Cl(B) = Cl(A) ∩B? = A ∩B = ∅.
(2) ?−Cl?-separated ([11]) if A?∩Cl?(B) = Cl?(A)∩B? = A∩B = ∅).

Definition 3. Nonempty subsets A,B of an ideal space (X, τ, I) are called

(1) Cl?-separated if A ∩ Cl?(B) = Cl?(A) ∩B = A ∩B = ∅.
(2) Cl−Cl?-separated if Cl(A)∩Cl?(B) = Cl?(A)∩Cl(B) = A∩B = ∅).

Proposition 1. ([4]) Let (X, τ) be a space with I1 and I2 being ideals on
X, and let A and B be two subsets on X. Then

(a) A ⊆ B ⇒ A? ⊆ B?;
(b) I1 ⊆ I2 ⇒ A?(I2) ⊆ B?(I1);
(c) A? = Cl(A?) ⊆ Cl(A);
(d) (A?)? ⊆ A?;
(e) (A ∪B)? = A? ∪B?;
(f) A? \B? = (A \B)? \B? ⊆ (A \B)?;
(g) for every D ∈ I, (A ∪D)? = A? = (A \D)?.

Proposition 2. ([11]) Let (X, τ, I) be an ideal topological space and A,B ⊂
X. Then A and B are ??- separated if and only if A and B are separated
in (X, τ?(I)).

Proposition 3. ([11]) For nonempty subsets of an ideal space (X, τ, I), the
followings hold:

(a) Every ?− Cl?-separated set is ??-separated.
(b) Every ?− Cl-separated set is ?− Cl?-separated.

Theorem 1. For nonempty subsets of an ideal space (X, τ, I), the following
statements hold:

(a) Cl − Cl?-separated sets are separated.
(b) Cl − Cl?-separated sets are ?− Cl-separated.
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(c) ?− Cl-separated sets are ?− Cl?-separated.
(d) ?− Cl?-separated sets are ??-separated.
(e) separated sets are ?-separated.
(f) ?-separated sets are Cl?-separated.
(g) Cl?-separated sets are ??-separated.
(h) ??-separated sets are Cl?-separated
(i) Cl?-separated sets are separated in (X, τ?(I)).
(j) separated sets in (X, τ?(I)) are Cl?-separated.

Proof. Follows directly from the definitions. �

Thus, the following diagram is obtained:

A → B means A implies B. For converse of Theorem 1 we shall give
followings examples.

Example 1. Let R be the set of real numbers with usual topology on it and
I = {∅, ((b− c)/2, (b+ c)/2), S : where S is subset of ((b− c)/2, (b+ c)/2)
and b, c ∈ R with b > c > 0} be an ideal on R. Then A = [b, c) and
B = (a, b)(where a < (b− c)/2) are Cl?-separated in R but not ?-separated
in R.
Example 2. In example 1, A = (a, b) and B = [b, c) are ?− Cl-separated
in R but not Cl − Cl?-separated in R.
Example 3. Let R be the set of real numbers with usual topology on it and
I = {∅}∪{{b}|b ∈ R} be an ideal on R. Then A = (a, b) and B = (b, c) are
separated in R but not Cl − Cl?-separated in R.
Definition 4. A subset A of an ideal space (X, τ, I) is called

(a) ??-connected ([11])(resp. ?s-connected ([2]))if A is not the union of
two ??-separated (resp. ?-separated) sets in (X, τ, I).

(b) ?-connected ([12]) if A cannot be written as the union of a nonempty
open set and a nonempty ?-open set.

Proposition 4. ([11]) Let (X, τ, I) be an ideal topological space. Then the
space X is ?? - connected if and only if (X, τ?(I)) is connected.

Definition 5. ([11]) A subset A of an ideal space (X, τ, I) is called ?−Cl-
connected (resp. ? − Cl?-connected) if A is not the union of two ? − Cl-
separated (resp. ?− Cl?-separated) sets in (X, τ, I).



94 B. K. TYAGI, M. BHARDWAJ, AND S. SINGH

Definition 6. A subset A of an ideal space (X, τ, I) is called

(a) Cl?-connected if A is not the union of two Cl?-separated sets in
(X, τ, I).

(b) Cl−Cl?-connected if A is not the union of two Cl−Cl?-separated
sets in (X, τ, I).

Proposition 5. ([11]) For nonempty subsets of an ideal space (X, τ, I), the
followings hold:

(a) Every ??-connected sets are ?− Cl?-connected.
(b) Every ?− Cl?-connected sets are ?− Cl-connected.

Theorem 2. For nonempty subsets of an ideal space (X, τ, I), the following
statements hold:

(a) Every ?− Cl-connected set is Cl − Cl?-connected.
(b) Every ?− Cl?-connected set is ?− Cl-connected.
(c) Every ??-connected set is ?− Cl?-connected.
(d) Every connected set is Cl − Cl?-connected.
(e) Every ?s-connected set is connected.
(f) Every Cl?-connected set is ?s-connected.
(g) Every ??-connected set is Cl?-connected.
(h) Every Cl?-connected set is ??-connected.
(i) Every connected set in (X, τ?(I)) is Cl?-connected and conversely.
(j) Every Cl?-connected set is connected set in (X, τ?(I)).

Proof. Follows directly from the definitions, and Theorem 1. �

Hence by Theorem 2, we obtain the following diagram:

3. Cl?-Connected Spaces and Cl − Cl?-Connected Spaces

Theorem 3. Let (X, τ, I) be an ideal space. If A is a Cl?-connected subset
of X and H, G are Cl?-separated sets of X with A ⊂ H ∪ G, then either
A ⊂ H or A ⊂ G.

Proof. Let A ⊂ H ∪G. Since A = (A∩H)∪ (A∩G), and (A∩G)∩Cl?(A∩
H) ⊂ G ∩ Cl?(H) = ∅. Similarly, (A ∩ H) ∩ Cl?(A ∩ G) = ∅. Moreover
(A ∩ H) ∩ (A ∩ G) ⊂ H ∩ G = ∅. Suppose that A ∩ H and A ∩ G are
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nonempty. Then A is not a Cl?-connected, a contradiction. Thus, either
A ∩H = ∅ or A ∩G = ∅. �

Theorem 4. Let (X, τ, I) be an ideal space. If A is a Cl − Cl?-connected
subset of X and H, G are Cl − Cl?-separated sets of X with A ⊂ H ∪ G,
then either A ⊂ H or A ⊂ G.

Proof. Let A ⊂ H ∪ G. Since A = (A ∩ H) ∪ (A ∩ G), and Cl(A ∩ G) ∩
Cl?(A∩H) ⊂ Cl(G)∩Cl?(H) = ∅. Similarly, Cl(A∩H)∩Cl?(A∩G) = ∅.
Moreover (A∩H)∩ (A∩G) ⊂ H ∩G = ∅. Suppose that A∩H and A∩G
are nonempty. Then A is not a Cl−Cl?-connected, a contradiction. Thus,
either A ∩H = ∅ or A ∩G = ∅. This implies that A ⊂ H or A ⊂ G. �

Theorem 5. If A is a Cl?-connected subset of (X, τ, I) and A ⊂ B ⊂ A?,
then B is also a Cl?-connected subset of X.

Proof. Suppose that B is not a Cl?-connected subset of (X, τ, I) then there
exist Cl?-separated sets H and G such that B = H ∪ G. By Theorem 3,
either A ⊂ H or A ⊂ G. Suppose that A ⊂ H. Then A? ⊂ H?. This implies
that G ⊂ B ⊂ A? and G = A? ∩G ⊂ H? ∩G = ∅, a contradiction. �

Theorem 6. If A is a Cl−Cl?-connected subset of (X, τ, I) and A ⊂ B ⊂
A?, then B is also a Cl − Cl?-connected subset of X.

Proof. Suppose that B is not a Cl−Cl?-connected subset of (X, τ, I) then
there exist Cl − Cl?-separated sets H and G such that B = H ∪ G. By
Theorem 4, either A ⊂ H or A ⊂ G. Suppose that A ⊂ H. Then A? ⊂ H?.
This implies that G ⊂ B ⊂ A? and G ⊆ A? ∩ Cl(G) ⊂ H? ∩ Cl(G) ⊂
Cl?(H) ∩ Cl(G) = ∅, a contradiction. �

Corollary 1. (a) If A is a Cl?-connected set in an ideal space (X, τ, I),
then A? is Cl?-connected.

(b) If A is a Cl−Cl?-connected set in an ideal space (X, τ, I), then A?

is Cl − Cl?-connected.
Corollary 2. (a) If I∩τ = ∅ in (X, τ, I), then for any nonempty open,

Cl?-connected set V , Cl(V ) is also Cl?-connected.
(b) If I ∩ τ = ∅ in (X, τ, I), then for any nonempty open, Cl − Cl?-

connected set V , Cl(V ) is also Cl − Cl?-connected.

Proof. (a) Follows from the Note 3.2 [7].
(b) Follows from the Note 3.2 [7].

�

Corollary 3. (a) If I ∩ τ = ∅ and I ∼ τ in (X, τ, I), then for any
nonempty open, Cl?-connected set G, Cl(G) and Cl?(G) is also
Cl?-connected.

(b) If I ∩ τ = ∅ and I ∼ τ in (X, τ, I), then for any nonempty open,
Cl − Cl?-connected set G, Cl(G) and Cl?(G) is also Cl − Cl?-
connected.

Proof. (a) Follows from the Note 3.2 [7].
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(b) Follows from the Note 3.2 [7].
�

Theorem 7. If {Mi : i ∈ I} is a nonempty family of Cl?-connected sets of
an ideal space (X, τ, I) with

⋂
i∈IMi 6= ∅, then

⋃
i∈IMi is Cl

?-connected.

Proof. Suppose
⋃
i∈IMi is not Cl?-connected. Then we have

⋃
i∈IMi =

H ∪ G, where H and G are Cl?-separated sets in X. Since
⋂
i∈IMi 6= ∅,

we have a point x ∈
⋂
i∈IMi. Then either x ∈ H or x ∈ G. Suppose that

x ∈ H. By Theorem 3, Mi ⊂ H for all i ∈ I and hence
⋃
i∈IMi ⊂ H, a

contradiction. �

Theorem 8. If {Mi : i ∈ I} is a nonempty family of Cl − Cl?-connected
sets of an ideal space (X, τ, I) with

⋂
i∈IMi 6= ∅, then

⋃
i∈IMi is Cl−Cl?-

connected.

Proof. The proof is similar with the previous Theorem. �

Corollary 4. (1) If A is a Cl?-connected subset of the ideal space (X, τ, I)
and A ∩A? 6= ∅, then Cl?(A) is a Cl?-connected set.

(2) If A is a Cl − Cl?-connected subset of the ideal space (X, τ, I) and
A ∩A? 6= ∅, then Cl?(A) is a Cl − Cl?-connected set.

Theorem 9. Let (X, τ, I) be an ideal space, {Aα : α ∈ ∆} be a family
of Cl?-connected subsets of X and A be a Cl?-connected subset of X. If
A ∩Aα 6= ∅, for every α, then A ∪ (∪Aα) is Cl?-connected.

Proof. Since A ∩ Aα 6= ∅, for each α ∈ ∆, by Theorem 7, A ∪ Aα is Cl?-
connected for each α ∈ ∆. Since ∩(A ∪ Aα) ⊃ A 6= ∅, by Theorem 7,
A ∪ (∪Aα) is Cl?-connected. �

Theorem 10. Let (X, τ, I) be an ideal space, {Aα : α ∈ ∆} be a family of
Cl − Cl?-connected subsets of X and A be a Cl − Cl?-connected subset of
X. If A ∩Aα 6= ∅, for every α, then A ∪ (∪Aα) is Cl − Cl?-connected.

Proof. The proof is similar with the previous Theorem. �

Recall that a subset A of (X, τ, I) is called ?-dense-in-itself ([3])if A ⊂ A?.

Theorem 11. Let (X, τ, I) be an ideal space. If A and B are Cl?-separated
and ?-dense-in-itself subsets of X, and A ∪B ∈ τ , then A and B are open
and hence ?-open.

Proof. Since A and B are Cl?-separated in X, then A = (A∪B)∩(X \B?).
Since A ∪B ∈ τ and B? is closed in X, A is open in X. �

Theorem 12. Let (X, τ, I) be an ideal space. If A and B are Cl − Cl?-
separated subsets of X, and A ∪ B ∈ τ , then A and B are open and hence
?-open.

Proof. Since A and B are Cl−Cl?-separated in X, then A = (A∪B)∩(X \
Cl(B)). Since A ∪B ∈ τ and Cl(B) is closed in X, A is open in X. �
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Definition 7. Let X be an ideal space and x ∈ X. The union of all Cl?-
connected (resp. Cl − Cl?-connected) subsets of X containing x is called
the Cl?-component (resp. Cl − Cl?-component) of X containing x.

Theorem 13. Each Cl?-component of an ideal space (X, τ, I) is a maximal
Cl?-connected set of X.

Proof. The proof follows directly from the Definition 7. �

Theorem 14. Each Cl − Cl?-component of an ideal space (X, τ, I) is a
maximal Cl − Cl?-connected set of X.

Proof. The proof follows directly from the Definition 7. �

Theorem 15. The set of all distinct Cl?-components of an ideal space
(X, τ, I) forms a partition of X.

Proof. Let A and B be two distinct Cl?-components of X. Suppose A and
B intersect. Then, by Theorem 7, A ∪ B is Cl?-connected in X. Since
A ⊂ A ∪B, then A is not maximal. Thus, A and B are disjoint. �

Theorem 16. The set of all distinct Cl−Cl?-components of an ideal space
(X, τ, I) forms a partition of X.

Proof. The proof is similar with the previous Theorem and follows directly
from the Definition 7. �

Theorem 17. Let (X, τ, I) be an ideal space. Then each Cl?-connected
subset of X which is both open and ?-closed is Cl?-component of X.

Proof. Let A be a Cl?-connected subset of X such that A is both open
and ?-closed. Let x ∈ A and C be the Cl?-component containing x. Then
A ⊂ C. Let A be a proper subset of C. Since A is open and ?-closed,
A∩Cl?(X \A) = A∩ (X \A) = ∅ = A∩ (X \A) = Cl?(A)∩ (X \A). This
implies that A∩Cl?((X \A)∩C) = ∅ = Cl?(A)∩((X \A)∩C). This shows
that (A∩C) and ((X \A)∩C) are Cl?-separated sets, a contradiction. �

Theorem 18. Let (X, τ, I) be an ideal space where I is codense. Then
each Cl − Cl?-connected subset of X which is both open and ?-closed is
Cl − Cl?-component of X.

Proof. Let A be a Cl−Cl?-connected subset of X such that A is both open
and ?-closed. Let x ∈ A and C be the Cl − Cl?-component containing x.
Then A ⊂ C. Let A be a proper subset of C. Since A is open and ?-closed,
A ∩ Cl(X \ A) = A ∩ (X \ A) = ∅ = A ∩ (X \ A) = Cl?(A) ∩ (X \ A).
This implies that Cl(A) ∩Cl?(X \A) = ∅ = Cl?(A) ∩Cl(X \A) since I is
codense. This shows that (A∩C) and ((X \A)∩C) are Cl−Cl?-separated
sets, a contradiction. �
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4. Connectedness and Mappings

It is well known that f : (X, τ) → (Y, µ) is continuous if the inverse
image of open set in Y under f is open in X and contra-continuous ([13])
if the inverse image of open set in Y under f is closed in X

Definition 8. A function f : (X, τ, I)→ (Y, µ, J) is said to be

(1) continuous if the inverse image of each open set in Y under f is
open in X.

(2) contra-continuous if the inverse image of each open set in Y under
f is closed in X.

(3) τ−µ?-continuous if the inverse image of each ?-open set in Y under
f is open in X.

(4) τ? − µ?-continuous if the inverse image of each ?-open set in Y
under f is ?-open in X.

(5) τ − µ?-contra-continuous if the inverse image of each ?-open set in
Y under f is closed in X.

(6) τ?−µ?-contra-continuous if the inverse image of each ?-open set in
Y under f is ?-closed in X.

Theorem 19. Let f : (X, τ, I) → (Y, µ, J) be a continuous surjection. If
X is Cl?-connected, then Y is connected.

Proof. Suppose that Y is not connected. Then there is a nonempty clopen
proper subset A of Y . Then f−1(A) is nonempty clopen proper set in X
and hence f−1(A) and X \ f−1(A) constitute a Cl?-separation of X, a
contradiction. �

Theorem 20. Let f : (X, τ, I) → (Y, µ, J) be a continuous surjection. If
X is Cl − Cl?-connected, then Y is Cl − Cl?-connected.

Proof. Suppose that Y is not Cl − Cl?-connected. So there are disjoint
nonempty sets A and B with Cl(A) ∩ Cl?(B) = Cl?(A) ∩ Cl(B) = ∅ and
Y = A ∪B.Then X = f−1(A) ∪ f−1(B), f−1(A) ∩ f−1(B) = ∅ and A and
B are open in Y . Since f is continuous surjection, f−1(A) and f−1(B)
are disjoint nonempty clopen sets in X and hence f−1(A) and f−1(B)
constitute a Cl − Cl?-separation of X, a contradiction. �

Theorem 21. Let f : (X, τ, I) → (Y, µ, J) be a contra-continuous surjec-
tion. If X is Cl?-connected, then Y is connected.

Proof. Suppose that Y is not connected. So there are disjoint nonempty
open sets A and B such that Y = A ∪ B.Then X = f−1(A) ∪ f−1(B)
and f−1(A)∩ f−1(B) = ∅. Since f is contra-continuous surjection, f−1(A)
and f−1(B) are disjoint nonempty clopen and hence f−1(A) and f−1(B)
constitute a Cl?-separation of X, a contradiction. �

Theorem 22. Let f : (X, τ, I) → (Y, µ, J) be a contra-continuous surjec-
tion. If X is Cl − Cl?-connected, then Y is Cl − Cl?-connected.

Proof. Suppose that Y is not Cl − Cl?-connected. So there are disjoint
nonempty sets A and B with Cl(A) ∩ Cl?(B) = Cl?(A) ∩ Cl(B) = ∅ and
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Y = A ∪ B.Then X = f−1(A) ∪ f−1(B), f−1(A) ∩ f−1(B) = ∅ and A
and B are open sets in Y . Since f is contra-continuous surjection, f−1(A)
and f−1(B) are disjoint nonempty closed sets in X and hence f−1(A) and
f−1(B) constitute a Cl − Cl?-separation of X, a contradiction. �

Theorem 23. Let f : (X, τ, I)→ (Y, µ, J) be a τ? − µ?-continuous surjec-
tion. If X is Cl?-connected, then Y is Cl?-connected.

Proof. Suppose that Y is not Cl?-connected. So there are nonempty dis-
joint sets A and B with A ∩ Cl?(B) = Cl?(A) ∩ B = ∅ and Y = A ∪ B.
Then A and B are ?-open in Y so that f−1(A) and f−1(B) are ?-open and
?-closed in X. The sets f−1(A) and f−1(B) constitute a Cl?-separation of
X, a contradiction. �

Theorem 24. Let f : (X, τ, I)→ (Y, µ, J) be a τ? − µ?-contra-continuous
surjection. If X is Cl?-connected, then Y is Cl?-connected.

Proof. Suppose that Y is not Cl?-connected. So there are nonempty dis-
joint sets A and B with A ∩ Cl?(B) = Cl?(A) ∩ B = ∅ and Y = A ∪ B.
Then A and B are ?-open in Y so that f−1(A) and f−1(B) are also ?-closed
in X. Since X = f−1(A) ∪ f−1(B) and f−1(A) ∩ f−1(B) = ∅. The sets
f−1(A) and f−1(B) constitute a Cl?-separation of X, a contradiction. �

Theorem 25. Let f : (X, τ, I) → (Y, µ, J) be a τ − µ?-continuous func-
tion.Then f is τ? − µ?-continuous and continuous function.

Proof. Follows from the fact that τ ⊆ τ? and µ ⊆ µ? �

Corollary 5. Let f : (X, τ, I)→ (Y, µ, J) be a τ−µ?-continuous surjection.
If X is Cl?-connected, then Y is Cl?-connected.

Corollary 6. Let f : (X, τ, I)→ (Y, µ, J) be a τ−µ?-continuous surjection.
If X is Cl − Cl?-connected, then Y is Cl − Cl?-connected.
Theorem 26. Let f : (X, τ, I) → (Y, µ, J) be a τ − µ?-contra-continuous
function.Then f is τ? − µ?-contra-continuous and contra-continuous func-
tion.

Proof. Follows from the fact that τ ⊆ τ? and µ ⊆ µ?. �

Corollary 7. Let f : (X, τ, I) → (Y, µ, J) be a τ − µ?-contra-continuous
surjection. If X is Cl?-connected, then Y is Cl?-connected.

Corollary 8. Let f : (X, τ, I) → (Y, µ, J) be a τ − µ?-contra-continuous
surjection. If X is Cl − Cl?-connected, then Y is Cl − Cl?-connected.
Definition 9. A function f : (X, τ, I)→ (Y, µ, J) is said to be

(1) τ? − µ?-homeomorphism if f : (X, τ?(I))→ (Y, µ?(J)) is a homeo-
morphism.

(2) Ideal homeomorphism if it is both a homeomorphism and τ? − µ?-
homeomorphism

Theorem 27. Every τ? − µ?-homeomorphism is τ? − µ?-continuous.
Proof. The proof follows directly from the Definition 9. �
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Corollary 9. A τ? − µ?-homeomorphism preserves Cl?-connectedness.

Corollary 10. A homeomorphism preserves Cl − Cl?-connectedness.
Corollary 11. An Ideal homeomorphism preserves Cl?-connectedness and
Cl − Cl?-connectedness.
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