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CONSTANT RATIO CURVES IN MINKOWSKI 3-SPACE E3
1
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Abstract. In the present paper, we consider a curve whose position

vector can be written as a linear combination of its Serret-Frenet vec-

tors in Minkowski 3-space E
3

1. In particular, we study the non-null

curves in E
3

1 and characterize such curves in terms of their curva-

ture functions. Further, we obtain some results of T -constant and

N -constant type non-null curves in Minkowski 3-space E
3

1.

1. Introduction

A curve x : I ⊂ R → E3 in Euclidean 3-space is called a twisted curve

if it has nonzero Frenet curvatures κ1(s) and κ2(s). From the elementary

differential geometry, it is well known that a curve x(s) in E3 lies on a

sphere if its position vector (denoted also by x) lies on its normal plane at

each point. If the position vector x lies on its rectifying plane, then x(s)

is called rectifying curve [4]. Rectifying curves are characterized by the

simple equation

x(s) = λ(s)T (s) + µ(s)N2(s), (1)

where λ(s) and µ(s) are smooth functions and T (s) and N2(s) are tangent

and binormal vector fields of x respectively [4]. In the same paper, B. Y.

Chen gave a simple characterization of rectifying curves. In particular, it is

shown in [7] that there exists a simple relation between rectifying curves and

centrodes, which play an important role in mechanics kinematics as well

as in differential geometry in defining the curves of constant procession. It

is also provided that a twisted curve is congruent to a non constant linear

function of s [4]. Further, in the Minkowski 3-space E3
1, the rectifying curves

are investigated in ([9],[15],[17]). In [17], a characterization of the space-

like, the time-like and the null rectifying curves in the Minkowski 3-space

in terms of centrodes is given. For a study on rectifying curves in the dual

Lorentzian space D3
1 see [20]. For the characterization of rectifying curves
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in three dimensional compact Lee groups or in dual spaces see [21] or [1]

respectively.

For any curve x(s) in En
t with index t, the position vector x can be

decomposed into its tangential and normal components at each point:

x = xT + xN . (2)

A non-null curve x(s) in En
t is said to be of constant ratio if the ratio

∥

∥xT
∥

∥ :
∥

∥xN
∥

∥ is constant on x(I) where
∥

∥xT
∥

∥ and
∥

∥xN
∥

∥ denote the length

of xT and xN , respectively [2].

Moreover, a curve in E
n
t is called T -constant (resp. N -constant) if the

tangential component xT (resp. the normal component xN) of its position

vector x is of constant length [3]. Recently, in [12], the authors give the

necessary and sufficient conditions for generic curves in Euclidean 3-space

E
3 to become T -constant and N -constant. See also [13] for the results of

T -constant and N -constant curves in Euclidean 4-space E4.

In the present study, we give a generalization of the rectifying curves in

Minkowski 3-space E3
1. We consider a non-null curve in E3

1 whose position

vector satisfies the parametric equation

x(s) = m0(s)T (s) + m1(s)N1(s) + m2(s)N2(s), (3)

for some differentiable functions, mi(s), 0 ≤ i ≤ 2. If m1(s) = 0 then

x(s) becomes a rectifying curve (see, [15]). We characterize the twisted

curves in terms of their curvature functions mi(s) and give the necessary

and sufficient conditions for non-null curves to become T -constant and N -

constant. We give the necessary and sufficient conditions for non-null curves

in E
3
1 to become W -curves.

2. Basic Notations

Let En
t denote the pseudo-Euclidean n-space with index t. Then the

pseudo-Euclidean metric on E
n
t is given by

g = −
t
∑

i=1

dx2
i +

n
∑

j=t+1

dx2
j ,

where (x1, ..., xn) is a rectangular coordinate system of En
t . In particular

E
n
1 is known as the Lorentzian-Minkowski space-time.

For given positive number r, we put

S
n−1
t (r2) =

{

x ∈ E
n
t : g(x, x) = r2

}

,

and

H
n−1
t−1 (−r2) =

{

x ∈ E
n
t : g(x, x) = −r2

}

.
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It is known that S
n−1
t (r2) and H

n−1
t−1 (−r2) are called pseudo-Riemannian

and Pseudo-hyperbolic spaces respectively. In particular, S
n−1
1 (r2) is called

a de Sitter space-time and H
n−1
1 (−r2) is an anti-de Sitter space-time [8].

The hyperbolic space H
n−1(−r2) is defined by

H
n−1(−r2) =

{

x ∈ E
n
t : g(x, x) = −r2 and x1 > 0

}

.

Recall that an arbitrary vector v ∈ E
n
t is called space-like if g(v, v) > 0 or

v = 0, time-like if g(v, v) < 0, and null (light-like) if g(v, v) = 0 and v 6= 0.

The norm of a vector v is given by ‖v‖ =
√

|g(v, v)|, and two vectors v and

w are said to be orthonormal, if g(v, w) = 0. Further, an arbitrary curve

x(s) of E
n
t is called space-like, time-like or null if its velocity vector x

′

(s)

is space-like, time-like or null, respectively [19]. A space-like or time-like

curve (i.e., non-null curve) has unit speed, if g(x
′

(s), x
′

(s)) = ±1. The light

cone LC of En
t defined to be

LC = {x ∈ E
n
t , g(x, x) = 0} .

Let x : I ⊂ R → E
3
1 be a non-null curve given with arclength function

s in Minkowski 3-space E3
1. Let us denote T (s) = x

′

(s) and call T (s) as

tangent vector of x at s. We assume that T ′(0) = 0 everywhere. Then we

can introduce a unique normal vector field N1 and a function κ1 such that

T ′(s) = ε2κ1(s)N1(s), where ε2 = g (N1(s), N1(s)) . Since T (s) is a constant

length vector field, N1(s) is orthogonal to T (s). The unit binormal vector

field of x is defined by N2(s) = T (s)×N1(s) which is a unique vector field

orthogonal to both T (s) and N1(s). One can define a function κ2 by the

equation N
′

2(s) = −ε2κ2(s)N1(s). Then the famous Serret-Frenet equations

in Minkowski 3-space E3
1 are given by

T
′

(s) = ε2κ1(s)N1(s),

N
′

1(s) = −ε1κ1(s)T (s)− ε1ε2κ2(s)N2(s), (4)

N
′

2(s) = −ε2κ2(s)N1(s),

where κ1(s) and κ2(s) are the first and second curvatures of the curve x

and

ε1 = g (T (s), T (s)) = ±1, ε2 = g (N1(s), N1(s)) = ±1,

g (N2(s), N2(s)) = −ε1ε2.

If the Frenet curvature κ1(s) and torsion κ2(s) of x are constant func-

tions, then x is called a screw line or a helix [10], [11]. Since these curves are

the traces of 1-parameter family of the groups of Euclidean transformations,

F. Klein and S. Lie called them W-curves [18].
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3. Characterization of Non-null Curves in E
3
1

In the present section, we characterize the non-null curves given with

arclength function s in E3
1 in terms of their curvatures. Let x : I ⊂ R → E3

1

be a unit speed regular curve with curvatures κ1(s) 6= 0 and κ2(s). By

definition, the position vector of the curve (also defined by x) satisfies the

vectorial equation (3) for some differential functions mi(s), 0 ≤ i ≤ 2.

Differentiating (3) with respect to arclength parameter s and using the

Serret-Frenet equations (4), we obtain

x′(s) = (m′
0(s) − ε1κ1(s)m1(s))T (s)

+(m′
1(s) + ε2κ1(s)m0(s) − ε2κ2(s)m2(s))N1(s) (5)

+(m′
2(s)− ε1ε2κ2(s)m1(s))N2(s).

It follows that

m′
0 − ε1κ1m1 = 1,

m′
1 + ε2κ1m0 − ε2κ2m2 = 0, (6)

m′
2 − ε1ε2κ2m1 = 0.

Non-null W -curves in E3
1 were characterized by Ilarslan and Boyacıoğlu

in [14]. As a consequence of (6) the following result explicitly determines all

the non-null W -curves in E
3
1. Observe that, this result gives a generalization

of the results in [14].

Proposition 1. Let x : I ⊂ R → E
3 be a non-null curve given with

arclength function s. If x is a W -curve of E3
1, then

m0 = ε1κ1

∫

m1ds + (s + c),

m2 = ε1ε2κ2

∫

m1ds,

where m1 is the solution of

m′′
1 + ε1(ε2κ

2
1 − κ2

2)m1 + ε2κ1 = 0.

3.1. Curves of Constant-ratio.

Definition 1. Let x : I ⊂ R → E
n
t be a non-null unit speed curve in pseudo-

Riemannian space E
n
t . Then the position vector x can be decomposed into

its tangential and normal components at each point as in (2). If the ratio
∥

∥xT
∥

∥ :
∥

∥xN
∥

∥ is constant on x(I), then x is said to be of constant-ratio [2].

For a unit speed space-like curve x in En
t , the gradient of the distance

function ρ = ‖x(s)‖ is given by

gradρ =
dρ

ds
x′(s) =

< x(s), x′(s) >

‖x(s)‖ T (s), (7)
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where T is the tangent vector field of x.

The following examples are known.

Example 1. For any real numbers a and c with 0 < c < 1, the curve

x(s) =

(

as,
√

c2 + a2s sin

( √
1− c2

√
c2 + a2

ln s

)

,
√

c2 + a2s cos

( √
1− c2

√
c2 + a2

ln s

))

in E
3
1 is a unit speed space-like curve satisfying ‖gradρ‖ = c < 1 (see, [6]).

Example 2. For any real numbers a and c satisfying c > 1 and c > a ≤ 0.

Then the curve

x(s) =

(

1

2
s1−λ

(

s2λ − b2
)

,
1

2
s1−λ

(

s2λ + b2
)

, as

)

in E3
1 is a unit speed space-like curve satisfying ‖gradρ‖ = c > 1, where

b =
√

c2 + a2 and λ =
√

c2−1
b

(see, [6]).

Lemma 1. [6] Let x : I ⊂ R → En
t be a unit speed non-null curve in En

t

with index t. Then ‖gradρ‖ = c holds for a constant c if and only if, up to

translation of the arclength function s, we have ‖x(s)‖ = cs.

Theorem 1. [5] Let x : I ⊂ R → En
t be a unit speed space-like curve in En

t

with index t. Then ‖gradρ‖ = c holds for a constant c if and only if one of

the following eight cases occurs:

i) x lies in the light-like cone LC.

ii) x lies in a pseudo-Riemannian sphere S
n−1
t (r2).

iii) x lies in a pseudo-hyperbolic space H
n−1
t−1 (−r2).

iv) x lies on open portion of a space-like line through the origin.

v) There exist a real number b > 1 and time-like unit speed curve y = y(u)

which lies in the unit pseudo-Riemannian sphere S
n−1
t (1) such that x is

given by x(s) = bsy
(√

b2−1
b

ln s
)

.

vi) There exist a real number b ∈ (0, 1) and space-like unit speed curve

y = y(u) which lies in the unit pseudo-Riemannian sphere S
n−1
t (1) such

that x is given by x(s) = bsy
(√

1−b2

b
ln s
)

.

vii) There exist a null curve y = y(s) lying in the unit pseudo-Riemannian

S
n−1
t (1) such that x is given by x(s) = bsy(s).

viii) There exist a real number b > 0 and space-like unit speed curve

y = w(u) which lies in the unit pseudo-hyperbolic space H
n−1
t−1 (1) such that

x lies given by x(s) = bsw
(√

1−b2

b
ln s
)

.

The following results characterize constant-ratio curves in E3
1.
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Proposition 2. Let x : I ⊂ R → E
3
1 be a unit speed non-null curve in

E3
1. If x is of constant-ratio then the position vector of the curve has the

parametrization of the form

x(s) =
c2s

ε1
T (s) +

(

c2 − ε1

κ1

)

N1(s) +

(

κ1c
2s

ε1κ2
+

(

ε1 − c2
)

κ′
1

ε2κ2κ
2
1

)

N2(s),

where c is a real constant.

Proof. Let x be a non-null curve of constant-ratio given with arclength

function s. Then, from the previous result, the distance function ρ of x

satisfies the equality ρ = ‖x(s)‖ = cs for some real constant c. Further,

using (7), we get

‖gradρ‖ =
< x(s), x′(s) >

‖x(s)‖ = c. (8)

Since x is a non-null curve of E
3
1, then it satisfies the equality (3). Thus,

by the use of (8) and (6) with the previous lemma, we get

m0(s) = c2s
ε1

m1(s) = c2−ε1
κ1

,

m2(s) = κ1c2s
ε1κ2

+
(ε1−c2)κ′

1

ε2κ2κ2

1

.

(9)

Substituting these values into (3), we obtain the desired result. �

As a consequence of (9) with the third equation of (6), we get the fol-

lowing result.

Corollary 1. Let x : I ⊂ R → E
3
1 be a unit speed non-null curve in E

3
1.

Then x is of constant-ratio if and only if
(

κ1c
2s

ε2κ2
+

(

ε1 − c2
)

κ′
1

ε1κ2κ
2
1

)′

+
κ2

κ1

(

ε1 − c2
)

= 0.

3.2. T-constant Curves in E3
1.

Definition 2. Let x : I ⊂ R → En
t be a unit speed non-null curve in En

t .

If
∥

∥xT
∥

∥ is constant, then x is called a T -constant curve [6]. Further, a

T -constant curve x is called first kind if
∥

∥xT
∥

∥ = 0, otherwise second kind.

As a consequence of (3) with (6) we get the following result.

Lemma 2. Let x : I ⊂ R → E3
1 be a unit speed non-null curve in E3

1. Then

x is a T -constant curve if and only if

0 = 1 + ε1κ1m1,

m′
1 = ε2κ2m2 − ε2κ1m0, (10)
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m′
2 = ε1ε2κ2m1

hold, where m0 ∈ R, m1(s) and m2(s) are differentiable functions.

Thus, from this definition, it is easy to see that the non-null T -constant

curves of first kind can be characterized by the following equations.

As a consequence of (10), we get the following result.

Theorem 2. Let x : I ⊂ R → E
3
1 be a unit speed non-null curve in E

3
1 with

the curvatures κ1 > 0 and κ2 6= 0.Then x is a T -constant curve of first kind

if and only if
ε1κ2

κ1
+

(

κ′
1

κ2
1κ2

)′

= 0. (11)

Proof. Let x be a T -constant curve of first kind. Then, from the second and

third equalities in (10), we get m2 =
m′

1

ε2κ2
and m′

2−ε1ε2m1κ2 = 0. Further,

substituting the differentiation of the first equation and m1 = − 1
ε1κ1

into

the third equation, we get the result. �

Remark 1. Every T-constant curve of the first kind is normal curve in

E
3
1. Observe that, the time-like and null normal curves in Minkowski space

E3
1 are classified by Ilarslan and Nesovic in [16].

As a consequence of Theorem 1, we get the following result.

Corollary 2. Let x : I ⊂ R → E3
1 be a unit speed non-null curve in E3

1

with the curvatures κ1 > 0 and κ2 6= 0. Then x is a T -constant curve of

first kind if and only if either x lies on a pseudo-sphere S2(r) of E
3
1 (see,

[16]) or on a pseudo-hyperbolic space H2(r) of E3
1.

By the use of (10) with (11), we can construct the following example.

Example 3. The unit speed non-null curve given with the parametrization

x(s) = cosh

(
∫

ε2κ2ds

)

N1(s) + ε1 sinh

(
∫

ε2κ2ds

)

N2(s) (12)

is a T -constant curve of first kind in E3
1.

As a consequence of (10), we get the following result.

Theorem 3. Let x : I ⊂ R → E3
1 be a non-null unit speed curve in E3

1.

Then x is a T-constant curve of second kind if and only if
(

κ
′

1 + ε1ε2m0κ
3
1

κ2
1κ2

)′

+
ε1κ2

κ1
= 0 (13)

holds for some constant function m0.
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Proof. Suppose that x is a T -constant curve of second kind. Then, by the

use of (10), we get

0 = m′
2 − ε1ε2m1κ2, m2 =

m′
1 + ε2κ1m0

ε2κ2
. (14)

Further, substituting the differentiation of second equation and using m1 =

− 1
ε1κ1

with first equation, we get the result. �

Corollary 3. Let x ∈ E3
1 be a unit speed non-null curve in E3

1. If x is a

T -constant curve of second kind with non-zero constant first curvature κ1,

then

κ2(s) = ∓
√

a√
c1a − 2ε2s

(15)

holds for some constant functions c1 and a = κ2
1m0.

Proof. Suppose, first curvature κ1 is a constant function. Then by the use

of (13), we get

m0κ1

(

1

κ2

)′

+
ε2κ2

κ1
= 0,

which has a non-trivial solution (15). �

For T -constant curves of second kind, we give the following results.

Proposition 3. Let x ∈ E3
1 be a unit speed non-null T -constant curve of

second kind. Then the distance function ρ = ‖x‖ satisfies

ρ = ±
√

c1s + c2 (16)

for some constants c1 = 2ε1m0 and c2.

Proof. Let x ∈ E3
1 be a T -constant tight curve of second kind. Then, by

definition, the curvature function m0(s) of x is constant. Hence, differenti-

ating the squared distance function ρ2 = 〈x(s), x(s)〉 and using (7), we get

ρρ′ = ε1m0. It is an easy calculation to show that, this differential equation

has a nontrivial solution (16). �

3.3. N-constant Curves in E3
1.

Definition 3. Let x : I ⊂ R → E
n
t be a unit speed non-null curve in E

n
t . If

∥

∥xN
∥

∥ is constant, then x is called an N -constant curve. For an N -constant

curve x, either
∥

∥xN
∥

∥ = 0 or
∥

∥xN
∥

∥ = µ for some non-zero smooth function

µ [6]. Further, an N -constant curve x is called first kind if
∥

∥xN
∥

∥ = 0,

otherwise second kind.
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Note that, for an N -constant curve x in E
3
1

∥

∥xN (s)
∥

∥

2
= ε2m

2
1(s)− ε1ε2m

2
2(s), (17)

becomes a constant function.

For the N -constant curves of first kind, we give the following result.

Theorem 4. Let x : I ⊂ R → E3
1 be a unit speed non-null curve in

E
3
1. Then x is an N -constant curve of first kind if and only if either

x is congruent to a pseudo-line or a T-constant curve of first kind with

x(s) = −1
κ1(s) (N1 + N2) .

Proof. Suppose that x is an N -constant curve of first kind in E3
1, then

m2
1 − ε1m

2
2 = 0. Further, if x is a time-like curve, then m1 = m2 = 0

and m0 = s + b, which implies that κ1 = κ2 = 0. Consequently, x is a

pseudo-line in E3
1. Moreover, if x is a space-like curve, then m1 = ±m2. In

particular, if m1 = m2, then from (6) m1 = m2 = −1
κ1

. This means that

x is a T -constant curve of first kind which has the parametrization of the

form x(s) = −1
κ1(s)

(N1 + N2). Similarly, for m1 = −m2, we obtain the same

results. The proof of the converse statement is trivial. �

Definition 4. A space curve x : I ⊂ R → E
3
1 whose position vector always

lies in its rectifying plane is called a rectifying curve. Thus, for a rectifying

curve x : I ⊂ R → E
3
1, the position vector x(s) satisfies the simple equation

x(s) = m0(s)T (s) + m2(s)N2(s)

for some differentiable functions m0(s) and m2(s) [4]. For more details for

rectifying curves in E3
1 see also [15] and [9].

The following results provides some simple characterizations of non-null

rectifying curves in E3
1.

Theorem 5. [15] Let x : I ⊂ R → E3
1 be a non-null rectifying curve with

κ1 6= 0, and let s be its arclength parameter. Then

i) The tangential component of the position vector of the curve x(s) is

given by < x(s), T >= ε1(s + b), for some real constant b.

ii) The distance function ρ = ‖x(s)‖ satisfies ρ2 = (s + b)ε1 − aε1ε2 for

some real constants a and b.

iii) The normal component of the position vector of the curve has con-

stant length and the distance function ρ is non constant.

iv) The torsion κ2(s) 6= 0 and the binormal component of the position

vector of the curve is constant, i.e. < x, N2 > is constant.

Conversely, if x(s) is a unit speed non–null curve in E3
1, with space-like

or time-like rectifying plane, the curvature κ1(s) > 0, < T, T >= ε1 = ±1
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and one of the statements (i), (ii), (iii) and (iv) holds, then x is a rectifying

curve.

Theorem 6. [15] x : I ⊂ R → E
3
1 be a non-null curve in E

3
1 with κ1 6= 0.

Then x is congruent to a rectifying curve if and only if the ratio of torsion

and curvature of the curve is a linear function of arclength function s, i.e.
κ2

κ1
(s) = c1s + c2 for some constants c1 and c2.

We obtain the following result.

Theorem 7. Let x(s) be a non-null curve in E
3
1and s be its arclength

function. Then x is an N -constant curve of second kind if and only if

either x is congruent to a rectifying curve

x(s) = (s + b)T (s) + aN2(s), a, b ∈ R, (18)

with

κ2

κ1
(s) =

s + b

a
, (19)

or, congruent to a T-constant curve of first kind given with the parametriza-

tion

x(s) =
−1

ε1κ1(s)
N1(s) +

κ′
1(s)

ε1ε2κ
2
1(s)κ2(s)

N2(s), a, b ∈ R, (20)

such that the equality (11) holds.

Proof. Let x be an N -constant curve of second kind, then the equation

m1m
′
1 − ε1m2m

′
2 = 0 holds. Hence, by the use of the equations in (6), we

get

m1

(

m
′

1 − ε2κ2m2

)

= 0.

So, there are two possible cases: m1 = 0 or m
′

1 − ε2κ2m2 = 0. Moreover,

if m1 = 0, then m0 = s + b, m2 = a for some constant functions a and b.

Hence, x becomes a rectifying curve with the parametrization of the form

(18). Substituting these values into second equation of (6), we get (19).

Furthermore, if m
′

1 − ε2κ2m2 = 0 holds, then using the second equality in

(6), we get κ1 = 0, or m0 = 0. Note that, if κ1 = 0 then x is congruent to

a pseudo-line which is an N -constant curve of first kind. So this case does

not occur. For the case m0 = 0, we get m1 = −1
ε1κ1(s) , m2 =

κ′

1
(s)

ε1ε2κ2

1
(s)κ2(s)

.

Hence, x becomes a T-constant curve of first kind with the parametrization

of the form (20). The proof of the converse statement is trivial. �
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