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REGULARIZED LEAST-SQUARE OPTIMIZATION

METHOD FOR VARIABLE SELECTION IN REGRESSION

MODELS
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Abstract. A new type of regularization in least-square optimization
for variable selection in regression models is proposed. Proposed regu-
larization is suitable for regression models with equal or at least com-
parable regressors’ influence. Consistency of the estimator of the re-
gression parameter under suitable assumptions is shown. Numerical
results demonstrate efficiency of the proposed regularization and its
better performance compared to existing regularization methods.

1. Introduction

Variable selection in regression models means identifying the best subset
among many variables to include in a model, which is maybe the hard-
est part of model building. Although, there is a theoretical advantage of
eliminating irrelevant variables and, in some cases, even variables that con-
tain some predictive information about the response variable, [8], it is also
well known that omitting an important explanatory variable may produce
severely biased parameter estimates and prediction results, [12].

Some variable selection methods have been developed to identify good
(although not necessarily the best) subset models, with considerably less
computing than it is required for all possible regressions. These methods
are referred to as stepwise regression methods. The subset models are
identified sequentially by adding or deleting, depending on the method
(forward or backward stepwise selection respectively), the one variable that
has the greatest impact on the residual sum of squares. But, neither forward
selection nor backward elimination takes into account the effect that the
addition or deletion of a variable can have, on the contributions of other
variables to the model, [8].

Despite the stepwise regression methods, the Ordinary Least Square
(OLS) method is one of the most widely used method for estimating the

2000 Mathematics Subject Classification. 62J05, 62J07, 93E24.
Key words and phrases. linear regression, regression models, least square method,

regularization, penalty functions.

80



REGULARIZED LEAST-SQUARE METHOD FOR VARIABLE SELECTION 81

parameters in linear regression models. By minimizing the sum of residual
square errors, the OLS method finds unbiased and consistent estimates.
One of its drawbacks is overfitting the regression models, which can result
in poor predictions. One way to overcome the overfitting is by adding an
additional information to the model through regularization. One of the
the well known regularization methods used in least-square optimization
for variable selection in regression models are Ridge (or Tikhonov regu-
larization), Least Absolute Shrinkage and Selection Operator or LASSO
([10]) and Elastic Net ([13]). Ridge regularization method improves the
OLS estimates by continuous shrinkage of the regression coefficients, but
LASSO regularization does both continuous shrinkage and automatic vari-
able selection at the same time, and is successfully used when there are
large number of predictors, such that the most relevant should be chosen.
In comparison to these two regularization methods, Elastic Net, which is
a combination of Ridge and LASSO, benefits from the both of them and
gives better predictions. Another regularization method that can do both
regression shrinkage and selection (like LASSO), but is resistent to out-
liers or heavy-tailed errors, is LED-lasso regularization method, proposed
in [12].

When making a variable selection, LASSO and Elastic Net use L1-norm
for regularization, that can result in unwanted rejection of some predictors,
especially when there is a group of predictors with very high pairwise cor-
relation. One way to fix this drawback is by using L∞-norm, as we have
done in this work. When L∞-norm is used, the predictors are less likely to
be excluded from the model, so the model will have a chance to be built on
the information from all its predictors and to fix the overfitting from OLS
estimation. As it will be shown, the regularization method that we are
proposing is the most suitable for models with equal or at least comparable
regressors’ influence. This kind of models can be found, for an example, in
hydrology when exploring the dependence of river or lake water levels, on
springs flows or underground water resources, [2]. We are also proposing
a combination of L2 and L∞-norm for regularization, namely L2-norm will
help extreme values obtained by L∞-norm to be avoided.

The paper is organized as following. In Section 2, OLS method and
the existing regularization methods such as Ridge, LASSO and Elastic Net
are presented. The new regularization method is presented in Section 3,
where the consistency of the new estimator is established. A combination
of L2 and L∞-norm for regularization, is also presented in Section 3. In
Section 4, numerical comparative results obtained by testing OLS and five
different regularization methods are presented. Conclusions are given in
the last Section 5.
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2. Preliminaries

We will consider the linear regression model given by it’s matrix form

y = Xβ + ε, (1)

where:

• y = (y1, y2, ..., yn)
T is n-vector of dependent variables,

• X = [x1, x2, ..., xn]
T = [xij]n×p is n×p-matrix of independent vari-

ables,
• β = (β1, β2, ..., βp)

T is p-vector of associated regression coefficients,
and

• ε = (ε1, ε2, ..., εn)
T is n-vector which components are independent

and identically distributed random errors with E(εi) = 0 and D(εi) =
σ2.

We assume that the matrix X is a non-stochastic matrix of known con-
stants, with the full rank, [8].

The most commonly used method for estimating the unknown vector of
parameters β in (1) is the Ordinary Least-Square (OLS) method, which
minimizes the sum of residual square errors

RSS =

n
∑

i=1



yi −
p

∑

j=1

xijβj





2

.

In other words, the OLS parameter estimate β̂ols is obtained by solving the
unconstrained optimization problem i.e.

β̂ols = argmin
β∈Rp







n
∑

i=1



yi −
p

∑

j=1

xijβj





2




. (2)

Despite of obtaining the estimates that are unbiased and consistent, the
data analysts are often not satisfied with the OLS estimates. One of the
reasons is the prediction accuracy, namely the OLS estimates often have low
bias, but large variance. One way to overcome this deficiency and the over-
fitting in the regression model, is by introducing an additional information
via the process of regularization. Using regularization penalties in model
fitting is a very popular and successful approach in statistical modeling.
Two popular regularization methods that are widely used are the Ridge
(also known as Tikhonov regularization) and LASSO regularization, [10].
In the first one, the L2-regularization penalty is used i.e. the constrained
optimization problem

min
β∈Rp
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subject to

p
∑

j=1

β2
j ≤ t, (3)
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is considered, where t ≥ 0 is the tuning parameter. Solving the constrained
optimization problem (3) is equivalent to solving the unconstrained opti-
mization problem obtained by adding penalty-like term in the objective
function of (3) and introducing the Lagrangian multiplier λ > 0. So, the

Ridge parameter estimate β̂ridge is obtained as a solution of the equivalent
unconstrained optimization problem i.e.

β̂ridge = arg min
β∈Rp







n
∑

i=1



yi −
p

∑

j=1

xijβj





2

+ λ

p
∑

j=1

β2
j







. (4)

The tuning parameters t and λ control the amount of shrinkage that is
applied to the estimates. Parameters t and λ have some kind of a reciprocal
relationship, [10]. When t tends to infinity, than λ will be equal to zero,
and the optimization problem (4) will be equivalent to the least-square
optimization problem. If t = 0, then λ will tend to infinity, so the amount
of shrinkage will be greater.

Ridge regression is a continuous process that shrinks coefficients and
hence is a very stable process. However, it does not set any coefficients to
0 and hence does not give an easily interpretable model. For that reason,
the LASSO regularization is proposed, [10]. This technique shrinks some
of the regression coefficients and sets others to 0. LASSO uses L1-norm
penalty term and solves the constrained optimization problem

min
β∈Rp
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∑

i=1



yi −
p

∑

j=1

xijβj





2




subject to

p
∑

j=1

|βj| ≤ t, (5)

which is equivalent to finding an estimate β̂lasso as a solution of the uncon-
strained optimization problem i.e.

β̂lasso = arg min
β∈Rp
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xijβj
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+ λ

p
∑

j=1

|βj|







. (6)

Due to the nature of the L1 penalty, LASSO does both continuous shrink-
age and automatic variable selection at the same time. Although LASSO
has shown success in many situations, it has some limitations in some cases,
especially when p � n or when there is a group of variables among which
the pairwise correlations are very high. In the second case, LASSO chooses
only one variable from that group of variables, no matter which one.

In order to provide some geometrical insight in these two regularization
methods, Ridge and LASSO, let us first rewrite the OLS loss function

n
∑

i=1



yi −
p

∑

j=1

xijβj





2
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in a form of a quadratic function

(β − β̂ols)T XTX(β − β̂ols),

plus a constant, where β̂ols is the OLS estimate. The elliptical contours of
this function (for p = 2) are shown by the full curves in Figure 1, and they
are centered at the OLS estimates. The constraint region for the Ridge
regularization method is the disk β2

1 + β2
2 ≤ t, while the constrained region

for LASSO is the diamond |β1| + |β2| ≤ t. Both methods find the first
point where the elliptical contours hit the constraint region. Unlike the
disk, the diamond has corners, and the LASSO solution might occur at a
corner, corresponding to a zero coefficient, which is not a case when the
constrained region is disk and zero solutions will rarely result.

a. Ridge regularization b. LASSO regularization

Figure 1: A geometric interpretation of Ridge and LASSO regularization
methods for p = 2.

Elastic net regularization which is a combination of LASSO and Ridge, is
introduced to obtain better prediction performance in a different situations,
using the strengths of the both methods, [13]. The parameter estimator is
found by solving the constrained optimization problem

min
β∈Rp
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p
∑
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which is equivalent to finding an estimate β̂en as a solution of the uncon-
strained optimization problem i.e.

β̂en = argmin
β∈Rp







n
∑

i=1



yi −
p

∑

j=1

xijβj





2

+ λ1

p
∑

j=1

β2
j + λ2

p
∑
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|βj|







.

Elastic net regularization method overcomes the problems induced by
having a small number of reliable observations for a large series of potential
predictors i.e. p � n, found in genetic engineering or in chemometrics, [9].
Thanks to the added parameter λ2 > 0, the total Elastic net penalty is
strictly convex, and therefore Elastic net regression coefficients tend to be
equal for highly correlated predictors, whereas LASSO assigns two different
(biased) coefficients, [13].

3. New regularization in least-square optimization

3.1. MASO regularization. We are already familiar with the conclusion
that we can not construct a regression model that will perfectly fit every
type of data. Every method that we have already mentioned have it’s own
advantages and drawbacks depending on the underlying model and the
nature of data. The idea for introducing a new type of regularization in
the least-square optimization for variable selection in regression models is
to improve the estimates from the least-square optimization and previous
mentioned regularization methods, in the models with equal or at least
comparable regressors’ influence. As we mentioned before, the least-square
optimization may result in overfitting the model, and the use of L1-norm
for regularization can overcome this problem, but may result in unwanted
rejection of some predictors. So, one way to fix this last drawback is to
introduce L∞-norm in regularization term.

The regularization method that we propose uses L∞ regularization penalty
and finds estimates of the parameter vector in the linear regression model
(1), by solving the constrained optimization problem

min
β∈Rp
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xijβj





2




subject to max
1≤j≤p

|βj| ≤ t. (7)

We name it Maximum Absolute Shrinkage Operator (MASO), because of
the nature of L∞-norm and its shrinkage property. The constrained prob-
lem (7) is equivalent to finding an estimate β̂maso as a solution of the
unconstrained optimization problem i.e.

β̂maso = argmin
β∈Rp
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. (8)
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MASO regularization method is expected to overcome the problem when
there are groups of variables with strong pairwise correlations in the re-
gression model with equal or at least comparable regressors’ influence, a
situation when LASSO tends to select only one variable from each group.

A geometric interpretation of MASO regularization method in two -
dimensional case i.e. for p = 2, Figure 2, provides us with some geometrical
insight in this method. The constrained region is a square with vertices
at points (−t,−t), (t,−t), (t, t) and (−t, t). MASO solution is the first
place where the contours of the OLS loss function touch the square, which
sometimes may occur at a corner, corresponding to a coefficients with same
absolute extreme value, which means that the corresponding predictors will
have same influence in the regression model.

Figure 2: A geometric interpretation of MASO regularization method for
p = 2

3.2. Properties of MASO estimator. To establish some properties of
the MASO estimator β̂maso defined by (8), we need to assume the following
regularity conditions, [5], for the linear regression model (1):

Assumption 1. There is a nonnegative definite matrix C such that

Cn =
1

n

n
∑

i=1

xix
T
i →C, (9)

and
1

n
max
1≤i≤n

xT
i xi→0. (10)
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As it is mentioned in [5], in practice, the covariates are usually scaled,
so the diagonal elements of Cn (and of C) are all equal to 1.

Now, let us introduce a random function

Zn(φ) =
1

n

n
∑

i=1

(yi − xT
i φ)2 +

λn

n
max
1≤j≤p

|φj|. (11)

which is minimized at φ = β̂n, a MASO estimator. The following theorem

establishes the consistency of β̂n, under the condition that λn = o(n).

Theorem 1. Let the Assimption 1 holds. If C in (9) is nonsingular and
λn

n
→λ0 ≥ 0, then

β̂n
p−→ arg min(Z),

where

Z(φ) = (φ − β)TC(φ − β) + λ0 max
1≤j≤p

|φj|,

and
p−→ denotes the convergence in probability. If λn = o(n), then

argmin(Z) = β, and the MASO estimator β̂n is a consistent estimator for

β.

Proof. We want to show that

sup
φ∈K

|Zn(φ) − Z(φ) − σ2| p−→ 0 (12)

for every compact set K and

β̂n = Op(1). (13)

Under (12) and (13), we will have

β̂n
p−→ arg min(Z).

First, we will show the convexity of

f(β) = f(β1, ..., βp) = max{|β1|, ..., |βp|}.
For λ ∈ [0, 1], and vectors β = (β1, ..., βp), γ = (γ1, ..., γp) ∈ R

p, we will
denote by

|βk| = max{|β1|, ..., |βp|}, |γs| = max{|γ1|, ..., |γp|}
and

|λβt + (1 − λ)γt| = max{|λβ1 + (1 − λ)γ1|, ..., |λβp + (1− λ)γp|}.
Then,

λf(β) + (1− λ)f(γ)

= λ max{|β1|, ..., |βp|}+ (1− λ) max{|γ1|, ..., |γp|}
= λ|βk| + (1 − λ)|γs| ≥ λ|βt| + (1 − λ)|γt|
= |λβt|+ |(1− λ)γt| ≥ |λβt + (1 − λ)γt|
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= max{|λβ1 + (1− λ)γ1|, ..., |λβp + (1 − λ)γp|}
= f(λβ + (1 − λ)γ).

So, we showed that

λf(β) + (1 − λ)f(γ) ≥ f(λβ + (1 − λ)γ),

for all λ ∈ [0, 1], and vectors β, γ ∈ R
p, thus the function f(β1, ..., βp) =

max{|β1|, ..., |βp|} is a convex function. The first term in (11) is a quadratic
function, hence it is convex, so Zn(φ) is a convex function as a sum of convex
functions. Similarly, the function Z(φ) + σ2 is a convex function.

We will use the convexity lemma from [7] to prove (12). Besides the
convexity of Zn(φ) and Z(φ) + σ2, in order to apply the result of the
convexity lemma from [7], we should show the pointwise convergence in
probability of Zn(φ) to Z(φ) + σ2, when n→∞. So, we have

Zn(φ) =
1

n

n
∑

i=1

(yi − xT
i φ)2 +

λn

n
max
1≤j≤p

|φj|

=
1

n

n
∑

i=1

(xT
i β − xT

i φ + εi)
2 +

λn

n
max
1≤j≤p

|φj|

=
1

n

n
∑

i=1

(φ − β)T xix
T
i (φ− β) +

2

n

n
∑

i=1

xT
i (β − φ)εi

+
1

n

n
∑

i=1

ε2i +
λn

n
max
1≤j≤p

|φj|.

Assumption 1 amd λn

n
→λ0 imply that

1

n

n
∑

i=1

(φ− β)Txix
T
i (φ − β) +

λn

n
max
1≤j≤p

|φj|−→Z(φ).

We only need to show that

2

n

n
∑

i=1

xT
i (β − φ)εi +

1

n

n
∑

i=1

ε2i
p−→ σ2. (14)

We know that E(εi) = 0 and D(εi) = σ2, which implies that E(ε2i ) = σ2.
Hence, for δ > 0,

P{| 1
n

n
∑

i=1

(2xT
i (β − φ)εi + ε2i ) − σ2| ≥ δ} = P{|Un − EUn| ≥ δ},

where

Un =
1

n

n
∑

i=1

(2xT
i (β − φ)εi + ε2i )
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is a random variable with the expectation EUn = σ2. From the Chebyshev
inequality, we have that

P{| 1
n

n
∑

i=1

(2xT
i (β − φ)εi + ε2i )− σ2| ≥ δ}

≤ DUn

δ2
=

1

δ2n2

n
∑

i=1

d =
d

δ2n
−→0, when n→∞,

where d = DVi, Vi = 2xT
i (β − φ)εi + ε2i , i = 1, ..., n. So, we proved (14).

And because of the convexity lemma, [7], the convergence in probability
given with (12) holds.

Let us notice that for the function (11) we have that

Zn(φ) ≥ 1

n

n
∑

i=1

(yi − xT
i φ)2 = Zols

n (φ), (15)

for all φ, where Zols
n (φ) is the loss function for the OLS method. We know

that β̂ols
n = arg min(Zols

n (φ)) = Op(1) i.e. the OLS estimator is bounded
with probability 1, because it is consistent (see [3]). This bound and (15)
imply that (13) holds. Hence, from (12) and (13) the theorem is proven. �

Note that the model parameter vector β and the Lagrangian multiplier
λ are indexed by n, since their values change with the growth of n.

We have already shown the consistency of the MASO estimator, but how

fast does β̂n converges to β? The following theorem indicates that we need
λn = O(

√
n) for

√
n-consistency of the MASO estimator.

Theorem 2. Let Asummption 1 holds. If C in (9) is nonsingular and
λn√

n
→ λ0 ≥ 0, then

√
n(β̂n − β)

d−→ arg min(V ),

where
d−→ denotes the convergence in distribution, and

V (u) = −2uTW + uT Cu + λ0 max
1≤j≤p

{uj sgn(βj)I(βj 6= 0) + |uj|I(βj = 0)}

with I(·) as the indicator function, and W is a random vector with a mul-

tivariate normal distribution W ∼ N (0, σ2C).

Proof. Let us define a function

Vn(u) =

n
∑

i=1

((εi −
uT xi√

n
)2 − ε2i ) + λn max

1≤j≤p
{|βj +

uj√
n
| − |βj|}. (16)

For the function (11), we know that argmin(Zn(φ)) = β̂n, so

Zn(φ) =
1

n

n
∑

i=1

(yi − xT
i φ)2 +

λn

n
max
1≤j≤p

|φj|
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=
1

n

n
∑

i=1

(xT
i (β − φ) + εi)

2 +
λn

n
max
1≤j≤p

|φj|

=
1

n

n
∑

i=1

(εi − (φ − β)Txi)
2 +

λn

n
max
1≤j≤p

|φj|

≥ 1

n

n
∑

i=1

(εi − (β̂n − β)Txi)
2 +

λn

n
max
1≤j≤p

|[β̂n]j|,

for all φ, from where we have that
n

∑

i=1

(εi − (φ − β)T xi)
2 + λn max

1≤j≤p
|φj|

≥
n

∑

i=1

(εi − (β̂n − β)Txi)
2 + λn max

1≤j≤p
|[β̂n]j|.

We define a function M(u) by

M(u) =

n
∑

i=1

(εi −
uT xi√

n
)2 + λn max

1≤j≤p
|βj +

uj√
n
|.

Let u =
√

n(φ − β), then we have

M(
√

n(φ − β))

=
n

∑

i=1

(εi −
√

n(φ − β)Txi√
n

)2 + λn max
1≤j≤p

|βj +

√
n(φj − βj)√

n
|

=

n
∑

i=1

(εi − (φ− β)Txi)
2 + λn max

1≤j≤p
|φj|

≥
n

∑

i=1

(εi − (β̂n − β)Txi)
2 + λn max

1≤j≤p
|[β̂n]j|,

for all φ. So, if we put φ = u/
√

n + β, then we will have that for all u the
following inequality holds:

M(u) =

n
∑

i=1

(εi −
uT xi√

n
)2 + λn max

1≤j≤p
|βj +

uj√
n
|

≥
n

∑

i=1

(εi − (β̂n − β)T xi)
2 + λn max

1≤j≤p
|[β̂n]j|. (17)

We want to show that argmin(Vn(u)) =
√

n(β̂n − β), i.e. that for all u it
holds that

Vn(u) =

n
∑

i=1

((εi −
uTxi√

n
)2 − ε2i ) + λn max

1≤j≤p
{|βj +

uj√
n
| − |βj|}
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≥
n

∑

i=1

((εi −
√

n(β̂n − β)T xi√
n

)2 − ε2i ) + λn max
1≤j≤p

{|βj +

√
n(β̂n − β)√

n
| − |βj|}

=

n
∑

i=1

((εi − (β̂n − β)T xi)
2 − ε2i ) + λn max

1≤j≤p
{|[β̂n]j| − |βj|}.

This inequality follows directly from (17), so we can conclude that arg min(Vn(u)) =√
n(β̂n − β) holds.
Next, we want to show that

n
∑

i=1

((εi −
uT xi√

n
)2 − ε2i )

d−→ −2uTW + uT Cu. (18)

Showing this convergence is equivalent to showing that

n
∑

i=1

(−2
εiu

T xi√
n

+
(uTxi)

2

n
)

d−→ −2uTW + uT Cu. (19)

We will show that
n

∑

i=1

−2
εiu

Txi√
n

d−→ −2uT W and

n
∑

i=1

(uTxi)
2

n

d−→ uTCu, (20)

which will imply that (19) and consequently (18) hold.
The term uTxi represent a scalar product, so (uTxi)

2 = (uTxi)
T (uTxi) =

(uTxi)(u
Txi)

T and

n
∑

i=1

(uT xi)
2

n
=

n
∑

i=1

(uTxi)(u
Txi)

T

n
=

n
∑

i=1

uTxix
T
i u

n

= uT (

n
∑

i=1

xix
T
i

n
)u

d−→ uT Cu, as n→∞, (21)

due to Assumption 1. Now, because

n
∑

i=1

−2
εiu

Txi√
n

= −2uT
n

∑

i=1

εixi√
n

,

and
n

∑

i=1

εixi√
n

d−→ W, (22)

due to the Central limit theorem for independent and identically distributed
random variables, the Weak law of large numbers, and W ∼ N (0, σ2C), we
have that the first part of (20) holds, which together with (21) imply (20).

At the end, we need to show that

λn max
1≤j≤p

{|βj +
uj√
n
| − |βj|}
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−→λ0 max
1≤j≤p

{uj sgn(βj)I(βj 6= 0) + |uj|I(βj = 0)}. (23)

We need to consider two cases for βj. If βj = 0, then I(βj = 0) = 1 and
I(βj 6= 0) = 0, so we will have that

λn(|βj +
uj√
n
| − |βj|) = λn|

uj√
n
|

−→ λ0|uj| = λ0(uj sgn(βj)I(βj 6= 0) + |uj|I(βj = 0)). (24)

If βj 6= 0, then I(βj = 0) = 0 and I(βj 6= 0) = 1. We will show that

λn(|βj +
uj√
n
| − |βj|)

−→λ0(uj sgn(βj)) = λ0(uj sgn(βj)I(βj 6= 0) + |uj|I(βj = 0)). (25)

We have

lim
n→∞

λn(|βj +
uj√
n
| − |βj|) = lim

n→∞
λn√
n
·
|βj +

uj√
n
| − |βj|

1√
n

.

And because

lim
n→∞

|βj +
uj√
n
| − |βj|

1√
n

= lim
n→∞

sgn(βj +
uj√

n
)(− uj

2
√

n3
)

− 1

2
√

n3

= uj sgn(βj),

and λn√
n
→ λ0, we have

lim
n→∞

λn(|βj +
uj√
n
| − |βj|) = λ0(uj sgn(βj)),

i.e. (25) holds. Now, (24) and (25) imply (23).
Finally, (18) and (23) imply

Vn(u)
d−→ V (u).

Since, Vn(u) is a convex function and the function V (u) has a unique min-
imum, we have that

arg min(Vn(u)) =
√

n(β̂n − β)
d−→ argmin(V (u)),

which proves the theorem. �

Note that the previous two consistency theorems are also valid for Ridge
and LASSO estimators, and for Bridge estimators in general (the second
one is valid for the Bridge estimators with parameter γ ≥ 1), see [5].
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3.3. MASO-Ridge regularization. The idea which led to combine the
LASSO and Ridge regularization methods in one method that has the ad-
vantages of both types of regularization methods, is a good reason to con-
sider a combination of MASO and Ridge regularization methods. Stability
arising as a result of the tendency of Ridge regularization to obtain coef-
ficients that tend to be equal when the predictors are highly correlated, is
an enough reason to combine it with the newly introduced MASO regu-
larization. So, the MASO-Ridge estimator can be obtained by solving the
following constrained optimization problem:

min
β∈Rp







n
∑

i=1



yi −
p

∑

j=1

xijβj





2




s.t.

p
∑

j=1

β2
j ≤ t1 and max

1≤j≤p
|βj| ≤ t2,

which is equivalent to finding a MASO-Ridge estimator β̂mr by solving the
unconstrained optimization problem:

β̂mr = arg min
β∈Rp







n
∑

i=1



yi −
p

∑

j=1

xijβj





2

+ λ1

p
∑

j=1

β2
j + λ2 max

1≤j≤p
|βj|







.

Figure 3: A geometric interpretation of MASO-Ridge regularization
method for p = 2

To gain some geometrical insight at MASO-Ridge regularization method,
in Figure 3, the constraint region and the elliptical contours of the OLS loss
function, for p = 2, are shown. For t2 ≤ t1 ≤

√
2t2, the constraint region
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has the form as shown on Figure 3, which means that the extreme values
from MASO regularization can be avoided. If t1 ≥

√
2t2, the constraint

region is the same as the square region from the MASO regularization.
And if t1 ≤ t2, the constraint region is the same as the one obtained in the
Ridge regularization.

4. Simulation results

In this section we present the results from comparing the OLS esti-
mates with the estimates obtained by the five regularization methods Ridge,
LASSO, Elastic Net, MASO and MASO-Ridge, on two examples from [10].
To obtain the estimates, the underlying unconstrained optimization prob-
lems are solved using three different optimization methods: steepest descent
method (SD), spectral projected gradient method (SPG) and stochastic ap-
proximation (SA). Each optimization method finds the next iterate by the
iterative formula βk+1 = βk + αkpk, where βk is the current iterate, and
the search direction pk is calculated by

pk = −∇f(βk),

for SD and SA method, and by

pk = −δk∇f(βk),

for SPG method, with the spectral coefficient δk calculated as in [1]. Note
that f is the loss function of the unconstrained optimization problem, and
∇f is it’s gradient. The gradient is approximated by centered finite differ-
ences with step h = 10−5.

In SD method, the step size αk is calculated by the backtracking Armijo
line search, with the coefficients proposed in [6]. In SPG method, the
step size αk is calculated by the nonmonotone line search with a safeguard
quadratic interpolation, given in [1]. And, the step size αk in SA method
is calculated by

αk =
a

(k + 1 + A)γ
,

where a = 0.01, A = 0 and γ = 0.602.
Our goal is to estimate the parameter vector in the linear regression

model y = Xβ + ε using simulated data and different estimation and opti-
mization methods. We simulated N = 50 data sets of n = 100 observations,
where the random errors εi are i.i.d. random variables with normal Gauss-
ian distributions

εi ∼ N (0, σ2), i = 1, 2, ..., n,

with σ = 3. The column vectors Xj, j = 1, 2, ..., p of the matrix X of inde-
pendent variables are chosen to have n-dimensional normal distributions

Xj ∼ N (0, C), j = 1, 2, ..., p,
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where the covariance matrix C = [cij] is such that

cij = ρ|i−j|, i, j = 1, 2, ..., p,

with ρ = 0.5, [11]. The five-fold cross-validation is used to estimate the reg-
ularization parameter in each case, [4]. We choose {0, 0.01, 0.1, 1, 10, 100}
as a set of candidates for the optimal choice of the regularization parameter
λ, [13].

Comparison of OLS method and regularization methods is based on the
evaluation of Mean Square Errors (MSE) and Median Square Errors (Me-
dianSE) defined by

MSE =
1

N

N
∑

k=1

(β̂k − β)T C(β̂k − β)

and

MedianSE = Median{(β̂k − β)TC(β̂k − β), k = 1, 2, ..., N},

respectively, where β̂k is the kth estimate of the parameter β. The total
number of zeros among all coefficients in 50 runs (TotalNZ) and the avarage
number of zero coefficients at a single run (AverageNZ) have also been cal-
culated, together with confidence intervals for every regression coefficient.
All tests are conducted in MATLAB.

Example 1. [10] In this example we are looking for the estimate of the

parameter β in y = Xβ + ε, where the true value of β is

β = (3, 1.5, 0, 0, 2, 0, 0, 0)T .

This is an example with most of the regression coefficients equal to zeros,
so the expectations are that the best estimates will be obtained by the
LASSO regularization or it’s combination with the Ridge regularization i.e.
the Elastic net regularization. We also expect that the MASO estimates
will be an improvement of the OLS estimates, although they might not be
as good as the LASSO estimates. The comparisons of different estimation
methods in combination with different optimization methods are shown in
Table 1.

As we can see from Table 1, the lowest MSE is obtained by the Elastic
Net regularization with SPG optimization method, which is comparable to
MSE from SA optimization method. Zero coefficients are only obtained
by LASSO and Elastic Net regularization, and only one zero coefficient
obtained by MASO regularization with SA optimization method. On this
example MASO, and MASO-Ridge estimates manage to outperform (in
MSE) only OLS estimates, as it was expected. Similar discussion can be
conducted if we look at MedianSE, with LASSO and Elastic Net having
the lowest MedianSE.
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MSE MedianSE TotalNZ AverageNZ

OLS SD 0.812069575 0.69996898 0 0
OLS SPG 0.805519263 0.696021437 0 0
OLS SA 0.812069575 0.69996898 0 0

Ridge SD 0.826214041 0.689404581 0 0
Ridge SPG 0.781524403 0.693105221 0 0
Ridge SA 0.777243972 0.687549343 0 0

Lasso SD 0.748250295 0.676306941 18 0.045
Lasso SPG 0.733968123 0.67452177 17 0.0425
Lasso SA 0.736761883 0.667729514 8 0.02

ElasticNet SD 0.827978442 0.675987269 18 0.045
ElasticNet SPG 0.728120685 0.668145177 15 0.0375
ElasticNet SA 0.728137252 0.665618273 9 0.0225

Maso SD 0.815829488 0.7177292 0 0
Maso SPG 0.809944363 0.696021437 0 0
Maso SA 0.804873102 0.689590035 1 0.0025

Maso-Ridge SD 0.83072272 0.689404581 0 0
Maso-Ridge SPG 0.788165377 0.693105221 0 0
Maso-Ridge SA 0.783877838 0.687549343 0 0

Table 1: MSE, MedianSE, TotalNZ and AverageNZ (Example 1)

Example 2. [10] In this example we are looking for the estimate of the

parameter β in y = Xβ + ε, where the true value of β is

β = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)T .

This is an example without any zero coefficient, and the same influence
of the predictors in the regression model. So, we are expecting dominant
performance of the newly introduced regularization methods, MASO and
MASO-Ridge. Numerical results presented in Table 2 show that the lowest
MSE is obtained from MASO-Ridge regularization with SA optimization
method, which is comparable to the MSE from MASO regularization with
SA optimization and to the MSE from MASO-Ridge regularization with
SPG optimization. MedianSE acts in a similar way. Zero coefficients are
again obtained by LASSO and Elastic Net regularization methods, and only
one zero coefficient obtained by MASO-Ridge regularization with SPG op-
timization method. In this example, having a zero coefficient is undesirable.

We also present the 95% confidence intervals for every regression coef-
ficients, in the both examples. They are shown in Table 3 and Table 4
respectively.
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MSE MedianSE TotalNZ AverageNZ

OLS SD 0.815670708 0.691576159 0 0
OLS SPG 0.802919893 0.694733091 0 0
OLS SA 0.798039516 0.68623488 0 0

Ridge SD 0.873938864 0.692493117 0 0
Ridge SPG 0.736557831 0.665858603 0 0
Ridge SA 0.746653893 0.660054638 0 0

Lasso SD 0.813968636 0.717586863 3 0.0075
Lasso SPG 0.795488967 0.697667875 2 0.005
Lasso SA 0.78975981 0.688818862 0 0

ElasticNet SD 0.9325318 0.693088593 2 0.005
ElasticNet SPG 0.738634681 0.668725098 1 0.0025
ElasticNet SA 0.747933063 0.660564251 1 0.0025

Maso SD 0.77011987 0.650267294 0 0
Maso SPG 0.753124374 0.636702021 0 0
Maso SA 0.72904457 0.641793174 0 0

Maso-Ridge SD 0.772580122 0.632196319 0 0
Maso-Ridge SPG 0.723636348 0.625733169 1 0.0025
Maso-Ridge SA 0.703772749 0.628224325 0 0

Table 2: MSE, MedianSE, TotalNZ and AverageNZ (Example 2)

5. Conclusions

In this paper we introduced a new type of regularization in least-square
optimization for model selection in regression. This regularization outper-
forms the OLS estimates by overcoming the overfitting, and has better per-
formance compared to the existing regularization methods in models with
equal or at least comparable regressors’ influence. A consistency of the new
estimator is established and a comparable simulation study is performed.
Simulation results confirm our expectations.

Some of the future directions might be concerned with investigations in
better selection of the regularization parameter, as well as with a combina-
tion of the proposed regularization with some other regularization methods.

Acknowledgements. This work is partially supported by Ss. Cyril
and Methodius University of Skopje, Macedonia scientific research projects
for 2014/2015 academic year.
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CI(β1) CI(β2) CI(β3) CI(β4) CI(β5) CI(β6) CI(β7) CI(β8)

OLS SD
2.904673325 1.34116174 −0.183945509 −0.060732595 1.936445879 −0.173430392 −0.184165667 −0.042141378
3.094055281 1.58124345 0.04871818 0.129658465 2.126155681 0.079065838 0.044154892 0.173659807

OLS SPG
2.903778132 1.339813516 −0.185076213 −0.063518883 1.933263336 −0.177816699 −0.187858573 −0.044624718
3.093438458 1.579647133 0.048170289 0.126403686 2.121945693 0.073884106 0.042596491 0.170071256

OLS SA
2.904673325 1.34116174 −0.183945509 −0.060732595 1.936445879 −0.173430392 −0.184165667 −0.042141378
3.094055281 1.58124345 0.04871818 0.129658465 2.126155681 0.079065838 0.044154892 0.173659807

Ridge SD
2.880975017 1.342005552 −0.171902206 −0.046078423 1.913649025 −0.153718401 −0.174557328 −0.037626742
3.066748295 1.578705175 0.056700932 0.141935565 2.104861859 0.095736266 0.047819141 0.176946173

Ridge SPG
2.875704652 1.338753655 −0.172208415 −0.051023356 1.903836263 −0.162078247 −0.184636894 −0.04163226
3.062223668 1.572919022 0.055433539 0.134412156 2.088973284 0.083844505 0.040533001 0.168569796

Ridge SA
2.875841592 1.340282797 −0.173129434 −0.048073422 1.900410041 −0.157554729 −0.18661723 −0.040495215
3.061866121 1.57314242 0.053155929 0.137133255 2.084159105 0.087617551 0.037263209 0.168885421

Lasso SD
2.879415893 1.317568954 −0.146604808 −0.049315855 1.896808814 −0.148105474 −0.164448813 −0.033178379
3.06802623 1.551862218 0.063517105 0.122517719 2.0832832 0.080545251 0.04617547 0.168423799

Lasso SPG
2.880161505 1.317170203 −0.149445085 −0.053711312 1.895293511 −0.152734187 −0.169553792 −0.037340609
3.069172597 1.551356545 0.062836699 0.116898862 2.079965103 0.076534279 0.043203566 0.161711559

Lasso SA
2.881814306 1.321272156 −0.158088542 −0.047431982 1.895411357 −0.153710478 −0.170973441 −0.039931093
3.070999917 1.556081821 0.054338516 0.122780169 2.076978262 0.080812453 0.043076934 0.157373857

ElasticNet SD
2.871969202 1.317676965 −0.141628539 −0.042393942 1.891178058 −0.13743237 −0.15412338 −0.030373767
3.060286646 1.552795726 0.066383187 0.132166528 2.087044331 0.094623511 0.054659925 0.174371913

ElasticNet SPG
2.870536114 1.319573068 −0.149577961 −0.047136691 1.886632235 −0.150313613 −0.167165614 −0.037677895
3.059186438 1.552573861 0.062398665 0.122359813 2.069960534 0.07774883 0.043169812 0.159405972

ElasticNet SA
2.870441951 1.320736462 −0.15391377 −0.042462013 1.884427092 −0.14781554 −0.169297192 −0.038090816
3.059139346 1.554533534 0.057097793 0.126160252 2.065336392 0.083565579 0.041034875 0.156412319

Maso SD
2.890267764 1.346269056 −0.184369773 −0.059023736 1.935621205 −0.172490076 −0.184208979 −0.041759449
3.085533653 1.587273019 0.048292634 0.130347339 2.123205804 0.07999937 0.043876708 0.173825154

Maso SPG
2.887446372 1.345039898 −0.185479367 −0.061990604 1.932504526 −0.176914515 −0.187858531 −0.044129162
3.083865356 1.585960422 0.047705321 0.12709434 2.119135392 0.074669656 0.042339871 0.170390288

Maso SA
2.889389864 1.345739308 −0.186103893 −0.058779999 1.928205183 −0.172330666 −0.189841386 −0.043011129
3.084038512 1.585175171 0.045552565 0.130015511 2.11426702 0.078431491 0.039046889 0.170700385

Maso-Ridge SD
2.873564191 1.345877223 −0.173638253 −0.045692979 1.915260252 −0.154667288 −0.174760328 −0.037718698
3.062597192 1.58439337 0.05545394 0.141873018 2.106362717 0.095346544 0.047898179 0.177271245

Maso-Ridge SPG
2.868752932 1.342847422 −0.174837316 −0.051245902 1.905791849 −0.163118797 −0.184633527 −0.041973012
3.058444747 1.578898557 0.053790506 0.13392909 2.091938814 0.083341654 0.040812012 0.168751184

Maso-Ridge SA
2.869257771 1.344011109 −0.175314572 −0.048829947 1.902404743 −0.158695669 −0.186550822 −0.040908459
3.058414065 1.578576037 0.051760601 0.136458384 2.087680896 0.086874719 0.037554032 0.168969623

Table 3: 95% confidence intervals for regression coefficients (Example 1)
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CI(β1) CI(β2) CI(β3) CI(β4) CI(β5) CI(β6) CI(β7) CI(β8)

OLS SD
0.75552894 0.6908282 0.6675886 0.78825104 0.7894437 0.675581031 0.66837938 0.80757489
0.944616355 0.930896001 0.899744782 0.978832819 0.979415307 0.927748234 0.896493081 1, 02378803

OLS SPG
0.754279378 0.689765494 0.665723423 0.785634844 0.784669581 0.671647501 0.662739161 0.805299414
0.943548895 0.929120684 0.898202579 0.975232902 0.97266477 0.922587019 0.892716554 1.019495303

OLS SA
0.753999573 0.691060158 0.665926274 0.786413267 0.785046695 0.672526507 0.663266843 0.805787669
0.94278736 0.929023548 0.896950835 0.975124526 0.971682554 0.922023155 0.892053137 1.019454228

Ridge SD
0.75079707 0.699042838 0.684670992 0.793171527 0.780446043 0.686691908 0.674922308 0.795122603
0.927369537 0.932316787 0.895344303 0.963291329 0.978482472 0.923260573 0.88847254 1.001688252

Ridge SPG
0.73393182 0.688611018 0.670542588 0.776530513 0.772855386 0.671200478 0.658802145 0.789834776
0.910462494 0.906881143 0.882591512 0.947815514 0.948482243 0.906035799 0.871836024 0.989202798

Ridge SA
0.73767057 0.684269591 0.673287948 0.776549775 0.774741432 0.672743866 0.661025969 0.784220741
0.916335847 0.905281715 0.886302127 0.94982468 0.950031005 0.906892555 0.877229501 0.988605125

Lasso SD
0.744412401 0.687861439 0.674662627 0.779905502 0.782477883 0.672756014 0.66362184 0.806810634
0.934962334 0.923979242 0.897710974 0.970663658 0.973370188 0.923583049 0.88795018 1.017469769

Lasso SPG
0.744813817 0.687236865 0.673444206 0.77814531 0.778606533 0.668936032 0.657895075 0.80529724
0.935069011 0.922771889 0.896942195 0.967124208 0.96730481 0.919018379 0.884204884 1.013663862

Lasso SA
0.746481248 0.688021097 0.673370825 0.779834895 0.779222915 0.670630264 0.65859164 0.806029726
0.935565466 0.922899367 0.895993393 0.968025573 0.96662266 0.919591621 0.88439139 1.014351769

ElasticNet SD
0.750390989 0.699557096 0.690646235 0.790765786 0.783892333 0.688939489 0.679601051 0.793173406
0.926649023 0.933320961 0.900405698 0.963062508 0.989245673 0.933313002 0.894615752 1.005626322

ElasticNet SPG
0.733862232 0.687719086 0.675666098 0.774149269 0.772918137 0.668510343 0.660965569 0.79007778
0.909817266 0.905409978 0.885528105 0.946739894 0.949463125 0.904330664 0.87485139 0.989201415

ElasticNet SA
0.737150853 0.683111725 0.677328847 0.775855926 0.773932074 0.670461194 0.661558414 0.784890329
0.915156465 0.903525919 0.887875877 0.949785229 0.950381662 0.905539848 0.877326413 0.988660504

Maso SD
0.744894325 0.696036844 0.674561495 0.784063066 0.797581791 0.669453081 0.678124261 0.800183055
0.917750163 0.928843852 0.89929276 0.964918656 0.981050346 0.907581701 0.891370602 1.004515905

Maso SPG
0.749758547 0.693623545 0.669487826 0.785096204 0.78582129 0.674914205 0.665816245 0.807501524
0.930377762 0.925839686 0.896907011 0.967292393 0.967541399 0.914069764 0.882800663 1.009803083

Maso SA
0.740614626 0.703232718 0.666983577 0.781548144 0.79014039 0.665186593 0.670336133 0.79939901
0.91192857 0.931984874 0.892016005 0.957040379 0.968612386 0.902351201 0.886753444 0.999726879

Maso-Ridge SD
0.745000434 0.697182304 0.698462071 0.786338902 0.786564329 0.677744071 0.666962561 0.796936131
0.911537142 0.929761048 0.913208033 0.949862216 0.969816185 0.907100943 0.873325452 0.994226799

Maso-Ridge SPG
0.738791221 0.687395206 0.678316962 0.779617109 0.778483967 0.675948707 0.661806287 0.794720572
0.912410212 0.904787594 0.89388658 0.95022548 0.951207765 0.904964063 0.87034886 0.995087161

Maso-Ridge SA
0.729246327 0.698307054 0.677075524 0.77456638 0.782308064 0.674893186 0.660094111 0.792539368
0.894454934 0.912627468 0.890801818 0.941013178 0.952796811 0.903525034 0.868508862 0.991885137

Table 4: 95% confidence intervals for regression coefficients (Example 2)
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