ON β -CONNECTED SPACE BETWEEN SUBSETS

ERDAL EKICI AND BILJANA KRSTESKA

Abstract. Two new concepts β -connected space between subsets and β -set-connected functions are introduced and some of their basic properties are studied.

1. Introduction

Noiri [6] introduced slightly β -continuous functions. This is a new weak form of both slightly continuity [4] and β -continuity [1]. In this paper we introduce the notions of β -connected spaces between subsets and β -set-connected functions. We show that within the class of surjective functions the classes of β -set-connected functions and slightly β -continuous functions coincide.

2. Preliminaries

Throughout this paper, by X we denote a topological space. Let A be a subset of X. We denote the interior, the closure and the complement of a subset A of X by int(A), cl(A) and A^c respectively.

A subset A of a space X is called β -open if $A \subset cl(int(cl(A)))$ [1]. The complement of a β -open set is called β -closed [1]. The intersection of all β -closed sets containing A is called β -closure [1] of A and is denoted by β -cl(A). The β -interior of A is defined by the union of all β -open sets contained in A and is denoted by β -int(A).

The family of all β -open (resp. β -closed, β -clopen, clopen) sets of X is denoted by $\beta O(X)$ (resp. $\beta C(X)$, $\beta CO(X)$, CO(X)).

Let $f: X \to Y$ be a function. A subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called a graph of f and is denoted by G(f).

Definition 1. A space X is β -connected if X can not be expressed as an union of two nonempty β -open sets [7].

Definition 2. A function $f: X \to Y$ is slightly β -continuous [6] if $f^{-1}(V) \in \beta O(X)$ for any clopen set V of Y.

²⁰⁰⁰ Mathematics Subject Classification. 54D05, 54C10. Key words and phrases. β -connected space, β -set-connected function.

3. β -connected space between subsets

Definition 3. A space X is β -connected between subsets A and B if there exists no β -clopen set K for which $A \subset K$ and $K \cap B = \emptyset$.

Definition 4. A function $f: X \to Y$ is β -set-connected if whenever X is β -connected between A and B, then f(X) is connected between f(A) and f(B) with respect to relative topology on f(X).

Theorem 5. A function $f: X \to Y$ is β -set-connected if and only if $f^{-1}(K)$ is β -clopen for every clopen subset K of f(X) with respect to relative topology on f(X).

Proof. (\Rightarrow): Let K be any clopen subset of f(X) with respect to the relative topology on f(X). Suppose that $f^{-1}(K)$ is not β -closed in X. Then there exists $x \in X \setminus f^{-1}(K)$ such that for every β -open set U with $x \in U$, $U \cap f^{-1}(K) \neq \emptyset$.

Suppose that there exists a β -clopen set A such that $f^{-1}(K) \subset A$ and $x \notin A$. Then $x \in X \setminus A \subset X \setminus f^{-1}(K)$ and $X \setminus A$ is a β -open set containing x and disjoint from $f^{-1}(K)$. This contradiction implies that X is set β -connected between x and $f^{-1}(K)$.

Since f is β -set-connected, f(X) is connected between f(x) and $f(f^{-1}(K))$. So $f(f^{-1}(K)) \subset K$ and $f(x) \notin K$, is a contradiction. Hence, $f^{-1}(K)$ is β -closed in X. By using the complements, we obtain that $f^{-1}(K)$ is β -open.

(\Leftarrow): Suppose that there exist subsets A and B of X for which f(X) is not connected between f(A) and f(B) in relative topology on f(X). Hence, there exists a set $K \subset f(X)$ that is clopen in the relative topology on f(X) such that $f(A) \subset K$ and $K \cap f(B) = \emptyset$. Then $A \subset f^{-1}(K)$, $B \cap f^{-1}(K) = \emptyset$ and $f^{-1}(K)$ is β -clopen, which implies that X is not β -connected between A and B. We obtain that f is β -set-connected.

Theorem 6. Let $f: X \to Y$ be a function. If f is β -set-connected, then it is slightly β -continuous.

Proof. Let F be a clopen subset of Y. Then $F \cap f(X)$ is clopen in the relative topology on f(X). Since f is β -set-connected, it follows that $f^{-1}(F) = f^{-1}(F \cap f(X))$ is β -clopen in X.

Theorem 7. Let $f: X \to Y$ be a function. If f is slightly β -continuous surjection, then it is β -set-connected.

Proof. It follows from Theorem 5.

Remark 8. The following example shows that in general slightly β -continuity is not equivalent to β -set-connectedness.

Example 9. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{a, b, c\}\}$ and $\upsilon = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. We define a function $f : (X, \tau) \to (X, \upsilon)$ as follows

$$f(a) = b, f(b) = b, f(c) = c, f(d) = a.$$

Then f is slightly β -continuous but it is not β -set-connected.

Theorem 10. If X is a β -connected space and $f: X \to Y$ is slightly β -continuous surjection, then Y is connected [6].

Definition 11. A topological space X is called hyperconnected [8] if every open set in X is dense in X.

Remark 12. The following example shows that slightly β -continuous surjection does not preserve hyperconnectedness.

Example 13. Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$ and $\sigma = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}$. Then the identity function $f: (X, \tau) \to (X, \sigma)$ is slightly β -continuous surjective. The space (X, τ) is hyperconnected. But (X, σ) is not hyperconnected.

Definition 14. A filter base Λ is β -convergent to a point x in X if for any $U \in \beta O(X)$ containing x, there exists $B \in \Lambda$ such that $B \subset U$.

Definition 15. A filter base Λ is co-convergent to a point x in X if for any $U \in CO(X)$ containing x, there exists $B \in \Lambda$ such that $B \subset U$.

Theorem 16. If $f: X \to Y$ is slightly β -continuous, then for each point $x \in X$ and each filter base Λ in X β -converging to x, the filter base $f(\Lambda)$ is co-convergent to f(x).

Proof. Let $x \in X$ and Λ be any filter base in X β -converging to x. Since f is slightly β -continuous, then for any $V \in CO(Y)$ containing f(x), there exists $U \in \beta O(X)$ containing x such that $f(U) \subset V$. Since Λ is β -converging to x, there exists $B \in \Lambda$ such that $B \subset U$. This means that $f(B) \subset V$ and therefore the filter base $f(\Lambda)$ is co-convergent to f(x).

Definition 17. A space X is β - T_1 [5] (resp. clopen T_1 [2]) if for each pair of distinct points x and y of X, there exist β -open (resp. clopen) sets U and V containing x and y respectively such that $y \notin U$ and $x \notin V$.

Definition 18. A space X is β - T_2 [5] (resp. clopen T_2 [2]) if for each pair of distinct points x and y in X, there exist disjoint β -open (resp. clopen) sets U and V in X such that $x \in U$ and $y \in V$.

Definition 19. A graph G(f) of a function $f: X \to Y$ is strongly β -co-closed if for each $(x,y) \in (X \times Y) \backslash G(f)$, there exist $U \in \beta CO(X)$ containing x and $V \in CO(Y)$ containing y such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 20. A graph G(f) of a function $f: X \to Y$ is strongly β -co-closed in $X \times Y$ if and only if for each $(x,y) \in (X \times Y) \setminus G(f)$, there exist $U \in \beta CO(X)$ containing x and $V \in CO(Y)$ containing y such that $f(U) \cap V = \emptyset$.

Theorem 21. If $f: X \to Y$ is slightly β -continuous and Y is clopen T_1 , then G(f) is strongly β -co-closed in $X \times Y$.

Proof. Let $(x,y) \in (X \times Y) \setminus G(f)$. Then $f(x) \neq y$ and there exists a clopen set V of Y such that $f(x) \in V$ and $y \notin V$. According to the assumption that f is slightly β -continuous, it follows that $f^{-1}(V) \in \beta CO(X)$ containing x. Put $U = f^{-1}(V)$. So $f(U) \subset V$. Therefore, $f(U) \cap (Y \setminus V) = \emptyset$ and $Y \setminus V \in CO(Y)$ containing y. Hence G(f) is strongly β -co-closed in $X \times Y$.

Theorem 22. If $f: X \to Y$ be an injective function with a strongly β -co-closed graph G(f), then X is β - T_1 space.

Proof. Let x and y be any two distinct points of X. Then $(x, f(y)) \in (X \times Y) \backslash G(f)$. According to the definition of strongly β -co-closed graph, there exist a β -clopen set U of X and $V \in CO(Y)$ such that $(x, f(y)) \in U \times V$ and $f(U) \cap V = \emptyset$. Hence $U \cap f^{-1}(V) = \emptyset$. Therefore, $y \notin U$. Thus it follows that X is β - T_1 .

Definition 23. A function $f: X \to Y$ is always β -open [3] if $f(V) \in \beta O(Y)$ for each $V \in \beta O(X)$.

Theorem 24. If $f: X \to Y$ is a surjective always β -open function with a strongly β -co-closed graph G(f), then Y is β - T_2 space.

Proof. Let y_1 and y_2 be any distinct points of Y. Since f is surjective $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in (X \times Y) \setminus G(f)$. According to the assumption that G(f) is a strongly β -co-closed graph, there exist a β -clopen set U of X and $V \in CO(Y)$ such that $(x, y_2) \in U \times V$ and $(U \times V) \cap G(f) = \emptyset$. Then, $f(U) \cap V = \emptyset$. Since, f is always β -open, it follows that f(U) is β -open such that $f(x) = y_1 \in f(U)$. Hence Y is β - T_2 .

Definition 25. A β -frontier of a subset A of X is β -fr $(A) = \beta$ - $cl(A) \cap \beta$ - $cl(X \setminus A)$.

Theorem 26. The set of all points $x \in X$ in which a function $f:(X,\tau) \to (Y,\sigma)$ is not slightly β -continuous is the union of β -frontier of the inverse images of clopen sets containing f(x).

Proof. Suppose that f is not slightly β -continuous at $x \in X$. Then there exists a clopen set V of Y containing f(x) such that f(U) is not contained in V for each $U \in \beta O(X)$ containing x. Then $U \cap (X \setminus f^{-1}(V)) \neq \emptyset$ for every $U \in \beta O(X)$ containing x and hence $x \in \beta$ - $cl(X \setminus f^{-1}(V))$. On the other hand $x \in f^{-1}(V) \subset \beta$ - $cl(f^{-1}(V))$ and hence $x \in \beta$ - $fr(f^{-1}(V))$.

Conversely, suppose that f is slightly β -continuous at $x \in X$ and let V be a clopen set of Y containing f(x). Then there exists $U \in \beta O(X)$ containing x such that $U \subset f^{-1}(V)$. Hence $x \in \beta$ -int $(f^{-1}(V))$. Therefore, $x \notin \beta$ -fr $(f^{-1}(V))$ for each clopen set V of Y containing f(x).

Theorem 27. If f is a slightly β -continuous function from a β -connected space X onto space Y, then Y is not a discrete space.

Proof. Suppose that Y is discrete. Let A be a proper nonempty open subset of Y. Then $f^{-1}(A)$ is any proper nonempty β -clopen subset of X, which is a contradiction to the assumption that X is β -connected.

Theorem 28. A space X is β -connected if every slightly β -continuous function from a space X into any T_0 -space Y is constant.

Proof. Suppose that X is not β -connected and every slightly β -continuous function from X into Y is constant. Since X is not β -connected, there exists a proper nonempty β -clopen subset A of X. Let $Y = \{a,b\}$ and $\tau = \{Y,\varnothing,\{a\},\{b\}\}$ be a topology of Y. Let $f: X \to Y$ be a function such that $f(A) = \{a\}$ and $f(X \setminus A) = \{b\}$. Then f is non-constant and slightly β -continuous such that Y is T_0 , which is a contradiction. Hence, X is β -connected.

Theorem 29. If $f:(X,\tau)\to (Y,\sigma)$ is a slightly β -continuous injection and (Y,σ) is clopen T_2 , then (X,τ) is β - T_2 .

Proof. Let x, y be any distinct points of X. Then $f(x) \neq f(y)$. Since (Y, σ) is clopen T_2 , there exist clopen sets U, V in Y containing f(x), f(y), respectively, such that $U \cap V = \emptyset$. Since f is slightly β -continuous, there exist $G, H \in \beta O(X)$ containing x, y, respectively, such that $f(G) \subset U$ and $f(H) \subset V$. This implies that $G \cap H = \emptyset$. Hence (X, τ) is β - T_2 .

REFERENCES

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2] E. Ekici, Generalization of perfectly continuous, regular set-connected and clopen functions, *Acta Math. Hungarica*, **107** (3) (2005), 193-206.
- [3] S. Jafari and T. Noiri, On β-quasi-irresolute functions, Mem. Fac. Sci. Kochi Univ. (Math.), 21 (2000), 53-62.
- [4] R. C. Jain, The role of regularly open sets in general topology, Ph. D. thesis, Meerut University, Institute of Advanced Studies, Meerut, India, 1980.
- [5] R. A. Mahmoud and M. E. Abd El-Monsef, β-irresolute and β-topological invariants, Proc. Pakistan Acad. sci., 27 (1990), 285-296.
- [6] T. Noiri, Slightly β-continuous functions, Int. J. Math. Math. Sci., 28 (8) (2001), 469-478.
- [7] V. Popa and T. Noiri, Weakly β-continuous functions, An. Univ. Timişoara Ser. Mat. Inform., 32 (2) (1994), 83-92.
- [8] L. A. Steen and J. A. Seebach Jr, Counterexamples in Topology, Holt, Rinenhart and Winston, New York, 1970.

Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale/TURKEY

FACULTY OF NATURAL SCIENCES AND MATHEMATICS, INSTITUTE OF MATHEMATICS, P.O. BOX 162, 1000 SKOPJE, MACEDONIA

E-mail address: eekici@comu.edu.tr

E-mail address: biljanak@iunona.pmf.ukim.edu.mk