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n-EXPONENTIAL CONVEXITY FOR LEVINSON TYPE
INEQUALITIES AND RELATED STOLARSKY TYPE

MEANS

ANA VUKELIĆ

Abstract. Starting from the result given in [?] where the author gave

the generalized Hadamard inequality, we give the generalizations of

Levinson’s inequality (see [?]) and related inequalities. Also, we in-

vestigate the exponential convexity of differences of the left-hand and

right-hand side of these inequalities. Using these differences, we pro-

duce new exponentially convex functions. They are used in studying

Stolarsky type means.

1. Introduction

Let f be a real-valued function defined on the segment [a, b]. The divided
difference of order n of the function f at distinct points x0, ..., xn ∈ [a, b],
is defined recursively (see [?], [?]) by

f [xi] = f(xi), (i = 0, . . . , n)

and

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
.

The value f [x0, . . . , xn] is independent of the order of the points x0, . . . , xn.
The definition may be extended to include the case that some (or all) of
the points coincide. Assuming that f (j−1)(x) exists, we define

f [x, . . . , x︸ ︷︷ ︸
j−times

] =
f (j−1)(x)
(j − 1)!

. (1.1)
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A function f : [a, b] → R is said to be n-convex if n-th order divided
difference of f satisfies

f [x0, . . . , xn] ≥ 0 for all a ≤ x0 < . . . < xn ≤ b.

Now, the well known Levinson inequality is given in the following theo-
rem (see [?]):

Theorem 1. Let f be a real valued 3-convex function on [0, 2a]. Then for
0 < xk < a, pk > 0 (1 ≤ k ≤ n) and Pk =

∑k
i=1 pi (2 ≤ k ≤ n) we have

1
Pn

n∑
k=1

pkf(xk) − f

(
1
Pn

n∑
k=1

pkxk

)

≤ 1
Pn

n∑
k=1

pkf(2a− xk) − f

(
1
Pn

n∑
k=1

pk(2a− xk)

)
. (1.2)

In [?], J. Pečarić proved the following similar result:

Theorem 2. Let f be a real-valued 3-convex function on [0, 2a] and xk (1 ≤
k ≤ n) n points on [0, 2a]. Then

1
Pn

n∑
k=1

pkf(xk)−f
(

1
Pn

n∑
k=1

pkxk

)
≤ 1
Pn

n∑
k=1

pkf(a+xk)−f
(

1
Pn

n∑
k=1

pk(a+ xk)

)
.

(1.3)

In [?], the authors introduced Levinson means of Cauchy’s type using
the above inequalities. See also [?], [?], [?] and [?].

The goal of this paper is to give mean value theorems using improvements
of Levinson’s and related inequalities. Further, the obtained Cauchy type
mean value theorems is used in studying Stolarsky type means. The notion
of n-exponentially convex functions is introduced and a method of produc-
ing n-exponentially convex functions is deduced. Some known families of
functions of the same type are used.

2. An improvements of Levinson’s inequality and related

results

Let

En−1 = {(u1, . . . , un−1) : ui ≥ 0 (1 ≤ i ≤ n − 1), u1 + · · ·+ un−1 ≤ 1}
denote the Euclidian simplex and for u = (u1, . . . , un−1) ∈ En−1, put un :=
1−∑n−1

i=1 ui. Throughout the paper n ≥ 2 and μ is an arbitrary probability
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measure on En−1. The weights μi (1 ≤ i ≤ n) of the measure μ(·) are
defined by

μi :=
∫

En−1

uidμ(u)

and so μi ≥ 0 with
∑n

i=1 μi = 1 and (μ1, . . . , μn) may be taken as a set of
probability weights.

We denote by x = (x1, . . . , xn) a real n-tuple with

xmin := min(x) < max(x) =: xmax.

The inner product of vectors x, y ∈ R
n will be denoted by x · y. Let

f : [xmin, xmax] → R be convex. The inequality

f

(
n∑

i=1

μixi

)
≤
∫

En−1

f(u · x)dμ(u) ≤
n∑

i=1

μif(xi) (2.1)

has been established in [?] and will be referred to as the generalized Hadamard
inequality. Both inequalities in (??) are reversed if f is concave on [xmin, xmax].

In [?], using (??), authors derived a generalization of the Levinson’s
inequality which has generalized-Hadamard form:

Theorem 3. Let f : [0, 2a] → R be 3-convex. Then for xi ∈ (0, a), we have

f

(
n∑

i=1

μi(2a− xi)

)
− f

(
n∑

i=1

μixi

)
≤

∫
En−1

[f(u · (2a− x))− f(u · x)]dμ(u)

≤
n∑

i=1

μi [f(2a− xi)− f(xi)] . (2.2)

Lemma 1. If f : [0, 2a] → R is 3-convex, then f(a+ t)− f(t) is convex on
[0, a].

By combining this result with (??), we derive a generalization of the
inequality (??) which has generalized-Hadamard form:

Theorem 4. Let f : [0, 2a] → R be 3-convex. Then for xi ∈ [0, a], we have

f

(
n∑

i=1

μi(a+ xi)

)
− f

(
n∑

i=1

μixi

)
≤

∫
En−1

[f(u · (a+ x))− f(u · x)] dμ(u)

≤
n∑

i=1

μi [f(a+ xi) − f(xi)] . (2.3)
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Example 1. Suppose f(t) = ln t, so that f(t) is 3-convex on [0, 1]. Let
xi ∈ [0, 1], (i = 1, . . . , n), where n ≥ 2. From (??) with a = 1

2 we obtain∏n
i=1 x

µi
i∏n

i=1

(
1
2 + xi

)µi
≤ I(x1, . . . , xn; μ)
I
(

1
2 + x1, . . . ,

1
2 + xn; μ

) ≤
∑n

i=1 μixi∑n
i=1 μi

(
1
2 + xi

) ,
where
I(x1, . . . , xn; μ) = mln,e1(x; μ), mf,g(x; μ) = f−1

[∫
En−1

f ◦ g−1(u ·G)dμ(u)
]
,

G = (g(x1), . . . , g(xn)), and er(t) :=
{
tr r �= 0,
ln t r = 0.

3. n-exponential convexity

Motivated by the inequalities in (??) and (??), we define functionals
Φ1(f), Φ2(f), Φ3(f), Φ4(f), Φ5(f) and Φ6(f) by

Φ1(f) =
∫

En−1

[f(u · (2a− x)) − f(u · x)] dμ(u)

− f

(
n∑

i=1

μi(2a− xi)

)
+ f

(
n∑

i=1

μixi

)
, (3.1)

Φ2(f) =
n∑

i=1

μi [f(2a− xi)− f(xi)]

−
∫

En−1

[f(u · (2a− x))− f(u · x)] dμ(u), (3.2)

Φ3(f) =
n∑

i=1

μi [f(2a− xi) − f(xi)]

− f

(
n∑

i=1

μi(2a− xi)

)
+ f

(
n∑

i=1

μixi

)
, (3.3)

Φ4(f) =
∫

En−1

[f(u · (a+ x))− f(u · x)] dμ(u)

− f

(
n∑

i=1

μi(a+ xi)

)
+ f

(
n∑

i=1

μixi

)
, (3.4)

Φ5(f) =
n∑

i=1

μi [f(a+ xi) − f(xi)]
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−
∫

En−1

[f(u · (a+ x))− f(u · x)] dμ(u) (3.5)

and

Φ6(f) =
n∑

i=1

μi [f(a+ xi) − f(xi)]

− f

(
n∑

i=1

μi(a+ xi)

)
+ f

(
n∑

i=1

μixi

)
. (3.6)

Theorem 5. Let f : [0, 2a] → R (i = 1, 2, 3, 4, 5, 6) be such that f ∈
C3([0, 2a]), n > 1. Then there exists ξ ∈ [0, 2a] such that

Φi(f) = f ′′′(ξ) ·Φi(ϕ), (3.7)

where ϕ(x) = x3

3! .

Proof. Let us denote m = min f ′′′ and M = max f ′′′. We first consider the
following function φ1(x) = Mx3

3! −f(x). Then φ′′′1 (x) = M−f ′′′(x) ≥ 0, x ∈
[0, 2a], i = 1, 2, 3, 4, 5, 6, so φ1 is a 3-convex function. Similarly, a function
φ2(x) = f(x) − mx3

3! is a 3-convex function. Now, we use inequalities from
Theorem ?? and Theorem ?? for 3-convex functions φ1 and φ2. So, we can
conclude that there exists ξ ∈ [0, 2a], i = 1, 2, 3, 4, 5, 6, that we are looking
for in (??). �

Corollary 1. Let f, h : [0, 2a] → R, i = 1, 2, 3, 4, 5, 6, such that f, h ∈
C3([0, 2a]). Then there exists ξ ∈ [0, 2a] such that

Φi(f)
Φi(h)

=
f ′′′(ξ)
h′′′(ξ)

, i = 1, 2, 3, 4, 5, 6, (3.8)

provided that the denominator of the left-hand side is non-zero.

Proof. We use the following standard technique: Let us define the linear
functional
L(χ) = Φi(χ), i = 1, 2, 3, 4, 5, 6. Next, we define χ(t) = f(t)L(h) −
h(t)L(f). According to Theorem ??, applied on χ, there exists ξ ∈ [0, 2a]
so that

L(χ) = χ′′′(ξ)Φi(ϕ), ϕ(x) =
x3

3!
, i = 1, 2, 3, 4, 5, 6.

¿From L(χ) = 0, it follows f ′′′(ξ)L(h)− h′′′(ξ)L(f) = 0 and (??) is proved.
�

Now, let us recall some definitions and facts about exponentially convex
functions (see [?]):
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Definition 1. A function ψ : I → R is n-exponentially convex in the
Jensen sense on I if

n∑
i,j=1

ξiξj ψ

(
xi + xj

2

)
≥ 0,

hold for all choices ξ1, . . . , ξn ∈ R and all choices x1, . . . , xn ∈ I.
A function ψ : I → R is n-exponentially convex if it is n-exponentially

convex in the Jensen sense and continuous on I.

Remark 1. It is clear from the definition that 1-exponentially convex
functions in the Jensen sense are in fact nonnegative functions. Also,
n-exponentially convex function in the Jensen sense are k-exponentially
convex in the Jensen sense for every k ∈ N, k ≤ n.

By definition of positive semi-definite matrices and some basic linear
algebra we have the following proposition:

Proposition 1. If ψ is an n-exponentially convex in the Jensen sense,

then the matrix
[
ψ
(

xi+xj

2

)]k
i,j=1

is positive semi-definite matrix for all k ∈

N, k ≤ n. Particularly, det
[
ψ
(

xi+xj

2

)]k
i,j=1

≥ 0 for all k ∈ N, k ≤ n.

Definition 2. A function ψ : I → R is exponentially convex in the Jensen
sense on I if it is n-exponentially convex in the Jensen sense for all n ∈ N.

A function ψ : I → R is exponentially convex if it is exponentially convex
in the Jensen sense and continuous.

Remark 2. It is known (and easy to show) that ψ : I → R is a log-convex
in the Jensen sense if and only if

α2ψ(x) + 2αβψ
(
x+ y

2

)
+ β2ψ(y) ≥ 0,

holds for every α, β ∈ R and x, y ∈ I. It follows that a function is log-
convex in the Jensen sense if and only if it is 2-exponentially convex in the
Jensen sense.

The function is log-convex if and only if it is 2-exponentially convex.

Proposition 2. If f is a convex function on I and if x1 ≤ y1, x2 ≤
y2, x1 �= x2, y1 �= y2, then the following inequality is valid

f(x2) − f(x1)
x2 − x1

≤ f(y2)− f(y1)
y2 − y1

.

If the function f is concave, the inequality is reversed.
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Lemma 2. A function Ψ is log-convex on an interval I if and only if, for
all a, b, c ∈ I, a < b < c, it holds

[Ψ(b)]c−a ≤ [Ψ(a)]c−b[Ψ(c)]b−a.

We use an idea from [?] to give an elegant method of producing an n-
exponentially convex functions and exponentially convex functions applying
the above functionals on a given family with the same property (see [?]):

Theorem 6. Let Υ = {fs : s ∈ J}, where J an interval in R, be a family of
functions defined on an interval [0, 2a], i = 1, 2, 3, 4, 5, 6, in R, such that the
function s→ fs[z0, z1, z2, z3] is n-exponentially convex in the Jensen sense
on J for every four mutually different points z0, z1, z2, z3 ∈ [0, 2a], i =
1, 2, 3, 4, 5, 6. Let Φi(f), i = 1, 2, 3, 4, 5, 6, be linear functional defined as in
(??)-(??). Then s �→ Φi(fs) is an n-exponentially convex function in the
Jensen sense on J. If the function s �→ Φi(fs) is continuous on J, then it
is n-exponentially convex on J.

Proof. For ξi ∈ R, i = 1, . . . , n and si ∈ J, i = 1, . . . , n, we define the
function

g(z) =
n∑

i,j=1

ξiξjf si+sj
2

(z).

Using the assumption that the function s→ fs[z0, z1, z2, z3] is n-exponentially
convex in the Jensen sense, we have

g[z0, z1, z2, z3] =
n∑

i,j=1

ξiξjf si+sj
2

[z0, z1, z2, z3] ≥ 0,

which in turn implies that g is a 3-convex function on J, so it is Φk(g) ≥
0, k = 1, 2, 3, 4, 5, 6, hence

n∑
i,j=1

ξiξjΦk

(
f si+sj

2

)
≥ 0.

We conclude that the function s → Φk(fs) is n-exponentially convex on J

in the Jensen sense.
If the function s → Φk(fs) is also continuous on J, then s → Φk(fs) is

n-exponentially convex by definition. �

The following corollaries are an immediate consequences of the above
theorem:
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Corollary 2. Let Υ = {fs : s ∈ J}, where J an interval in R, be a
family of functions defined on an interval [0, 2a] in R, such that the function
s → fs[z0, z1, z2, z3] is exponentially convex in the Jensen sense on J for
every four mutually different points z0, z1, z2, z3 ∈ [0, 2a]. Let Φi(f), i =
1, 2, 3, 4, 5, 6, be linear functional defined as in (??)-(??). Then s→ Φi(fs)
is an exponentially convex function in the Jensen sense on J. If the function
s→ Φi(fs) is continuous on J, then it is exponentially convex on J.

Corollary 3. Let Υ = {fs : s ∈ J}, where J an interval in R, be a
family of functions defined on an interval [0, 2a] in R, such that the func-
tion s → fs[z0, z1, z2, z3] is 2-exponentially convex in the Jensen sense
on J for every four mutually different points z0, z1, z2, z3 ∈ [0, 2a]. Let
Φi(f), i = 1, 2, 3, 4, 5, 6, be linear functional defined as in (??)-(??). Then
the following statements hold:

(i) If the function s→ Φi(fs) is continuous on J, then it is 2-exponenti-
ally convex function on J. If s → Φi(fs) is additionally strictly
positive, then it is also log-convex on J. Furthermore, the following
inequality holds true:

[Φi(fs)]t−r ≤ [Φi(fr)]t−s[Φi(ft)]s−r, (3.9)

for every choice r, s, t ∈ J, such that r < s < t.
(ii) If the function s → Φi(fs) is strictly positive and differentiable on

J, then for every s, q, u, v ∈ J, such that s ≤ u and q ≤ v, we have

μs,q(Φi,Υ) ≤ μu,v(Φi,Υ), (3.10)

where

μs,q(Φi,Υ) =

⎧⎪⎨
⎪⎩
(

Φi(fs)
Φi(fq)

) 1
s−q

, s �= q,

exp
(

d
ds

Φi(fs)

Φi(fq)

)
, s = q,

(3.11)

for fs, fq ∈ Υ.

Proof. (i) This is an immediate consequence of Theorem ?? and Re-
mark ??. Inequality (??) follows from Lemma ??.

(ii) Since by (i) the function s→ Φi(fs), i = 1, 2, 3, 4, 5, 6, is log-convex
on J, that is, the function s → logΦi(fs) is convex on J. So, we
get

log Φi(fs) − logΦi(fq)
s − q

≤ log Φi(fu) − log Φi(fv)
u− v

, (3.12)
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for s ≤ u, q ≤ v, s �= q, u �= v, and there form conclude that

μs,q(Φi,Υ) ≤ μu,v(Φi,Υ).

Cases s = q and u = v follows from (??) as limit cases.
�

Remark 3. Note that the results from above theorem and corollaries still
hold when two of the points z0, z1, z2, z3 ∈ [0, 2a] coincide, say z1 = z0, for a
family of differentiable functions fs such that the function s→ fs[z0, z1, z2, z3]
is n-exponentially convex in the Jensen sense (exponentially convex in the
Jensen sense, log-convex in the Jensen sense), and furthermore, they still
hold when all four points coincide for a family of three differentiable func-
tions with the same property. The proofs are obtained by (??) and suitable
characterization of convexity.

4. Applications to Stolarsky type means

In this section, we present several families of functions which fulfil the
conditions of Theorem ??, Corollary ??, Corollary ?? and Remark ??. This
enable us to construct a large families of functions which are exponentially
convex. For a discussion related to this problem see [?].

Example 2. Consider a family of functions

Ω1 = {ls : R → R : s ∈ R}

defined by

ls(x) =

{
esx

s3 , s �= 0,
x3

3! , s = 0.

We have d3ls
dx3 (x) = esx > 0 which shows that ls is 3-convex on R for ev-

ery s ∈ R and s → d3ls
dx3 (x) is exponentially convex by definition. Us-

ing analogous arguing as in the proof of Theorem ?? we also have that
s→ ls[z0, z1, z2, z3] is exponentially convex (and so exponentially convex in
the Jensen sense). Using Corollary ?? we conclude that s → Φi(ls), i =
1, 2, 3, 4, 5, 6, are exponentially convex in the Jensen sense. It is easy to
verify that this mapping is continuous (although mapping s → ls is not
continuous for s = 0), so it is exponentially convex.
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For this family of functions, μs,q(Φi,Ω1), i = 1, 2, 3, 4, 5, 6, from (??),
becomes

μs,q(Φi,Ω1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Φi(ls)
Φi(lq)

) 1
s−q

, s �= q,

exp
(

Φi(id·ls)
Φi(ls)

− 3
s

)
, s = q �= 0,

exp
(

Φi(id·l0)
4Φi(l0)

)
, s = q = 0.

Now, using (??) it is monotonous function in parameters s and q.

We observe here that
(

dnls
dxn
dnlq
dxn

) 1
s−q

(lnx) = x so using Corollary ?? it

follows that:

Ms,q(Φi,Ω1) = lnμs,q(Φi,Ω1), i = 1, 2, 3, 4, 5, 6

satisfy

0 ≤Ms,q(Φi,Ω1) ≤ 2a, i = 1, 2, 3, 4, 5, 6.

So, Ms,q(Φi,Ω1) is monotonic mean.

Example 3. Consider a family of functions

Ω2 = {fs : (0,∞) → R : s ∈ R}
defined by

fs(x) =

{
xs

s(s−1)(s−2) , s /∈ {0, 1, 2},
xj lnx

(−1)2−jj!(2−j)!
, s = j ∈ {0, 1, 2}.

Here, d3fs

dx3 (x) = xs−3 = e(s−3) lnx > 0 which shows that fs is 3-convex for
x > 0 and s → d3fs

dx3 (x) is exponentially convex by definition. Arguing as
in Example ?? we get that the mappings s → Φi(fs), i = 1, 2, 3, 4, 5, 6 are
exponentially convex. Functions (??) is now equal to:

μs,q(Φi,Ω2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Φi(fs)
Φi(fq)

) 1
s−q

, s �= q,

exp
(

2Φi(f0fs)
Φi(fs)

+
∑2

k=0
1

k−s

)
, s = q /∈ {0, 1, 2},

exp
(

Φi(f0fs)
Φi(fs)

+
∑2

k=0
k �=s

1
k−s

)
, s = q ∈ {0, 1, 2}.

We observe that

(
d3fs
dx3

d3fq

dx3

) 1
s−q

(x) = x, so if Φi (i = 1, 2, 3, 4, 5, 6) are

positive, then Corollary ?? yield that there exist some ξ ∈ [0, 2a], i =
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1, 2, 3, 4, 5, 6 such that

ξs−q =
Φi(fs)
Φi(fq)

, i = 1, 2, 3, 4, 5, 6.

Since the function ξ → ξs−q is invertible for s �= q, we then have

0 ≤
(

Φi(fs)
Φi(fq)

) 1
s−q ≤ 2a, i = 1, 2, 3, 4, 5, 6, (4.1)

which shows that μs,q(Φi,Ω2), i = 1, 2, 3, 4, 5, 6, is mean.

Example 4. Consider a family of functions

Ω3 = {hs : (0,∞) → R : s ∈ (0,∞)}
defined by

hs(x) =

{
s−x

(− ln s)3
, s �= 1

x3

3! , s = 1.

Since d3hs
dx3 (x) = s−x is the Laplace transform of a non-negative function

(see [?]) it is exponentially convex. Obviously hs are 3-convex functions for
every s > 0. For this family of functions, μs,q(Φi,Ω3), i = 1, 2, 3, 4, 5, 6,
from (??) becomes

μs,q(Φi,Ω3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Φi(hs)
Φi(hq)

) 1
s−q

, s �= q,

exp
(
−Φi(id·hs)

sΦi(hs) − 3
s ln s

)
, s = q �= 1,

exp
(
−Φi(id·h1)

4Φi(h1)

)
, s = q = 1.

This is monotone function in parameters s and q by (??). Using Corollary
?? it follows that

Ms,q(Φi,Ω3) = −L(s, q) lnμs,q(Φi,Ω3), i = 1, 2, 3, 4, 5, 6

satisfy

0 ≤Ms,q(Φi,Ω3) ≤ 2a.

So Ms,q(Φi,Ω3) is monotonic mean. L(s, q) is logarithmic mean defined by

L(s, q) =

{
s−q

log s−log q , s �= q

s, s = q.
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Example 5. Consider a family of functions

Ω4 = {ks : (0,∞) → R : s ∈ (0,∞)}
defined by

ks(x) =
e−x

√
s

(−√
s)3

.

Since d3ks
dx3 (x) = e−x

√
s is the Laplace transform of a non-negative function

(see [?]) it is exponentially convex. Obviously ks are 3-convex functions for
every s > 0. For this family of functions, μs,q(Φi,Ω4), i = 1, 2, 3, 4, 5, 6,
from (??) becomes

μs,q(Φi,Ω4) =

⎧⎨
⎩
(

Φi(ks)
Φi(kq)

) 1
s−q

, s �= q,

exp
(
− Φi(id·ks)

2
√

sΦi(ks)
− 3

2s

)
, s = q.

This is monotone function in parameters s and q by (??). Using Corollary
?? it follows that

Ms,q(Φi,Ω4) = −(
√
s+

√
q) lnμs,q(Φi,Ω4), i = 1, 2, 3, 4, 5, 6

satisfy
0 ≤Ms,q(Φi,Ω4) ≤ 2a.

So Ms,q(Φi,Ω4) is monotonic mean.
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related results, An. Univ. Craiova Ser. Mat. Inform., 39(1) (2012), 65-75.
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n-EKSPONENCIJALNA KONVEKSNOST ZA NERAVENSTVA
OD VIDOT NA LEVINSON I POVRZANI SO NIV

SREDINI OD VIDOT NA STOLARSKI

Ana Vukeliḱ

R e z i m e

Poqnuvajḱi od rezultatot daden vo [8], kade avtorot go dava obop-
xtenoto nearvenstvo na Adamar, davame generalizacija na neravenstvoto
na Levinson (vidi [9]) i povrzani so nego nearavenstva. Isto taka
ja ispituvame eksponencijalnata konveksnost na razlikite od levata i
desnata strana na ovie neravenstva. Koristejḱi gi tie razliki, dobi-
vame novi eksponencijalno konveksni funkcii. Tie se iskoristeni vo
prouquvaǌeto na sredini od tipot na Stolarski.

Faculty of Food Technology and Biotechnology, Mathematics depart-

ment, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

E-mail address : avukelic@pbf.hr


