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n-EXPONENTIAL CONVEXITY FOR LEVINSON TYPE
INEQUALITIES AND RELATED STOLARSKY TYPE
MEANS

ANA VUKELIC

Abstract. Starting from the result given in [?] where the author gave
the generalized Hadamard inequality, we give the generalizations of
Levinson’s inequality (see [?]) and related inequalities. Also, we in-
vestigate the exponential convexity of differences of the left-hand and
right-hand side of these inequalities. Using these differences, we pro-
duce new exponentially convex functions. They are used in studying
Stolarsky type means.

1. INTRODUCTION

Let f be a real-valued function defined on the segment [a, b]. The divided
difference of order n of the function f at distinct points o, ..., z, € [a,b],
is defined recursively (see [?], [?]) by

f[.Z‘Z] = f(.TZ), (’L = 0, Ceey n)

and
Llyeeos Ty — JILOy -y Tp—1
f[;ro,...,xn]:f[ o = 1l n ]
Tp — 0
The value f[zo,...,x,] is independent of the order of the points z, . . ., Zy.

The definition may be extended to include the case that some (or all) of
the points coincide. Assuming that fU=1(z) exists, we define

fl o V@) (1.1)
8= .

j—times
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A function f : [a,b] — R is said to be n-convexz if n-th order divided
difference of f satisfies

flzoy--yzn] >0 forall a<zy<...<zp<b.
Now, the well known Levinson inequality is given in the following theo-

rem (see [?]):

Theorem 1. Let f be a real valued 3-convex function on [0,2a]. Then for
O<zp<a, pp >0 (1<k<n) ande:Elepi (2 <k <n) we have

Pinz_:pkf(xk) —f (Pin ZPkﬂ?k)
< B Zpkf 2a — ) — ( Zpk 2a—ﬂ?k> (1.2)

In [?], J. Pecarié¢ proved the following similar result:

Theorem 2. Let f be a real-valued 3-convex function on [0, 2a] and xj (1 <
k <mn) n points on [0,2a]. Then

Pinkf(xk)—f (Pi Zpk%) Zpkf (atay)— ( Zpk (a+ )
" k=1 " k=1
(1.3)

In [?], the authors introduced Levinson means of Cauchy’s type using
the above inequalities. See also [?], [?], [?] and [?].

The goal of this paper is to give mean value theorems using improvements
of Levinson’s and related inequalities. Further, the obtained Cauchy type
mean value theorems is used in studying Stolarsky type means. The notion
of n-exponentially convex functions is introduced and a method of produc-
ing n-exponentially convex functions is deduced. Some known families of
functions of the same type are used.

2. AN IMPROVEMENTS OF LEVINSON’S INEQUALITY AND RELATED
RESULTS

Let

En g ={(u,...;up—1):u; 20 (1<i<n—1),up+ -+ up—q <1}

denote the Euclidian simplex and for u = (uq, ..., up—1) € Fp_1, put u, :=
1-— EZ 1 u;. Throughout the paper n > 2 and p is an arbitrary probability
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measure on F, 1. The weights y; (1 < i < n) of the measure pu(-) are

defined by
1 ::/ widp(u)
En—l

and so p; > 0 with >0 u; = 1 and (g, . .., un) may be taken as a set of
probability weights.
We denote by © = (x1,...,2,) a real n-tuple with

Tmin = min(z) < max(x) =: Tpax.

The inner product of vectors z,y € R™ will be denoted by z - y. Let
f  [®mins Tmax] — R be convex. The inequality

f (ZMM«%) S/ flu-z)dp(u <Zﬂz flx;) (2.1)
i=1 Eny

has been established in [?] and will be referred to as the generalized Hadamard
inequality. Both inequalities in (??) arereversed if f is concave on [Zmin, Tmax]-

In [?], using (?7?), authors derived a generalization of the Levinson’s
inequality which has generalized-Hadamard form:

Theorem 3. Let f : [0,2a] — R be 3-convex. Then for z; € (0,a), we have

f (Z pi(2a — wi)) —f (Z Mz‘%)
=1 =1

Lemma 1. If f : [0,2a] — R is 3-convez, then f(a+t)— f(t) is convezr on
[0, a.

IN

L/ [Fu- (20— 2)) — F(u- )] dp(u)
E,_1

< Z“z (2a — ;) — f(z)]. (2.2)

By combining this result with (??), we derive a generalization of the
inequality (??) which has generalized-Hadamard form:

Theorem 4. Let f : [0,2a] — R be 3-convex. Then for z; € [0,a], we have

f (Z pi(a + $Z)> —f (Z Mi%‘)
i=1 i=1

IN

/ [F(u- (a+2)) — f(u- )] du(u)
E, 1

IN

Z i [f(a+ ) — f(2)]- (2.3)
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Example 1. Suppose f(t) = Int, so that f(t) is 3-conver on [0,1]. Let

€[0,1], (¢ =1,...,n), where n > 2. From (?7?) with a = % we obtain

H?;l 1‘51 < I(.Z‘l, vy Ty ,U) < Z?:l Wil
H?:l (%‘1‘1‘1‘)“1 - I(%—i—l‘l,...,%—l—xn;u) - Z?leui (%‘1‘1'1)

where
L1,y T 1) = M ey (5 0), mip g5 p) = f71 [fEn_l fog™(u- G)du(U)},

G = (). ooglan)), nd en(ty = { 770

3. N-EXPONENTIAL CONVEXITY

Motivated by the inequalities in (??) and (??7), we define functionals

B1(f), Bo(f), B3(f), a(f). Bs(f) and Do(f) by
3i(f) = /E [Flu- (20— 2)) — f(u- )] dp(u)

- f (Z Mz‘(2a—ﬂ?z‘)> +f (Zuzﬂfz) : (3.1)
=1 =1

Zuz (2a — x;) — f(;)]

- /E Pl Qa—a) — f(u-o)da(w),  (3.2)

3(f) = Z,Uz (2a — ;) — f(s)]
- f (Zm@a—ﬂ?z)) +f (Zm%), (3.3)
=1 =1
u(f) = /E - (at 2)) — flu-2)] du(u)

- f (Zui(a—l—xi)) + f (Z“le> , (3.4)
i=1 i=1

@5(]0) = Z,Uz (1‘1‘.1'1 f(xZ)]
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- /E [l (at 2)) — F(u-2)] dyu(ur) (3.5)
and

O6(f) = D milflatm)— f(a)]
i=1

- f (Z ui(a+xi)> + f (Z uixz) : (3.6)
=1 i=1

Theorem 5. Let f : [0,2a] — R (i = 1,2,3,4,5,6) be such that f €
C3([0,2a]), n > 1. Then there exists £ € [0, 2a] such that

@;(f) = 1"(&) - Pily), (3.7)
where () = g—f

Proof. Let us denote m = min f"” and M = max f"”’. We first consider the
following function ¢;(z) = Mg—fd — f(x). Then ¢"(z) = M —f"(z) >0, z €
[0,2a], i=1,2,3,4,5,6,s0 ¢; is a 3-convex function. Similarly, a function
da(z) = f(x) — mg—’fd is a 3-convex function. Now, we use inequalities from
Theorem 77 and Theorem 7?7 for 3-convex functions ¢1 and ¢5. So, we can
conclude that there exists £ € [0,2a], i = 1,2, 3,4, 5,6, that we are looking

for in (77). O
Corollary 1. Let f,h : [0,2a] — R, i = 1,2,3,4,5,6, such that f, h €
C3(]0,2a]). Then there exists & € [0, 2a] such that

() _ 1
@i(h) ~ W(E)

provided that the demominator of the left-hand side is non-zero.

i=1,2,3,4,5,6, (3.8)

Proof. We use the following standard technique: Let us define the linear
functional

L(x) = ®i(x), © = 1,2,3,4,5,6. Next, we define x(t) = f(¢t)L(h) —
h(t)L(f). According to Theorem ??, applied on ¥, there exists £ € [0, 2a

so that
3

L) = X"(©)i(9). p(2) = 57, i=1,2,3,4,5.6.
JFrom L(x) =0, it follows f”/(£)L(h) — h""(§)L(f) = 0 and (??) is proved.
U

Now, let us recall some definitions and facts about exponentially convex
functions (see [?]):
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Definition 1. A function ¢ : I — R is n-exponentially convex in the
Jensen sense on I if

n
Ti+ T
> &gy (T”) >0,
ij=1
hold for all choices &1, ...,&, € R and all choices x1,...,x, € 1.
A function ¢ : I — R is n-exponentially convex if it is n-exponentially
convez in the Jensen sense and continuous on I.

Remark 1. It is clear from the definition that 1-exponentially convex
functions in the Jensen semse are in fact nonnegative functions. Also,
n-exponentially convex function in the Jensen sense are k-exponentially
convex in the Jensen sense for every k € N, k < n.

By definition of positive semi-definite matrices and some basic linear
algebra we have the following proposition:

Proposition 1. If ¥ is an n-exponentially convexr in the Jensen sense,
N1k

then the matriz | Titw; is positive semi-definite matrixz for all k €
2 ij=1

N1k
N, k <n. Particularly, det [1&(“7%)} . >0 forallkeN, k<n.
7’7-]:
Definition 2. A function 1 : I — R is exponentially convex in the Jensen
sense on I if it is n-exponentially convex in the Jensen sense for alln € N.
A function i : I — R is exponentially convex if it is exponentially convex

i the Jensen sense and continuous.

Remark 2. It is known (and easy to show) that ¢ : I — R is a log-convex
in the Jensen sense if and only if

a*y(x) + 20y (Zﬂ) +F0(y) 2 0,

holds for every o, € R and x,y € I. It follows that a function is log-
conver in the Jensen sense if and only if it is 2-exponentially convez in the
Jensen sense.

The function is log-convex if and only if it is 2-exponentially convex.

Proposition 2. If f is a convex function on I and if 1 < y1, 2 <
Yo, T1 F Ta, Y1 F Yo, then the following inequality is valid
flx2) = flan) _ fy2) = f(y1)
T2 —T1 Y20
If the function f is concave, the inequality is reversed.
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Lemma 2. A function ¥ is log-convex on an interval I if and only if, for
all a,b,ce I, a <b < c, it holds

[P (0)]* < [W(a)] " [@(e))

We use an idea from [?] to give an elegant method of producing an n-
exponentially convex functions and exponentially convex functions applying
the above functionals on a given family with the same property (see [?]):

Theorem 6. Let Y = {fs:s € J}, where J an interval in R, be a family of
functions defined on an interval [0, 2a], i = 1,2,3,4,5,6, in R, such that the
function s — fs]zo, 21, 22, 23] is n-exponentially convez in the Jensen sense
on J for every four mutually different points zg, z1, 22,23 € [0,2a], i =
1,2,3,4,5,6. Let ®,(f), i =1,2,3,4,5,6, be linear functional defined as in
(??)-(??). Then s — ®;(fs) is an n-exponentially convex function in the
Jensen sense on J. If the function s — ®;(fs) is continuous on J, then it
18 n-exponentially convex on J.

Proof. For & e R, i = 1,...,nand s; € J, i = 1,...,n, we define the
function
n
9(2) = Y &&jfsirsy (2).
i.j=1 ’
Using the assumption that the function s — fs[2o, 21, 22, 23] is n-exponentially
convex in the Jensen sense, we have

n
glz0, 21, 22, 23] = Z &i&j fsits; [20, 21, 22, 23] 2 0,
i.j=1 ’
which in turn implies that g is a 3-convex function on J, so it is ®x(g) >
0, k=1,2,3,4,5,6, hence

n
D &gy (fL> > 0.
i,j=1 2
We conclude that the function s — ®(fs) is n-exponentially convex on J
in the Jensen sense.
If the function s — Pk (fs) is also continuous on J, then s — Py (fs) is
n-exponentially convex by definition. O

The following corollaries are an immediate consequences of the above
theorem:
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Corollary 2. Let T = {fs : s € J}, where J an interval in R, be a
family of functions defined on an interval [0, 2a] in R, such that the function
s — fslzo, 21, 22, 23] s exponentially convex in the Jensen sense on J for
every four mutually different points zg, z1, 22, 23 € [0, 2a]. Let ®;(f), i =
1,2,3,4,5,6, be linear functional defined as in (?7)-(?7?). Then s — D;(fs)
s an exponentially convex function in the Jensen sense on J. If the function
s — ®,(fs) is continuous on J, then it is exponentially convexr on J.

Corollary 3. Let T = {fs : s € J}, where J an interval in R, be a
family of functions defined on an interval [0,2a] in R, such that the func-
tion s — fs|zo, 21, 22, 23] is 2-exponentially convezr in the Jensen sense
on J for every four mutually different points zg, z1, 22,23 € [0,2a]. Let
O,(f), i =1,2,3,4,5,6, be linear functional defined as in (?7)-(?7). Then
the following statements hold:

(i) If the function s — ®;(fs) is continuous on J, then it is 2-exponenti-
ally convex function on J. If s — ®;(fs) is additionally strictly
positive, then it is also log-convex on J. Furthermore, the following
inequality holds true:

[@i(f)' ™" < (@l f)) 2 [@a(f))P 7, (3.9)

for every choice r,s,t € J, such that r < s < t.
(ii) If the function s — ®;(fs) is strictly positive and differentiable on
J, then for every s, q,u,v € J, such that s < u and q < v, we have

Ms,q(q)iv T) < MUKU((I)Z'? T)v (310)
where
1
<<I>z(fs)>5—q s #
3:(fq) ) q,
psq (@i T) = s, (3.11)
exp (dsqu) ) ST
for fs, fq€T.
Proof. (i) This is an immediate consequence of Theorem ?? and Re-

mark ??. Inequality (??) follows from Lemma ?7.

(ii) Since by (i) the function s — ®;(fs), i = 1,2, 3,4,5,6, is log-convex
on J, that is, the function s — log ®;(fs) is convex on J. So, we
get

log ®i(fs) —log ®i(fy) _ log ®i(fu) —log Pi(fu)
5—q U—v ’

(3.12)
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for s <wu,q <wv,s# q,u # v, and there form conclude that
,Us,q(q)z', T) < ,Uu,v(q)ia T)

Cases s = ¢ and u = v follows from (?77?) as limit cases.
U

Remark 3. Note that the results from above theorem and corollaries still
hold when two of the points zy, 21, 22, z3 € [0, 2a] coincide, say z1 = zg, for a
family of differentiable functions fs such that the function s — fq[z0, 21, 22, 23]
is n-exponentially conver in the Jensen sense (exponentially convex in the
Jensen sense, log-convex in the Jensen sense), and furthermore, they still
hold when all four points coincide for a family of three differentiable func-
tions with the same property. The proofs are obtained by (?7) and suitable
characterization of converity.

4. APPLICATIONS TO STOLARSKY TYPE MEANS

In this section, we present several families of functions which fulfil the
conditions of Theorem 7?7, Corollary 77, Corollary 7?7 and Remark ??7. This
enable us to construct a large families of functions which are exponentially
convex. For a discussion related to this problem see [?].

Example 2. Consider a family of functions
O ={l;:R—->R:seR}

defined by

w

ls(l‘):{ &, s#0,

s
x —
3 s=0.

We have ’“Z;lgs (z) = e > 0 which shows that ls is 3-conver on R for ev-
ery s € R and s — ’“Z;lgs
ing analogous arguing as in the proof of Theorem 77 we also have that
s — ls|z0, 21, 22, 23] s exponentially convex (and so exponentially convex in
the Jensen sense). Using Corollary 7?7 we conclude that s — ®;(ls),i =
1,2,3,4,5,6, are exponentially convexr in the Jensen sense. It is easy to
verify that this mapping is continuous (although mapping s — ls is not

continuous for s =0), so it is exponentially conver.

(z) is exponentially convex by definition. Us-
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For this family of functions, psq(®i, 1), ¢ = 1,2,3,4,5,6, from (77),
becomes

1
qh(ls) s—
(@i(lq)>' q’ 3#(],
trs,q(Pi, 1) = 1 exp q)i%;ls) - %> , s=q#0,
exp (Bs), s=q=0.

Now, using (77?) it is monotonous function in parameters s and q.

d"ig

a °s s—q
We observe here that (%) (Inz) = x so using Corollary ?7 it
dxz™
follows that:

Ms7q(q>z’, Ql) =1In ,u&q((I)i, Ql), 1= 1, 2, 3, 4, 5, 6
satisfy
0 < My o(®s, Q) < 2a, i =1,2,3,4,5,6.

So, My 4(®i, Q1) is monotonic mean.
Example 3. Consider a family of functions
Qy={fs:(0,00) > R:s R}

defined by

Lv S 07 172 )
fs(x):{ TE2) #1{0.1,2}

e s =4€{0,1,2}.

Here, @ZJE (z) = 2°73 = =32 > 0 which shows that f, is 3-convex for
z >0 and s — C(ZJ;S (z) is exponentially convex by definition. Arguing as
in Example 7?7 we get that the mappings s — ®;(fs),1 = 1,2,3,4,5,6 are
exponentially convex. Functions (?77) is now equal to:

1
Di(fs) ) 5=
(‘Ih'(fq)) ’ s # 4,
2<I>1 s
M&q(q)i? Q2) = exXp ( @i((];(c)sj)c ) + Zi:o k£s> y §=4( ¢ {07 17 2}7

@ (fofs) 2 1 o
oxXp < é'((}s) + le;g k—s) , S=4qE€ {07 172}

a3t
da3
d3 fq
da3
positive, then Corollary 77 yield that there exist some & € [0,2a],i =

We observe that

() =z, soif ®; (i = 1,2,3,4,5,6) are
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1,2,3,4,5,6 such that

_ (I)z(fs) .
&1 = , 1=1,2,3,4,5,6.
®;(fy)
Since the function € — £°79 is invertible for s # q, we then have
0< (q)i(fS)) T <24, i=1,2,3,4,5,6, (4.1)
®;(fy)

which shows that pus q(®;,€2),1=1,2,3,4,5,6, is mean.
Example 4. Consider a family of functions

Q3 = {hs:(0,00) > R:s€(0,00)}

defined by
s~
he(z) = (;1115)3’ s#1
R s=1.
Since Cgr}? () = s7% is the Laplace transform of a non-negative function

(see [?]) it is exponentially convex. Obviously hs are 3-convex functions for
every s > 0. For this family of functions, usq.(®i,Q23),71 = 1,2,3,4,5,6,
from (??7) becomes

1

Di(hs) \ -
(@i(hq)> "1 ) S # q,
poa(®005) = § exp (<20 — 8) =g 1,
D, (id-h
exXp | — 4<I£:(h11))> s Ss=q= 1.

This is monotone function in parameters s and q by (7?). Using Corollary
77 it follows that

MS,q((I)Z'v Q?)) = —L(S, q) ln:us,q(q)iv Q?))v 1= 17 27 37 47 57 6

satisfy
0 < Ms7q(q>z’, Qg) < 2a.

So My 4(®;,23) is monotonic mean. L(s,q) is logarithmic mean defined by

s—q
L(s,q) = {bgs—logq’ $#4
s, s=gq.
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Example 5. Consider a family of functions
Qg ={ks:(0,00) >R :s5€(0,00)}

defined by

e~ tVs

(—Vs)*
Since ‘ff; (z) = e~*V5 is the Laplace transform of a non-negative function
(see [?]) it is exponentially convex. Obviously ks are 3-convex functions for

every s > 0. For this family of functions, psq(®i, Q4),7 = 1,2,3,4,5,6,
from (??7) becomes

ks(z) =

()" et

This is monotone function in parameters s and q by (7?). Using Corollary
77 it follows that

Ms7q(q>z’, Q4) = —(\/g + \/a) ln,u&q((I)Z', 94), 7= 1, 2, 3, 4, 5, 6

,Us,q(q)ia Q4) =

satisfy
0 S Ms7q(q>z’, Q4) S 2a.

So M 4(®i, Q4) is monotonic mean.
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n-EKCITOHEHIINJAJIHA KOHBEKCHOCT 3A HEPABEHCTBA
O BNOOT HA JIEBVMHCOH U ITIOBP3AHU CO HUB
CPEIVHN O BNAOOT HA CTOJIAPCRKNA

Awna Byrenugk

Peszuwme

ITounyBajku ox pe3yiaraToT ganeH BO [8], Kage aBTOPOT ro masa 00GOI-
MITEHOTO HEAPBEHCTBO Ha A naMap, naBaMe TeHepan3alija Ha HEPABEHCTBOTO
ua JleBuncon (Bumu [9]) u moBp3aHM CO HEro HeapaBeHCTBa. VcTo Taka
ja ncouTyBamMe eKCHOHeHHI/IjaJIHaTa KOHBEKCHOCT Ha PAa3JIMKUTE Ol JieBaTa U
JecHaTa CTpaHa HA OBUE HEpPaBEeHCTBa. Kopucrtejku ru Tue pas3iauku, nobu-
BaMe€ HOBU eHCHOHeHHI/IjaTIHO KOHBEKCHU q)yHI{HI/II/I Tue ce NCKOPUCTEHUN BO

Opoy4dYyBameTO Ha CPpeAUVHUN O TUIOT HA CTOJ’IapCHI/I.
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