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EQUIVALENCE OF INTRINSIC SHAPE, BASED ON V
-CONTINUOUS FUNCTIONS, AND SHAPE

NIKITA SHEKUTKOVSKI, ZORAN MISAJLESKI, GJORGJI MARKOSKI,
AND MARTIN SHOPTRAJANOV

Abstract. In this paper is given a direct proof that the intrinsic shape
category InSh constructed with continuous functions over coverings, is
equivalent to original shape category Sh of Borsuk obtained by embed-
ding compact metric spaces in Hilbert cube Q). The functor Sh — InSh
is established taking a fundamental sequence (fn) from X to Y in
the sense of Borsuk, and by associating to the continuous function

frn : @ — @Q mapping some neighborhood of X into a union of the mem-
bers of a covering V of Y, a V - continuous function f,, : X — Y, and
forming the proximate sequence (f) in the sense of N. Shekutkovski,
Top. Proc. 39 (2012).

1. INTRODUCTION

For compact metric spaces, shape theory was introduced by K. Borsuk.
His oriiginal approach was by embedding a compact metric space in Hilbert
cube. Further on we will denote his shape category of compact metric
spaces by Sh.

From the early beginning of the theory arised the question of intrinsic
definition of shape i.e., a definition without external spaces like Hilbert
cube. A shape category HN is obtained by intrinsic definition by Sanjurjo
in [6], and it is shown that HN and Sh are equivalent constructing a functor
HN — Sh. A shape category, also by intrinsic approach is obtained by
Shekutkovski in [7], which we will further on denote by InSh. Using the
result [3] and [4] about equivalence of categories InSh and HN, and the
isomorphic functor Sh — H N the equivalence categories Sh and InSh is

indirectly proven in [5], using.
39
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In this paper we will give a direct proof of equivalence of categories Sh
and InSh constructing a functor Sh — InSh, i.e. compared with the
functor from [6], it is in the opposite direction. The construction requires
some new ideas, among them the introduced notions of depth and regular
covering.

Let X and Y be compact metric spaces. By a covering we understand a
covering consisting of open sets. We repeat the intrinsic approach to shape
fron [7] (also [9]):

Definition 1. Suppose V is a finite covering of Y. A function f : X — Y
is V-continuous at point x € X, if there exists a neighborhood U, of z,
and V €V, such that f (U,) C V.

A function f : X — Y is V-continuous, if it is V-continuous at every
point z € X.

In this case, the family of all neighborhoods U,, form a covering of X.
By this, f : X — Y is V-continuous if there exists a finite covering U of
X, such that for any U € U, there exists V' € V such that f(U) C V. We
denote shortly: there exists V, such that f(U) < V.

If f: X - Y is V-continuous, then f: X — Y is W-continuous for any
W, such that ¥V < W.

If V is a finite covering of Y, and V € V), than star of V is the open
set st (V) ={W|W €V, WNV # a}. We form a new covering st (V) =
{st(V)|V € V}.

Definition 2. The functions f,¢g: X — Y are V-homotopic, if there
exists a function F': X x I — Y such that:

1) F is st (V)-continuous,

2) F' is V-continuous at all points of X x I, and

3) F(x,0) = f (), F(z,1) = g (x).

The relation of V-homotopy is denoted by f f; g. This is an equivalence
relation.

Ussualy, the condition 2) of the previous statement is formulated as:

2) there exists an neighbourhood N of 9I = {0,1} such that F|xxy is
V-continuous.
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Definition 3. A cofinal sequence of finite coverings V; >~ Vo >
...Vn = ... 1is a sequence of finite coverings of spaces, such that for any
covering V), there exists n, such that V,, < V.

In a compact metric space there exists such a sequence. This fact allows
working with proximate sequences instead with proximate nets.

Definition 4. The sequence (f,) of functions f, : X — Y is a proxi-
mate sequence from X to Y, if there exists a cofinal sequence of finite
coverings of Y, V; = Vo = ...V, > ..., and for all indexes f,, and f, 41 are
V,,-homotopic.

In this case we say that (f,) is a proximate sequence over (V).

If (f,) and (f’,,) are proximate sequences from X to Y, than there exists
a cofinal sequence of finite coverings Vi > Vo = ...V, = ... such that (f,)
and (f’,)) are proximate sequences over (V).

Definition 5. Two proximate sequences (f,) and (f’,,) are homotopic
if there exists a cofinal sequence of finite coverings Vi >= Vo > ...V, = ...
of Y, such that (f,) and (f’,,) are V,-homotopic for all integers n.

We say that (f,,) and (f’,,) are homotopic over (V,,).

Let (f,) : X — Y be a proximate sequence over (V,) and (g;): Y — Z
be a proximate sequence over (W). For a covering Wy of Z, there exists
a covering V,, of Y such that g (V,,) < Wi. Then, the composition is the
proximate sequence (hg) = (grfn,) : X — Z. In [7] is proven that compact
metric spaces and homotopy classes of proximate sequences [( fy,)] form the
shape category InSh i.e. isomorphic spaces in this category has the same
shape.

We repeat the original definition of Bosuk of shape categry Sh. Let X,
Y and Z, be compact metric spaces, embedded in the Hilbert space Q.

A sequence of maps fr : Q@ — @, k = 1,2,3, ..., is fundamental se-
quence from X to Y, if for every neighborhood V of Y, there exsist a
neighborhood U of X and there exists kg € N, such that fi|; ~ fit1|y in
Vforallk > ko. A fundamental sequence is denoted with (fz : X —Y)g .

Proposition 1. If (fy: X —Y)g, , is a fundamental sequence, then
there exists a decreasing sequence of neighborhoods of Y, Vi D V5 D ... such
that NV,, =Y, and there exists a decreasing sequence of neighborhoods of
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X, Uy 2 Us D ... such that NU,, = X and such that for all integers,
fily, = ferily, in V.

Two fundamental sequences (fy, : X —Y)g o and (' : X = Y)q 5 are
homotopic, if for every neighborhood V of Y in @), there exist neighbor-
hood U of X in @ and kg € N, such that fj is homotopic to f’; in V, for
all k > k.

The relation of homotopy (fx : X —Y) ~ (f', : X — Y) of fundamental
sequences is an equivalence relation. We use symbol | | to denote homotopy
classes.

The composition of fundamental sequences (fy : X — Y)and (gr : Y — Z),
is the fundamental sequence (gifxr : X — Z). The composition of classes

[(fx : X = V)] and [(gy, : Y — Z)]
is the class [(grfr : X — Z2)].

2. EQUIVALENCE OF CATEGORIES

Let X beasetand V = {V;|i = 1,2,...,n} be a finite set of subsets of X.
If V € V, we define depth of V in V), to be the biggest number k& € N such
that there exist sequence of elements of V such that V. C Vo, C V3 C ... C V.
(if V' is not a proper subset of any element in V then depth of V' is 1). The
depth of V' we denote with depth (V).

A covering V of Y in X is regular if it satisfies the following conditions:

DIV eVYthanVNY #0O.

QU U,VeVandUNV #AQ, thanUNV € V.

About the condition 1) see definition of proper covering, ([10] , Definition
8.1., p. 249), while the condition 2) together with 1) shows that V is a
regular family relative to Y in the sense of [10] (Definition 3.5. p. 262).

For a covering V we introduce the notation [V|=U{V |V € V}

We define a function ry : |V| — Y in the following way:

Suppose n is the biggest depth of the elements of V. A function ry :
|V| — Y will be defined by induction.

For points y belonging to V' € V, such that depth (V) = n, we choose a
fixed point [V] € V NY and put ry (y) = [V].

Suppose the function is defined for all y belonging to some V' € V, such
that depth (V') > n — k for some natural number k.
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If y belongs to some V' € V with depth (V) = n — k, and ry (y) is not
defined yet, i.e. y € VN\U{V |V €V, depth(V)>n—k}, we choose a
fixed point [V], [V] € (VNU{V |V €V, depth (V) >n—k})NY and put
v (y) = [V].

The function 7y is well defined and is V -continuous.

In fact, ry (y) = [V] if and only if V is the smallest set in V which
contains y i.e V= [ U.

Uevy
yeU

Now, if V is a regular covering of Y and f : X — |V| is a continuous
function, we define function f : X — Y with f (z) = ryf (x) for all z € X.

The function f is well defined and since f is continuous, the function f
is V-continuous.

We will say that the function is f is obtained from a continuous function
f and covering V.

Theorem 1. If Y is compact metric space embedded in Hilbert cube
@, V and W are regular coverings of Y in @) such that W < V. then
ry : [W| — Y (the restriction of ry to |[W|) and ry, are V -homotopic.

Proof. We consider the function R : |[W| x I — Y defined by

R(zf) = {w (#), (z,1) € W x [0,1)
rw(z), (z,1) € [W|x {1}
If (z,t) € |W| x [0,1), then R(z,t) = ry(z), and R is V-continuous in
(z,1).

If (z,1) € [W| x {1}, then R (z,1) = ry (z) = [W], where W is the
smallest set in W that contains x.

From W < V, it follows that W C V € V), and we can choose V to be
the smallest set in )V, with the property W C V. Then ry, (V) € VNY and

RW x1)=ry(W)eWnY cvVny. (%)

We take the neighborhood W x [0, 1] of (z,1) and (w,t) € W x [0, 1).
There is a smallest set V,, in V such that w € V,,. We obtain

R(w,t) =ry(w) =[Vy] € ViyNY, forallt €[0,1). ()
From the construction V,, C V for all w € W. Finally from (*) and (**),

R(W x[0,1)=R(W x [0,1))UR(W x 1) CV NY.
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It follows that R is V-continuous at (x,1) € W| x {1}, and R (z,0) =
ry (z), R(x,1) =rw(x).

By Proposition 1, if ( fn) is fundamental sequence from X to Y, there
exists V1 = Vo > ..., a cofinal sequence of finite regular coverings of Y in
@, and there exists a cofinal sequence of finite regular coverings of X in @),
Uy = Uy = ... such that f,(|Uy,|) < |Vn|, and continuous functions f,, and
fni1, are homotopic in |V,|. O

We define a function f,, : X — Y, n € Nby f,(z) = ry, fo(x) for z € X.

Theorem 2. 1) If ( fn) is fundamental sequence then (f,) is proximate
sequence.

2) If two fundamental sequences ( fn) and ( f{l) are homotopic, then the
obtained from them proximate sequences (fy,) and (f’,,) are homotopic.

Proof. 1) Suppose 7nn 11, is the homotopy connecting f, and f, 11- We
define f p+1: X xI —Y by

fn,n—l—l (1'7 t) - T\M?n,n—l—l (.Z‘, t) .

Then f, 41 is V), -continuous and

fn,n—f—l (xa 0) = TVn7n (.1‘) s fn,n—f—l (.1‘, 1) = Tvn7n+1 (.1‘) . (*)

By the previous theorem 7y, ||V the restriction of ry to [W|) and

n+1| (
V.., are Vy-homotopic, by a homotopy R : [Vyq1| x I — Y ie.

R(z,0)=ry, (z), R(z,1) =1y, (v).
Then the V,-homotopy Rf,, 11 X x I —Y satisfies

B i (,0) = 19, Fas (@) s BFaa(@,1) = 1,0, Fas (@) = fusa (0)
()

Since V,-homotopy is an equivalence relation by (*) and (**) it follows
that ry, f,, (z) = fu (z) and 7y, fr11 (@) = fas1 (2) are V,-homotopic.

2) Suppose Fy,, is the homotopy connecting f,, and 7;1 We define F, :
X xI—Y by E,(x,t) =1y, F, (2,1).

Then F,, is V,, -continuous and st(V,,) continuous at all points of X x J1,
and F, (z,0) = f, (), Fy (z,1) = fl, (x). O

We will describe a functor ® : Sh — InSh.

1) On compact metric spaces is defined by ® (X) = X, for every compact
metric space X.
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2) and is defined with @ ([(f»)]) = [(fn)] for every class of fundamental
sequences [( fn)] from X to Y.

Theorem 3. ® : Sh — InSh is a functor which is isomorphism of
categories.

Proof. First we will prove that for two fundamental sequences (f,) :
X — Y and (g,) : Y — X holds

® ([(Gn) (£2)]) = @ (@) @ ([(f)]) -

As in the beginning of this section there exists a cofinal sequence of finite
regular coverings Wy = Wh = ... of Z in @), there exists a cofinal sequence
of finite regular coverings V1 = Vs > ... of Y in ), and there exists a cofinal
sequence of finite regular coverings Uy = Us = ... of X in Q, such that
Fn([Uy]) € V| and f,(|Va]) € [Whl, and such that continuous functions
fns fni1, are homotopic in |V,| and g,,, g, 11, are homotopic in |[W,| for all
n.

Suppose a proximate sequence (g,,) from Y to Z is obtained from funda-
mental sequence (gy,), taking a cofinal sequence of finite regular coverings
(Wy) of Z in Q.

Suppose (fy, ) from X to Y is a proximate subsequence of the proximate
sequence ( f,,) obtained from fundamental sequence ( fn) The subsequence
of natural numbers is chosen such that f,, (V,,) < Wk.

The fundamental sequences ( fn) and ( fnk) are in the same class. By
theorem from [7], (f,, ) and (f,) are in the same class and if we put gi f,,, =
Ek.

In fact we have to prove

[rw ] = [(rw,Gk) (v for)]

or that ryy, iy and (7w, gk) (rv,, fn,) are homotopic.
Take a point x in X. By definition

rw, () = W] (*)

where W is the smallest set W in W;, such that g fnk (x) = hy
Since gi (Vn,) < Wy there exist V/ in V such that g (V') C W
On the other hand, by definition ry, fn, (z) = [V] where V is the small-
est set V in V,, such that f,, (z) € V.

(x) e W.
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Since V is the smallest, then V' C V’ and it follows gi (V) C W. Then

(rwi k) (Tvnkfnk> (@) =rw, (Gr[V]) €W ()

Then, by (**) and (*) rw, hx = hx and (1, 3k) (Tvnkfnk> = gk fn, are
Wi-near, and since hy is Wy-continuous, by Lemma 1.1 from [14] we have
that hy and gy fy, are Wjy- homotopic.

Now, we will prove that

® ([(1x)]) = Lo

One represent of the identical morphism in Sh is the class of fundamental
sequences from X to X is (Tn), where 1,, : Q — Q, n € N are copies of
identical map defined by 1, (z) =z, x € X.

Then @ ([(1,)]) = [(1,)], where 1, : X — X, n € N are copies of
identical map.

[(1,,)] is the identical morphism in InSh since for proximate sequences
(fn) : X = Y and (gn) : Y — X holds (f,) (1,) = (fn) and (g,) (1) =
(gn)-

It follows @ ([(1x)]) = la(x)-

To prove that ® : Sh — InSh is a functor which is an isomorphism of
categories we use the following reformulation of theorem 1 of [5] : For every
proximate sequence (g,) : X — Y there exists a fundamental sequence ( fn)
from X to Y and a cofinal sequence of coverings V; >= Vo > ..., such that for
such that fn| x and g, are V,— close for all integers. Also, all fundamental
sequences obtained from (f,,) in this way are homotopic.

One proximate sequence (f,,) obtained from fundamental sequence ( fn),
it consists of V,— close functions f, and f,. Therefore (f,) and (g,) are
homotopic and it follows that the functor is surjective.

To prove that the functor is injective, suppose the proximate sequences
(fn) and (f’,,) from X to Y are obtained from fundamental sequences ( fn)
and ( f{l) from X to Y, respectively. Suppose (f,) and (f’,) are homotopic,
ie. f, and [, are connected by homotopy F,, for all positive integers. By
Ho'‘s theorem, in fact from its form Lemma 1 from [6], it follows that there
exists a continuous homotopy £, connecting f, and f’, for all natural
numbers n. [
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EKBVBAJIEHIINJA HA BHATPEIITEH OBJIVK, BASUUPAH HA
V— HEIIPEKNHATU ®YHKIIV, 1 OBJIUK

Hukura IllekyrrkoBcku, 3opan Mucajiecku,

f‘opfu Mapxrocku, Maptur lonTpajanos

Peszuwme

Bo 0BOj Tpyn maneH e MMPEKTeH NOKa3 NeKa KaTeropujaTa Ha BHATDEIICH
ob6auk InSh KoHCTpynpaHa CO HEMPEKUHATU (YHKIUU HAJ MOKPUBAUM € K-
BUBAJICHTHA CO OPUTMHAJHATA KaTeropuja Ha obauk Sh ma Dopcyk mobuena
CO BJIOKYBaH-€ Ha KOMIIAKTHUA METPUYKA IPOCTOPU BO XMIGepTOBUOT KyO (.
dyurropor Sh — InSh e nobuen zemajéu GpyHIaMEHTATHA HU3A (fn) on X
Bo Y BO cMucia Ha BOpPCYK U Ha HENpPERUHATATA (YHKIU)ja fn : QQ — @ xoja
IpecIUKyBa HEKOja OKoJMHA Ha X BO yHHUja Ha UICHOBM Ha HOKpuBad ) Ha
Y, u ce mpunpysxysa V - Henpekunnarta gpynknuja f, : X — Y, u popmupajéu
npokcumaTtusHaTa Husa (f,) Bo cmucaa ma N. Shekutkovski, Top. Proc. 39
(2012).
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