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INEQUALITIES FOR THE DUAL RELATIVE OPERATOR
ENTROPY

SILVESTRU SEVER DRAGOMIR

Abstract. In this paper, we introduce the concept of dual relative
entropy defined by

D (A|B) := AY/? (A‘l/QBA‘l/Q In (A—WBA—W)) A2

for positive invertible operators A and B and establish various upper
and lower bounds for the error operator in approximating the D (A|B)
by 1 1

mlnm MIn M
M—m(MA_B)+ M—-m
under the natural assumption mA < B < M A for some m, M with
0 < m < M. Applications for the operator entropy are also given. Some

trace inequalities are derived as well.

(B —mA)

Kamei and Fujii [8], [9] defined the relative operator entropy S (A|B),
for positive invertible operators A and B, by

S(A|B) := A3 (1nA—%BA—%) A3, (1)

which is a relative version of the operator entropy considered by Nakamura-
Umegaki [16].
In general, we can define for positive operators A, B

S(A|B) :==s— lim S(A+¢l|B)
e—0+

if it exists, here [ is the identity operator.
For the entropy function 7n(t) = —tlnt, the operator entropy has the
following expression:

n(A)=—-AlnA=S(A|lI) >0

for positive contraction A. This shows that the relative operator entropy
(1) is a relative version of the operator entropy.
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6 S. S. DRAGOMIR

Following [10, p. 149-p. 155], we recall some important properties of
relative operator entropy for A and B positive invertible operators:
(i) We have the equalities

S(A|B) = —AY? (lnAl/zB—1A1/2> A2 = B2y <B—1/2AB—1/2) B2,
(2)
(ii) We have the inequalities
S(A|B) < A(In||B|| —InA) and S (A|B) < B — A;
(iii) For any C, D positive invertible operators we have that
S(A+B|C+ D) > S (A|C)+ S(B|D);

(iv) If B < C then

S(A|B) < 5 (A[C);
(v) If B, | B then

S(A[Bn) L S(A|B);
(vi) For a > 0 we have

S (aAlaB) = aS (A|B);
(vii) For every operator T" we have
T*S(A|B)T < S(T*AT|T*BT).

The relative operator entropy is jointly concave, namely, for any positive
invertible operators A, B, C, D we have

S(tA+ (1 —t)BtC + (1 —t) D) > tS (A|C) + (1 — t) S (B|D)

for any t € [0,1].

For other results on the relative operator entropy see [6], [12], [13], [15]
and [17].

In the recent paper [5] we have obtained amongst other the following
result in approximating the relative operator entropy S (A|B) by some sim-
pler quantity:

Theorem 1. Let A, B be two positive invertible operators such that the
condition

mA < B<MA, (3)
for some m, M with 0 < m < M, is valid, then we have

1 -1

e (B—mA)A™" (MA- B) (4)
1 In M

< S(AB) - —" (MA—B) - —"_ (B —mA)
-m -m

1 -1
<55 (B-mA)AT (MA-B).
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In particular, we have the following result for the operator entropy:

Corollary 1. Assume that pI < C < PI for some constants p, P with
0 < p < P. Then we have for operator entropy n (C) = —C'InC that

55 (IP=C)C (C ~ Ip) (5)
<0(C)+ o (C=pD)+ L (PI-0)
< ;(IP—C’)Cl(C’—Ip).

Taking into account the above, we can introduce the concept of dual
relative entropy defined by

D (A|B) := AL/2 (A—1/2BA—1/2 In (A—I/QBA—1/2>) A1/2

for positive invertible operators A and B.
Observe that, if we replace in (2) B with A, then we get

S (B]A) = AV (A—l/QBA—l/Q) AL/2
— 412 (_A71/23A71/2 n (A’l/QBA*1/2>) A2,
therefore we have
AL? (A—WBA—W In (A‘l/QBA_W)) A2 = _S(B|A)

for positive invertible operators A and B, which shows that the dual relative
entropy has the following representation in terms of the relative entropy:

D (A|B) = =5 (B|A) (6)

for positive invertible operators A and B. It is also well know that, in
general S (A|B) is not equal to S (B|A).

Motivated by the above results, we establish in this paper some error
bounds in approximation of the dual relative entropy D (A|B) with the
simpler quantity

mlnm MIn M
MA—-B
M—m( )+M—m

(B —mA) (7)

under the natural assumptions (3) for the operators A and B, namely mA <
B < MA, for some m, M with 0 < m < M. For this purpose, we use some
scalar inequalities for convex functions from [2], [3] and [4]. Applications
for the operator entropy n(C) = —C'InC = S(C|I) under the natural
assumption pI < C < PI for some constants p, P with 0 < p < P, are also
provided.
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1. ABSOLUTE VALUE UPPER AND LOWER BOUNDS

With the assumption that the operators A and B satisfy the condition
mA < B < MA, for some m, M with 0 < m < M, define the error operator

mlnm MIn M
MA—- B
M—m( )+M—m

which represent the error in approximating the dual relative operator en-
tropy by the operator from (7)

The next result provided some upper and lower bounds for the error
operator Ep, ar (A, B) .

B (A, B) = (B—mA)~D(A|B), (8)

Theorem 2. Let A, B be two positive invertible operators such that the
condition (3) is valid, then we have

9 <;A TV I PRV (B _m ; MA) A1/

A1/2> K (m, M)

M —m
9)
SEm,M(AaB)
1 1 1/2 | g—1/2 m+ M —1/2| 41/2
< il - _
_2<2A+M_mA A B 5 A]A A K (m, M),
where
K (m, M) = [mlnm—;MlnM B <m—|2—M>ln (m—IQ—M)]

—In <[ G (™, M) >

A (m, M)A

and G (a,b) := Vab is the geometric mean while A (a,b) = GTH’ is the
arithmetic mean of positive numbers a, b.

Proof. Recall the following result obtained by the author in 2006 [2] that
provides a refinement and a reverse for the weighted Jensen’s discrete in-
equality:

1o 1o
n  min pit|— P(x;))—P | — T 10
I ML PO (10)

1 & 1 &
Sszqu)(xj)_q) szjxj

n

1 1 o
<n_max }{pj} nsz(l‘j)—‘l’ szj :
=1 j=1

Je{1,2,...;.n -
{ =
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where ® : ¢ — R is a convex function defined on convex subset C of
the linear space X, {z;} _n} are vectors in " and {pj}je{1 5,..n} AT€

je{1,2,..
nonnegative numbers with P, = Z?Zl pj > 0. For n = 2, we deduce from
(10) that
o P
27“[ ()00 _q)(a:;y)] )

<vd(z)+(1-v)®(y) —® e+ (1—v)y

< on [P E00) g (240)]

for any =, y € R and v € [0,1], where r = min{r,1 —v} and R =
max {v,1 —v}.
Now, if we take in (11) the convex function ® () =tInt, ¢t > 0, then we

get
| |
o[ by (240) , (40)] 0
2 2 2

<velnz+ (1 —-v)ylhy—[ve+ (1 —v)y|lnjve+ (1 —v)y|

<9R [xln:z:—l—ylny B <x+y>1n <x+y>}
2 2 2

for any z, y > 0 and v € [0,1].
This is an inequality of interest in itself as well.
Now, if we take in (12) ¢ = m, y = M and v = #=% € [0,1] with
u € [m, M] then we get
. M-y u—m
Qmm{M—m’M—m} (13)
" [mlnm—i—MlnM B <m—|—M> In (m—l—M)]

2 2 2
gM_umlnm—i— u_linM—ulnu
—m —m
<2maX{M_u u—m}
- M—-m'"M—-m
X[mlnm—lenM_<m+M>ln(m—|—M>]'
2 2 2
Since
min{M_u u—m}zl_u m;M‘
M—-—m'"M-m 2 M—-—m
and
M-u u—m)| 1 u—#
maX{M—m’M—m}_2+ M—m |’
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then from (13) we have
m+ M

DK(m,M) (14)
M —u uU—m

—-m M —m

§2<;+M1_m'u—m—;M‘>K(m,M)

MInM —ulnu

for any u € [m, M].
Using the continuous functional calculus we have from (14) that
1 1 m + M
21— K (m, M 1
(57~ 370 ) (1) (15)

MI-X X —mlI
< - -
<mlnm _m+M1nM —

<2 (;H Ml_m 'X— mJ;MID K (m, M)
for any selfadjoint operator X with the property that mI < X < M.
Multiplying both sides of (3) by A~/ we get
ml < A7V2BA7Y2 < M1
and by replacing X by A~'/2BA~'/2 in (15) we obtain

.1 12412 MM
2(21 — ‘A BA 1| ) K (m, ) (16)

X —

I

—XInX

—m
MI— A"Y2BA1/2 A"Y2BAYZ g
<mlnm + MInM m
M —m M —m

_ A_1/2BA_1/2 IH(A_1/2BA_1/2)

<of=r+-—— S ,
_2<2I—|— —m‘A BA I') K (m,M)

Multiplying both sides of (16) by AY/? we get the desired result (9). O

Remark 1. One can observe that the inequalities (10) are a simple conse-
quence of Theorem 1, p.717 from [14]. Similar scalar inequalities as those
in the proof of the theorem were obtained in [1] and [11].

Remark 2. If A and B commute, then
A2 <B _m* MA) A2
2

S(B|A) =B(InA—InB)

m+ M
2

AL/? A

i

A2 = ‘B—
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and by (9) we have

(og)z@ Ml_mB—m—;MADK(m,M) (17)

mlnm MIn M
MA—-B
M ( )+M—m

( - m+M

The above result can be applied for the operator entropy

n(C)=—ClnC = S (C|I)

IN

(B—mA)—B(InB—-1nA)

m
A+

| /\

(b | 25 s,

as follows:

Corollary 2. Assume that pI < C < PI for some p, P with 0 < p < P.
Then we have that

(og)2<21—Plp C—Z’ZPJDK( P) (18)
< PR (PT-C)+ (€= pD) 0 (O)

1 1 p+ P
<2|=I C— 1)K (p,P).
- (2‘%P—p‘ 2 D )

2. AN UPPER BOUND IN TERMS OF LOGARITHM

We have the following inequality of interest for convex functions, see for
instance [3]:

Lemma 1. Let f: I C R — R be a convex function on the interval I,
a,b € I, the interior of I and v € [0,1]. Then

0<(@—=w)fla)+vf)—-f((A1-v)atrvd)
<v(l-v)(b-a)[fL(b)-fi()]. (19)

In particular, we have

ngan;f<> f<a+b>§i@_amﬂ4m—f;wﬂ- (20)

The constant i is best possible in both inequalities from (20).

We can state the following result:
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Theorem 3. Let A, B be two positive invertible operators such that the
condition (3) is valid, then we have

InM —1Inm
M—m

§%(M—m) (In M — Inm) A.

(0<)Epnm (A B) < (B—mA)A™' (MA - B) (21)

Proof. If we consider the convex function f (t) = tInt, ¢t > 0, then f’ (¢) =
Int+ 1 and by (19) we have

0<(l—-v)alna+vblnb— ((1-v)a+vb)In((1 —v)a+ vb) (22)
<v(l—-v)(b—a)(lnb—Ina)
for any a,b > 0 and and v € [0,1].

On applying the inequality (22) on the interval [m, M| and for v =
v ¢ [0,1] with = € [m, M] then we get

M—-m
M — _
0<mlnm _x +M1nM%—wlnw (23)
(x —m) (M — x) 1
< - < (M- _ ‘
< Y (In M lnm)_4(M m) (In M —Inm)
Using the continuous functional calculus we have from (23) that
MI-X X —ml
0<mlnm——— + MInM>—"" — XInX (24)
M —m -m
X—ml)(M—-XI 1
§(lnM—lnm)( ml)( )

< (M — —
U —m _4(M m)(InM —1Inm) I

for any selfadjoint operator X with the property that mI < X < M.
By replacing X by A~1/2BA~Y/2 in (15) we get

MI— A Y2BA1/2 A"YV2ZBAYZ g
<
0<mlnm U + MInM T (25)
- A—1/2BA—1/2 1H(A_1/2BA_1/2)
(A7Y2BAY2 —mI) (MI — A7Y/2BAY/2)
M —m

< (InM —1Inm)

1
< Z(M—m) (InM —1Inm)I.

Multiplying both sides of (25) by A'/2 we get the desired result (21). O

Corollary 3. Assume that pI < C < PI for some p, P with 0 < p < P.
Then we have that

plnp PlnP
0< PI-C
0 5L (PI=C)+ 5

(C=pl)+n(C) (26)
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< InP—1Inp

1
— — < — — — .
P (C—pl)(PI-C) < 1 (P—p)(InP —Inp)
3. FURTHER LOWER AND UPPER BOUNDS

We have the following result, see for instance [4]:

Lemma 2. Let f : I C R — R be a twice differentiable function on the
interval I, the interior of 1. If there exists the constants d, D such that

d< f"(t)<D foranytel, (27)
then

S (=) d(b—a) < (1—v) () +vf ()~ (1L~ v)a+wb) (29)

v(1—v)D(b—a)?

for any a,bel and v e |0,1].
In particular, we have

1 2, fla)+f(b) a+b 1 2
Z(p— <\ TS < Z(ph—
for any a, b € I.

The constant % is best possible in both inequalities in (29).

If D > 0, the second inequality in (28) is better than the corresponding
inequality obtained by Furuichi and Minculete in [7] by applying Lagrange’s
theorem two times. They had instead of % the constant 1. Our method
also allowed to obtain, for d > 0, a lower bound that can not be established
by Lagrange’s theorem method employed in [7].

We can state the following result:

Theorem 4. Let A, B be two positive invertible operators such that the
condition (3) is valid, then we have

(OQE%{BfmAWFWMAfB)SEMWMJﬂ (30)
< L (Boma)A ' (MA-B).

2m
Proof. If we consider the convex function f (t) =tInt, ¢t > 0, then f” (t) =
2 and by (19) we have

1 1
5”“—”h;;@m§“—af (31)
<(1-v)alna+vblnb— ((1-v)a+vb)In((1—v)a+ vd)
1 1
55”“*”ﬁﬁHgﬁ§@*“f
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for any a, b > 0 and v € [0,1].
On applying the inequality (31) on the interval [m, M| and for v =
v < [0,1] with € [m, M] then we get

M—m
1 M-z T—m
— (z — M—z)<——ml MInM —x1 2
2M(x m) ( x)_M_mmnm+M_m n xlnz (32)
1
g%(x—m)(M—x).

Using the continuous functional calculus we have from (32) that

1 MI—X X —ml
(X —ml) (M- XD)< 22" 2T M M - XInX
ong X —mD( VS Qg minm e+ M n()

33

g%(X—mI)(M—XI)

for any selfadjoint operator X with the property that ml < X < M.
Now, on using a similar argument to the one in the proof of Theorem 3
we deduce the desired result (30). O

Finally, we have

Corollary 4. Assume that pI < C < PI for some p, P with 0 < p < P.
Then we have the inequalities

plnp PlnP
PI —
P—p( C)+P—p

(02) 55 (€ =) (PI = C) < (€ =) +1(C)

(34)

3211)(0—;)1)(131—0).

4. APPLICATIONS FOR TRACE INEQUALITIES

If {e;};c; is an orthonormal basis of H, we say that A € B(H) is trace

class provided
1Al =) (|4l ei e5) < oo (35)
i€l

The definition of ||A||; does not depend on the choice of the orthonormal
basis {e;};c; . We denote by B (H) the set of trace class operators in B (H) .

The following properties are also well known:

(i) We have

Al = 14%],

for any A € By (H);

(ii) By (H) is an operator ideal in B (H), i.e.

B(H) By (H)B(H) < By (H);
(iii) (B1(H),|-|ly) is a Banach space.
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We define the trace of a trace class operator A € By (H) to be

tr(A) := Z (Aei, ei) , (36)
i€l
where {e;},.; is an orthonormal basis of H. Note that this coincides with
the usual definition of the trace if H is finite-dimensional. We observe that
the series (1) converges absolutely and it is independent from the choice of
basis.

The following results collects some properties of the trace:
(i) If A€ By (H) then A* € By (H) and

tr (A*) = tr (A);
(i) f Ae By (H) and T'€ B(H), then AT, TA € By (H) and
tr (AT) = tr (T A) and [tr (AT)| < [|A[l, | T}; (37)

(iii) ¢r (-) is a bounded linear functional on By (H) with ||tr| = 1;

(iv) Byin (H), the space of operators of finite rank, is a dense subspace
of Bl (H) .

We recall that Specht’s ratio is defined by [18]

T ke (0,1) U (L, 0)
S (h) = EIH(hh_l) (38)

lifh=1.

It is well known that limj,_,; S(h) =1, S(h) =S (+) > 1 for h > 0, h # 1.
The function is decreasing on (0, 1) and increasing on (1, 00) .
We consider the Kantorovich’s constant defined by

(h+1)
4h
The function K is decreasing on (0,1) and increasing on [1,00), K (h) > 1

for any h > 0 and K (h) = K (3) for any h > 0.
In the recent paper [5] we have showed amongst other that

K (h) = , h>0. (39)

Inm In M M
(0<)S(AB) = 57— (MA = B) = 57— (B—mA) gms(m) A,
(40)
(0<) S (A|B) — A}n_mm (MA— B) — ln_Mm (B—mA) (41
4 M _
< =y (K <m> —1> (B—mA) A~ (MA - B)
and

L (B mA) At (MA - B) (42)

2M?



16 S. S. DRAGOMIR

gS(A\B)—]\;nm (MA—p)— 2M

—m —m

(B—mA)

1
< —(B—mA)A ' (MA—-B
*2m2( mA) ( )

for positive invertible operators A and B that satisfy the condition (3).
Observe that, if A, B € By (H) with tr (A) = tr (B) = 1 and satisfy (3),
then we must assume m < 1 < M and by trace properties we have
tr [(B—mA)A™'(MA-B)] =tr [(m+M)B—mMA— BA™'B]
=m+M—-—mM —tr (Ale2)
= (M —1)(1=m)—x*(B,A),
where x? (B, A) =: tr (A7'B?) —1 > 0.
We also have

Inm In M
M-1
M—m( )+M—m

We can state the following result:

(I1—=m)=1In (m%:ﬁlMJ&fi%) .

Proposition 1. Let A, B € By (H) with tr (A) = tr (B) = 1 that satisfy
(8) for some m, M with 0 < m <1< M. Then we have the inequalities

(0 <)trS (A|B) — In (mﬁMﬁ) <InS <Anf> , (43)
(0 <)trS (A|B) — In (m%Miﬁ%) (44)
suwfmy<K(%)—Q[wwﬁxrwm—x%aAn
and
27]\142 [(M — 1) (1 —m) — x* (B, A)] < 175 (A|B) — In (m ¥ 2375 )

< [(M-1)(1—m) - (B,4)]. (45)

Observe that

mlnm MIn M
M—-1
M—m( )+ M—-—m

then by taking the trace in the inequalities (21) and (30) we can state the
following result as well:

Proposition 2. Let A, B € By (H) with tr (A) = tr (B) = 1 that salisfy
(3) for some m, M with 0 < m <1< M. Then we have the inequalities

m(M—1) M(1—m)
(1_m) =In|lm M=m M M-m ,

m(M—1) M(1—

(0<)In <m A M Ml”) —trD (A|B) (46)
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<M =m0 m) - 32 (B, 4)]

- M-m
and
Loy -m - B,A)] <hn <mmfwM?MMn(f‘$)> — trD (A|B)
2M
(47)
< o (M = 1) (1L m) — x* (B, 4)]
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