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INEQUALITIES FOR THE DUAL RELATIVE OPERATOR

ENTROPY

SILVESTRU SEVER DRAGOMIR

Abstract. In this paper, we introduce the concept of dual relative
entropy defined by

D (A|B) := A1/2
(
A−1/2BA−1/2 ln

(
A−1/2BA−1/2

))
A1/2

for positive invertible operators A and B and establish various upper
and lower bounds for the error operator in approximating the D (A|B)
by

m lnm

M −m
(MA−B) +

M lnM

M −m
(B −mA)

under the natural assumption mA ≤ B ≤ MA for some m, M with
0 < m < M. Applications for the operator entropy are also given. Some
trace inequalities are derived as well.

Kamei and Fujii [8], [9] defined the relative operator entropy S (A|B) ,
for positive invertible operators A and B, by

S (A|B) := A
1
2

(
lnA−

1
2BA−

1
2

)
A

1
2 , (1)

which is a relative version of the operator entropy considered by Nakamura-
Umegaki [16].

In general, we can define for positive operators A, B

S (A|B) := s− lim
ε→0+

S (A+ εI|B)

if it exists, here I is the identity operator.
For the entropy function η (t) = −t ln t, the operator entropy has the

following expression:

η (A) = −A lnA = S (A|I) ≥ 0

for positive contraction A. This shows that the relative operator entropy
(1) is a relative version of the operator entropy.
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6 S. S. DRAGOMIR

Following [10, p. 149-p. 155], we recall some important properties of
relative operator entropy for A and B positive invertible operators:
(i) We have the equalities

S (A|B) = −A1/2
(

lnA1/2B−1A1/2
)
A1/2 = B1/2η

(
B−1/2AB−1/2

)
B1/2;

(2)
(ii) We have the inequalities

S (A|B) ≤ A (ln ‖B‖ − lnA) and S (A|B) ≤ B −A;

(iii) For any C, D positive invertible operators we have that

S (A+B|C +D) ≥ S (A|C) + S (B|D) ;

(iv) If B ≤ C then
S (A|B) ≤ S (A|C) ;

(v) If Bn ↓ B then
S (A|Bn) ↓ S (A|B) ;

(vi) For α > 0 we have

S (αA|αB) = αS (A|B) ;

(vii) For every operator T we have

T ∗S (A|B)T ≤ S (T ∗AT |T ∗BT ) .

The relative operator entropy is jointly concave, namely, for any positive
invertible operators A, B, C, D we have

S (tA+ (1− t)B|tC + (1− t)D) ≥ tS (A|C) + (1− t)S (B|D)

for any t ∈ [0, 1] .
For other results on the relative operator entropy see [6], [12], [13], [15]

and [17].
In the recent paper [5] we have obtained amongst other the following

result in approximating the relative operator entropy S (A|B) by some sim-
pler quantity:

Theorem 1. Let A, B be two positive invertible operators such that the
condition

mA ≤ B ≤MA, (3)

for some m, M with 0 < m < M, is valid, then we have

1

2M2
(B −mA)A−1 (MA−B) (4)

≤ S (A|B)− lnm

M −m
(MA−B)− lnM

M −m
(B −mA)

≤ 1

2m2
(B −mA)A−1 (MA−B) .
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In particular, we have the following result for the operator entropy:

Corollary 1. Assume that pI ≤ C ≤ PI for some constants p, P with
0 < p < P. Then we have for operator entropy η (C) = −C lnC that

p

2P
(IP − C)C−1 (C − Ip) (5)

≤ η (C) +
P lnP

P − p
(C − pI) +

p ln p

P − p
(PI − C)

≤ P

2p
(IP − C)C−1 (C − Ip) .

Taking into account the above, we can introduce the concept of dual
relative entropy defined by

D (A|B) := A1/2
(
A−1/2BA−1/2 ln

(
A−1/2BA−1/2

))
A1/2

for positive invertible operators A and B.
Observe that, if we replace in (2) B with A, then we get

S (B|A) = A1/2η
(
A−1/2BA−1/2

)
A1/2

= A1/2
(
−A−1/2BA−1/2 ln

(
A−1/2BA−1/2

))
A1/2,

therefore we have

A1/2
(
A−1/2BA−1/2 ln

(
A−1/2BA−1/2

))
A1/2 = −S (B|A)

for positive invertible operators A and B, which shows that the dual relative
entropy has the following representation in terms of the relative entropy:

D (A|B) = −S (B|A) (6)

for positive invertible operators A and B. It is also well know that, in
general S (A|B) is not equal to S (B|A) .

Motivated by the above results, we establish in this paper some error
bounds in approximation of the dual relative entropy D (A|B) with the
simpler quantity

m lnm

M −m
(MA−B) +

M lnM

M −m
(B −mA) (7)

under the natural assumptions (3) for the operators A and B, namely mA ≤
B ≤MA, for some m, M with 0 < m < M. For this purpose, we use some
scalar inequalities for convex functions from [2], [3] and [4]. Applications
for the operator entropy η (C) = −C lnC = S (C|I) under the natural
assumption pI ≤ C ≤ PI for some constants p, P with 0 < p < P, are also
provided.
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1. Absolute Value Upper and Lower Bounds

With the assumption that the operators A and B satisfy the condition
mA ≤ B ≤MA, for some m, M with 0 < m < M, define the error operator

Em,M (A,B) :=
m lnm

M −m
(MA−B) +

M lnM

M −m
(B −mA)−D (A|B) , (8)

which represent the error in approximating the dual relative operator en-
tropy by the operator from (7)

The next result provided some upper and lower bounds for the error
operator Em,M (A,B) .

Theorem 2. Let A, B be two positive invertible operators such that the
condition (3) is valid, then we have

2

(
1

2
A− 1

M −m
A1/2

∣∣∣∣A−1/2(B − m+M

2
A

)
A−1/2

∣∣∣∣A1/2

)
K (m,M)

(9)

≤ Em,M (A,B)

≤ 2

(
1

2
A+

1

M −m
A1/2

∣∣∣∣A−1/2(B − m+M

2
A

)
A−1/2

∣∣∣∣A1/2

)
K (m,M) ,

where

K (m,M) :=

[
m lnm+M lnM

2
−
(
m+M

2

)
ln

(
m+M

2

)]
= ln

(
G
(
mm,MM

)
[A (m,M)]A(m,M)

)
and G (a, b) :=

√
ab is the geometric mean while A (a, b) := a+b

2 is the
arithmetic mean of positive numbers a, b.

Proof. Recall the following result obtained by the author in 2006 [2] that
provides a refinement and a reverse for the weighted Jensen’s discrete in-
equality:

n min
j∈{1,2,...,n}

{pj}

 1

n

n∑
j=1

Φ (xj)− Φ

 1

n

n∑
j=1

xj

 (10)

≤ 1

Pn

n∑
j=1

pjΦ (xj)− Φ

 1

Pn

n∑
j=1

pjxj


≤ n max

j∈{1,2,...,n}
{pj}

 1

n

n∑
j=1

Φ (xj)− Φ

 1

n

n∑
j=1

xj

 ,
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where Φ : C → R is a convex function defined on convex subset C of
the linear space X, {xj}j∈{1,2,...,n} are vectors in C and {pj}j∈{1,2,...,n} are

nonnegative numbers with Pn =
∑n

j=1 pj > 0. For n = 2, we deduce from

(10) that

2r

[
Φ(x) + Φ(y)

2
− Φ

(
x+ y

2

)]
(11)

≤ νΦ (x) + (1− ν) Φ (y)− Φ [νx+ (1− ν) y]

≤ 2R

[
Φ(x) + Φ(y)

2
− Φ

(
x+ y

2

)]
for any x, y ∈ R and ν ∈ [0, 1], where r = min {ν, 1− ν} and R =
max {ν, 1− ν} .

Now, if we take in (11) the convex function Φ (t) = t ln t, t > 0, then we
get

2r

[
x lnx+ y ln y

2
−
(
x+ y

2

)
ln

(
x+ y

2

)]
(12)

≤ νx lnx+ (1− ν) y ln y − [νx+ (1− ν) y] ln [νx+ (1− ν) y]

≤ 2R

[
x lnx+ y ln y

2
−
(
x+ y

2

)
ln

(
x+ y

2

)]
for any x, y > 0 and ν ∈ [0, 1] .

This is an inequality of interest in itself as well.
Now, if we take in (12) x = m, y = M and ν = M−u

M−m ∈ [0, 1] with

u ∈ [m,M ] then we get

2 min

{
M − u
M −m

,
u−m
M −m

}
(13)

×
[
m lnm+M lnM

2
−
(
m+M

2

)
ln

(
m+M

2

)]
≤ M − u
M −m

m lnm+
u−m
M −m

M lnM − u lnu

≤ 2 max

{
M − u
M −m

,
u−m
M −m

}
×
[
m lnm+M lnM

2
−
(
m+M

2

)
ln

(
m+M

2

)]
.

Since

min

{
M − u
M −m

,
u−m
M −m

}
=

1

2
−

∣∣∣∣∣u− m+M
2

M −m

∣∣∣∣∣
and

max

{
M − u
M −m

,
u−m
M −m

}
=

1

2
+

∣∣∣∣∣u− m+M
2

M −m

∣∣∣∣∣ ,
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then from (13) we have

2

(
1

2
− 1

M −m

∣∣∣∣u− m+M

2

∣∣∣∣)K (m,M) (14)

≤ M − u
M −m

m lnm+
u−m
M −m

M lnM − u lnu

≤ 2

(
1

2
+

1

M −m

∣∣∣∣u− m+M

2

∣∣∣∣)K (m,M)

for any u ∈ [m,M ].
Using the continuous functional calculus we have from (14) that

2

(
1

2
I − 1

M −m

∣∣∣∣X − m+M

2
I

∣∣∣∣)K (m,M) (15)

≤ m lnm
MI −X
M −m

+M lnM
X −mI
M −m

−X lnX

≤ 2

(
1

2
I +

1

M −m

∣∣∣∣X − m+M

2
I

∣∣∣∣)K (m,M)

for any selfadjoint operator X with the property that mI ≤ X ≤MI.
Multiplying both sides of (3) by A−1/2 we get

mI ≤ A−1/2BA−1/2 ≤MI

and by replacing X by A−1/2BA−1/2 in (15) we obtain

2

(
1

2
I − 1

M −m

∣∣∣∣A−1/2BA−1/2 − m+M

2
I

∣∣∣∣)K (m,M) (16)

≤ m lnm
MI −A−1/2BA−1/2

M −m
+M lnM

A−1/2BA−1/2 −mI
M −m

−A−1/2BA−1/2 ln(A−1/2BA−1/2)

≤ 2

(
1

2
I +

1

M −m

∣∣∣∣A−1/2BA−1/2 − m+M

2
I

∣∣∣∣)K (m,M) .

Multiplying both sides of (16) by A1/2 we get the desired result (9). �

Remark 1. One can observe that the inequalities (10) are a simple conse-
quence of Theorem 1, p.717 from [14]. Similar scalar inequalities as those
in the proof of the theorem were obtained in [1] and [11].

Remark 2. If A and B commute, then

A1/2

∣∣∣∣A−1/2(B − m+M

2
A

)
A−1/2

∣∣∣∣A1/2 =

∣∣∣∣B − m+M

2
A

∣∣∣∣ ,
S (B|A) = B (lnA− lnB)
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and by (9) we have

(0 ≤) 2

(
1

2
A− 1

M −m

∣∣∣∣B − m+M

2
A

∣∣∣∣)K (m,M) (17)

≤ m lnm

M −m
(MA−B) +

M lnM

M −m
(B −mA)−B (lnB − lnA)

≤ 2

(
1

2
A+

1

M −m

∣∣∣∣B − m+M

2
A

∣∣∣∣)K (m,M) .

The above result can be applied for the operator entropy

η (C) = −C lnC = S (C|I)

as follows:

Corollary 2. Assume that pI ≤ C ≤ PI for some p, P with 0 < p < P.
Then we have that

(0 ≤) 2

(
1

2
I − 1

P − p

∣∣∣∣C − p+ P

2
I

∣∣∣∣)K (p, P ) (18)

≤ p ln p

P − p
(PI − C) +

P lnP

P − p
(C − pI) + η (C)

≤ 2

(
1

2
I +

1

P − p

∣∣∣∣C − p+ P

2
I

∣∣∣∣)K (p, P ) .

2. An Upper Bound in Terms of Logarithm

We have the following inequality of interest for convex functions, see for
instance [3]:

Lemma 1. Let f : I ⊂ R → R be a convex function on the interval I,
a, b ∈ I̊ , the interior of I and ν ∈ [0, 1] . Then

0 ≤ (1− ν) f (a) + νf (b)− f ((1− ν) a+ νb)

≤ ν (1− ν) (b− a)
[
f ′− (b)− f ′+ (a)

]
. (19)

In particular, we have

0 ≤ f (a) + f (b)

2
− f

(
a+ b

2

)
≤ 1

4
(b− a)

[
f ′− (b)− f ′+ (a)

]
. (20)

The constant 1
4 is best possible in both inequalities from (20).

We can state the following result:
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Theorem 3. Let A, B be two positive invertible operators such that the
condition (3) is valid, then we have

(0 ≤)Em,M (A,B) ≤ lnM − lnm

M −m
(B −mA)A−1 (MA−B) (21)

≤ 1

4
(M −m) (lnM − lnm)A.

Proof. If we consider the convex function f (t) = t ln t, t > 0, then f ′ (t) =
ln t+ 1 and by (19) we have

0 ≤ (1− ν) a ln a+ νb ln b− ((1− ν) a+ νb) ln ((1− ν) a+ νb) (22)

≤ ν (1− ν) (b− a) (ln b− ln a)

for any a, b > 0 and and ν ∈ [0, 1] .
On applying the inequality (22) on the interval [m,M ] and for ν =

x−m
M−m ∈ [0, 1] with x ∈ [m,M ] then we get

0 ≤ m lnm
M − x
M −m

+M lnM
x−m
M −m

− x lnx (23)

≤ (x−m) (M − x)

M −m
(lnM − lnm) ≤ 1

4
(M −m) (lnM − lnm) .

Using the continuous functional calculus we have from (23) that

0 ≤ m lnm
MI −X
M −m

+M lnM
X −mI
M −m

−X lnX (24)

≤ (lnM − lnm)
(X −mI) (M −XI)

M −m
≤ 1

4
(M −m) (lnM − lnm) I

for any selfadjoint operator X with the property that mI ≤ X ≤MI.
By replacing X by A−1/2BA−1/2 in (15) we get

0 ≤ m lnm
MI −A−1/2BA−1/2

M −m
+M lnM

A−1/2BA−1/2 −mI
M −m

(25)

−A−1/2BA−1/2 ln(A−1/2BA−1/2)

≤ (lnM − lnm)

(
A−1/2BA−1/2 −mI

) (
MI −A−1/2BA−1/2

)
M −m

≤ 1

4
(M −m) (lnM − lnm) I.

Multiplying both sides of (25) by A1/2 we get the desired result (21). �

Corollary 3. Assume that pI ≤ C ≤ PI for some p, P with 0 < p < P.
Then we have that

(0 ≤)
p ln p

P − p
(PI − C) +

P lnP

P − p
(C − pI) + η (C) (26)
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≤ lnP − ln p

P − p
(C − pI) (PI − C) ≤ 1

4
(P − p) (lnP − ln p) .

3. Further Lower and Upper Bounds

We have the following result, see for instance [4]:

Lemma 2. Let f : I ⊂ R → R be a twice differentiable function on the
interval I̊, the interior of I. If there exists the constants d, D such that

d ≤ f ′′ (t) ≤ D for any t ∈ I̊ , (27)

then
1

2
ν (1− ν) d (b− a)2 ≤ (1− ν) f (a) + νf (b)− f ((1− ν) a+ νb) (28)

≤ 1

2
ν (1− ν)D (b− a)2

for any a, b ∈ I̊ and ν ∈ [0, 1] .
In particular, we have

1

8
(b− a)2 d ≤ f (a) + f (b)

2
− f

(
a+ b

2

)
≤ 1

8
(b− a)2D, (29)

for any a, b ∈ I̊.
The constant 1

8 is best possible in both inequalities in (29).

If D > 0, the second inequality in (28) is better than the corresponding
inequality obtained by Furuichi and Minculete in [7] by applying Lagrange’s
theorem two times. They had instead of 1

2 the constant 1. Our method
also allowed to obtain, for d > 0, a lower bound that can not be established
by Lagrange’s theorem method employed in [7].

We can state the following result:

Theorem 4. Let A, B be two positive invertible operators such that the
condition (3) is valid, then we have

(0 ≤)
1

2M
(B −mA)A−1 (MA−B) ≤ Em,M (A,B) (30)

≤ 1

2m
(B −mA)A−1 (MA−B) .

Proof. If we consider the convex function f (t) = t ln t, t > 0, then f ′′ (t) =
1
t and by (19) we have

1

2
ν (1− ν)

1

max {a, b}
(b− a)2 (31)

≤ (1− ν) a ln a+ νb ln b− ((1− ν) a+ νb) ln ((1− ν) a+ νb)

≤ 1

2
ν (1− ν)

1

min {a, b}
(b− a)2
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for any a, b > 0 and ν ∈ [0, 1] .
On applying the inequality (31) on the interval [m,M ] and for ν =

x−m
M−m ∈ [0, 1] with x ∈ [m,M ] then we get

1

2M
(x−m) (M − x) ≤ M − x

M −m
m lnm+

x−m
M −m

M lnM − x lnx (32)

≤ 1

2m
(x−m) (M − x) .

Using the continuous functional calculus we have from (32) that

1

2M
(X −mI) (M −XI) ≤ MI −X

M −m
m lnm+

X −mI
M −m

M lnM −X lnX

(33)

≤ 1

2m
(X −mI) (M −XI)

for any selfadjoint operator X with the property that mI ≤ X ≤MI.
Now, on using a similar argument to the one in the proof of Theorem 3

we deduce the desired result (30). �

Finally, we have

Corollary 4. Assume that pI ≤ C ≤ PI for some p, P with 0 < p < P.
Then we have the inequalities

(0 ≤)
1

2P
(C − pI) (PI − C) ≤ p ln p

P − p
(PI − C) +

P lnP

P − p
(C − pI) + η (C)

(34)

≤ 1

2p
(C − pI) (PI − C) .

4. Applications for Trace Inequalities

If {ei}i∈I is an orthonormal basis of H, we say that A ∈ B (H) is trace
class provided

‖A‖1 :=
∑
i∈I
〈|A| ei, ei〉 <∞. (35)

The definition of ‖A‖1 does not depend on the choice of the orthonormal
basis {ei}i∈I . We denote by B1 (H) the set of trace class operators in B (H) .

The following properties are also well known:
(i) We have

‖A‖1 = ‖A∗‖1
for any A ∈ B1 (H) ;

(ii) B1 (H) is an operator ideal in B (H) , i.e.

B (H)B1 (H)B (H) ⊆ B1 (H) ;

(iii) (B1 (H) , ‖·‖1) is a Banach space.
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We define the trace of a trace class operator A ∈ B1 (H) to be

tr (A) :=
∑
i∈I
〈Aei, ei〉 , (36)

where {ei}i∈I is an orthonormal basis of H. Note that this coincides with
the usual definition of the trace if H is finite-dimensional. We observe that
the series (1) converges absolutely and it is independent from the choice of
basis.

The following results collects some properties of the trace:
(i) If A ∈ B1 (H) then A∗ ∈ B1 (H) and

tr (A∗) = tr (A);

(ii) If A ∈ B1 (H) and T ∈ B (H) , then AT, TA ∈ B1 (H) and

tr (AT ) = tr (TA) and |tr (AT )| ≤ ‖A‖1 ‖T‖ ; (37)

(iii) tr (·) is a bounded linear functional on B1 (H) with ‖tr‖ = 1;
(iv) Bfin (H) , the space of operators of finite rank, is a dense subspace

of B1 (H) .
We recall that Specht’s ratio is defined by [18]

S (h) :=


h

1
h−1

e ln

(
h

1
h−1

) if h ∈ (0, 1) ∪ (1,∞)

1 if h = 1.

(38)

It is well known that limh→1 S (h) = 1, S (h) = S
(
1
h

)
> 1 for h > 0, h 6= 1.

The function is decreasing on (0, 1) and increasing on (1,∞) .
We consider the Kantorovich’s constant defined by

K (h) :=
(h+ 1)2

4h
, h > 0. (39)

The function K is decreasing on (0, 1) and increasing on [1,∞) , K (h) ≥ 1
for any h > 0 and K (h) = K

(
1
h

)
for any h > 0.

In the recent paper [5] we have showed amongst other that

(0 ≤)S (A|B)− lnm

M −m
(MA−B)− lnM

M −m
(B −mA) ≤ lnS

(
M

m

)
A,

(40)

(0 ≤)S (A|B)− lnm

M −m
(MA−B)− lnM

M −m
(B −mA) (41)

≤ 4

(M −m)2

(
K

(
M

m

)
− 1

)
(B −mA)A−1 (MA−B)

and
1

2M2
(B −mA)A−1 (MA−B) (42)
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≤ S (A|B)− lnm

M −m
(MA−B)− lnM

M −m
(B −mA)

≤ 1

2m2
(B −mA)A−1 (MA−B)

for positive invertible operators A and B that satisfy the condition (3).
Observe that, if A, B ∈ B1 (H) with tr (A) = tr (B) = 1 and satisfy (3),

then we must assume m ≤ 1 ≤M and by trace properties we have

tr
[
(B −mA)A−1 (MA−B)

]
= tr

[
(m+M)B −mMA−BA−1B

]
= m+M −mM − tr

(
A−1B2

)
= (M − 1) (1−m)− χ2 (B,A) ,

where χ2 (B,A) =: tr
(
A−1B2

)
− 1 ≥ 0.

We also have
lnm

M −m
(M − 1) +

lnM

M −m
(1−m) = ln

(
m

M−1
M−mM

1−m
M−m

)
.

We can state the following result:

Proposition 1. Let A, B ∈ B1 (H) with tr (A) = tr (B) = 1 that satisfy
(3) for some m, M with 0 < m < 1 < M. Then we have the inequalities

(0 ≤) trS (A|B)− ln
(
m

M−1
M−mM

1−m
M−m

)
≤ lnS

(
M

m

)
, (43)

(0 ≤) trS (A|B)− ln
(
m

M−1
M−mM

1−m
M−m

)
(44)

≤ 4

(M −m)2

(
K

(
M

m

)
− 1

)[
(M − 1) (1−m)− χ2 (B,A)

]
and

1

2M2

[
(M − 1) (1−m)− χ2 (B,A)

]
≤ trS (A|B)− ln

(
m

M−1
M−mM

1−m
M−m

)
≤ 1

2m2

[
(M − 1) (1−m)− χ2 (B,A)

]
. (45)

Observe that

m lnm

M −m
(M − 1) +

M lnM

M −m
(1−m) = ln

(
m

m(M−1)
M−m M

M(1−m)
M−m

)
,

then by taking the trace in the inequalities (21) and (30) we can state the
following result as well:

Proposition 2. Let A, B ∈ B1 (H) with tr (A) = tr (B) = 1 that satisfy
(3) for some m, M with 0 < m < 1 < M. Then we have the inequalities

(0 ≤) ln

(
m

m(M−1)
M−m M

M(1−m)
M−m

)
− trD (A|B) (46)
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≤ lnM − lnm

M −m
[
(M − 1) (1−m)− χ2 (B,A)

]
and

1

2M

[
(M − 1) (1−m)− χ2 (B,A)

]
≤ ln

(
m

m(M−1)
M−m M

M(1−m)
M−m

)
− trD (A|B)

(47)

≤ 1

2m

[
(M − 1) (1−m)− χ2 (B,A)

]
.
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[1] M. Klaričić Bakula, J. Pečarić, J. Perić, On the converse Jensen inequality, Appl.
Math. Comp. 218 (2012), 6566–6575.

[2] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math.
Soc. 74 (3)(2006), 417-478.

[3] S. S. Dragomir, A note on Young’s inequality, Rev. R. Acad. Cienc. Exactas F́ıs.
Nat. Ser. A Math. RACSAM 111 (2017), no. 2, 349–354. Preprint RGMIA Res. Rep.
Coll. 18 (2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].

[4] S. S. Dragomir, A note on new refinements and reverses of Young’s inequality, Tran-
sylv. J. Math. Mech. 8 (2016), no. 1, 45–49. Preprint RGMIA Res. Rep. Coll. 18
(2015), Art. 131. [http://rgmia.org/papers/v18/v18a131.pdf].

[5] S. S. Dragomir, Some inequalities for relative operator en-
tropy, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 145.
[http://rgmia.org/papers/v18/v18a145.pdf].

[6] S. Furuichi, Precise estimates of bounds on relative operator entropies, Math. Ineq.
Appl. 18 (2015), 869–877.

[7] S. Furuichi and N. Minculete, Alternative reverse inequalities for Young’s inequality,
J. Math Inequal. 5 (2011), Number 4, 595–600.

[8] J. I. Fujii and E. Kamei, Uhlmann’s interpolational method for operator means. Math.
Japon. 34 (1989), no. 4, 541–547.

[9] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information
theory. Math. Japon. 34 (1989), no. 3, 341–348.
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