THE OPERATOR EQUATIONS A4*4%=4 AND A*2A% = A*A4

Nowvak IVANOVSKI

The object of this paper is to prove th: following two theorems.

Theorem 1. Let A be a bouaded linecar operator oa a Hilbert
space H, with the property that

(D A*A? = A
then 4 is a direct sum of a zero operator, a unitary operator and an
operator which is unitarily equivalent to the operator valuad weighted
shift with weights {P, I, I,...,} where P=(d'd)" M=(4H)L,
and A, is the operator A from M into AM.

Theorem 2. Let A be a bounded linear operator on a Hilbert
space H, with the property that A*2A4%=A*4, then A4 has the repre-

. 00 . .
sentation where U is an isometry. P
cuU

Throughout this paper H will be a ssparable Hilbert space over
the field of complex numbers. If S is a subset of H, then the ortho-
gonal complement of S within H will be denoted by S L

For a given set M in H, the closureof M is denoted by M. For
a definition of operator valued weighted shifts see [3] and [4].

In order to prove theorem ! we need the following lemmas.

Lemma 1. KerA rceduces A*.
Proof: Let x&=KerAd, x#0, then x& AH, because A is an isometry on
AH. Therefore, x& AHL = Ker4*, which implies that Kerd is inva-
riant under A*. .

In the sequel, we make the assumption that KerA ={0}. Set
M = H> AH.

Lemma 2. {A"M} is a pairwise orthogonal family of linear ma-
nifolds.
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Proof. By linear manifold we mean a subspace but not necessa-
rily a closed subspace. The fact M | A*M for nz=1 is true from the
very definition of M. However,

(Am, Azm’) = (m, A*Azm’ - (m’ Aml) = 0,

for all m, m in M. In order to show that APM | AIM, for p+ g,
we need the following relation A4**A4% — 4*4 which is true for n=1,2
and using the simple mathematical induction we can prove that it is
tree for every narural x.

Using this fact, we see that for p<gq
(APm, Aim’y = (A*PAPMATPm'y = (A*Am, At-vm’) = (m, AT=Pm’) = 0.
For notational convenience we set Ly,—= A"’M, n=0, I, 2,...

Then lemma 2 implies that L, | L, for n7m, so {L,} is a family of
pairwise orthogonal subspaces. Denote

MO =

()8

Ln == V Ln.

n n=o

Now we envoke techniques developed by Halmos [2] for an isometry.
Using continuity of 4, we get
A(Ln)=A(A"M)C A (A"M) = L1,

which implies that M® is an invariant subspace for 4 and the restric-
tion of A to MY is denoted by U. Write H=X D M®, where

X=(@AML = (VL.
n=o n=go

Set X =H 5 M,

Lemma 3.

X=HO MY =( VM) = ~ArE

n=g9

Proof: From the definition of M we have H=Zﬁ(—}) M. Suppose that
he( VA;'M)L In particular h& ML which implies that k& A4H.
Applying operator 4 we obtain

(2) AH =A(AH) + AM
Let x& 4 (A—H), y € AM, then x=Iim A(Axn), y =dm, m < M,
(x, ) = lim (A2xn, Am) = lim (4* A2x,, m) == lim (Axa, m) = 0, so the sum (2)

is orthogonal.
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Since AH is a closed subspace and A|AH is an isometry, the imma-
ge A(AH) is closed. Since the space A(AH) is closed and the sum in
(2) is orthogonal, from (2) we get
(3) AH = A(AH) D AM
From (3) we find that 4 < AML implie; that h< A(AH).

The following formula is true

4 A(AH) = A*(H)

Notice A(AH) is closcd as has been pointed out above. Since
AH) C (AH) it is clear that A*°H C A (4H)

Using the continuity of operator A we have A(A4H) A%H.
So formula (4) is proved.

By induction one can show the following generalizations of (4).

(5 A(A"H) = A (H), and A(A*M) = (A1 M)

Applying operator A to the formula (3) we get

A(AH) = A(A2H) D A(AM), and using (5) we get AH = AH i (A*M).
Since h < A?H and h < (A*M)L implies # & A3H. By the induction we
have that A = X implies 1 & [ A"H, so X C N AnH.

M= n=q

Now assume g & M ArH. If g & A*1'H, then ge=lim A"+lx;. By

n=o k

use of A*1An — A*242 = A*4 we find (g, A"m)=1im (Axi, m)=0 for
k

every m&E M, due to M | AH. Therefore g 1 A*M which implies
g € A*M-L. Since n was arbitrary we obtain g € X.

L .
Lemma 4. X =\ A*H is an invariant subspace for 4; moreover

A:X is a unitary operator.

Proof: The invariance of X follows from the fact that A(A"H)=
= An""1H. The last equality implies AX =X, therefore 4 X is unitary.

Lemma 5. For n> 1 operator A is mapping isometrically the
space A?M onto the space A"+ M.

Proof: For m = M, we have A(Am) 2=(A%*m, A>m)=(A4*A%m,
Am) = (Am, Am) = Am 2, and in general A(A"m) ? = (A(A"m),
A(Amm)) = (A*A2A"1m, Am) = (A"m, A"m) =" A"m 2.
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Therefore we can extend these isometries to A"W, and A(A;‘]/I) -
A™IAL But does equality sign hold in the last inclusion for nx=1?

A (M) =A(A*M) C A(A"M), and the set A4(A"M) is closcd because
A A"M is an isometry, and we have An-1 (M) C A(A"M).

Lemma 6. The operator U/ = 4 MDD has the following matrix:

fo o o o )
[40 0 0 o |
[0 4. 0 o |
I 4z .|
l y

where A;: AT A > 4 IpL are isometries for 7 >: 1, and moreover the
above matrix is unitarily equivalent to the matrix

|

with respect to MBDMDPD..., where Py= (4, Ag)'z,

oy o
o B I )
R = I N =)
N o e e

~ o oo

Proof: Write 4 — U,P, where P, = (A;Ac,)”2 and U, is a partial iso-
metry from P,M onto AAM. But, P,M = M. For, if not then there exists
m= 0, m& M, and mEP M- =KerP, = KerP,, which implies mc KerAd, C
Kerd, but this contradicts the assumption that Kerd ={0} stated after
lemma 1. Thus U, is an isometry from M onro AM.

Set
0 o0 0 P, 0 O
U, 0 o 0 5 o
r—|{0 4, o P=
A2 12

on M®, where I,’s are the identities on L; for i = 1,
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Then we have U=VP.

Using operators U,, 4;, i >> | we can define an isomorphism from
MEMET ... onto MD as follows: Set W,=1, W, =U,, We= A, U,

and in general, Wy = Ap-1 Wa_1 for n = 2. Then W,: M — L, is an iso-
morphism.

Set

W= S WarM oMM MO

n=0

A direct computation shows that W-LVIW has the matrix

0 0 O
I 0 0
0 17 0

on MHMP. ..
However, W-1UW = (W-1WWW) (W-1PI¥) has the matrix

0 0 0 .
P, 0 0
0 I 0
I
on M-p M = ...: This completes the proof.

Proof of theorem 1. Lemma 4 implies that the matrix represen-
tation of operator 4 on H=X "t M®D is of the following form

[oo]

where C is a unitary operator on X. Using lemma 6 we can write down

the matrix of operator A with the respect to X BEMPDAMD ... as
following
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c 0 o0
0 0 0 0
0 4, 0 0
0 0 4, 0
or equivalently to the matrix
[¢c o o l
0 0 O
0 P, O
0o 0 I

on X tMES M5 ...
The proof of theorem | is completed.

Remark: Now, we will show that the converse of theorem | is true
i. e. if 4 is a direct sum of a zero operator, unitary, and an operator
valued weighted shitt with weights {P, [, J,. ..y where P is Hermitean,
then operator A4 satisfies equation (1).

The only thing to be cheked is to show that the opecrator with
the matrix

oo

~ O
~ © O o
o ©C oo

satisfies equation (1), which is obvious.

Corollary: Every operator satisfying equation (1) has a non-trivial
invariant closed subspace.

Proof: If AH £ H, we are done, because A (ZH) C AH =+ H.

If A4H=H, we have (A*4—ID AH={0); A*A—I—0, which
implies A is an isometry.

Space 4AH is closed, and we have JH=AH =H so 4 is unitary
and has a nontrivial invariant closed subspace by the spectral theorem.
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Proof of theorem 2. Let A be an operator satisfying the equation
(6) A= A4*4.

Operator 4 will be decomposed ‘as a two-by-two matrix as follows:

A= B D

c U
where U:Range A — Rd;zée/l; D:Range A — Range A+ ; B:Range A —
— Rahg'éA-L and C:Ranged - — Range A+. Since Range A is invariant
under 4 we have D=0. If v=4x, using (6), we have Ay 2= (A44x,
AAx) = (A**A%*x)= y %, U=4 Ranged is an isometry. Hence

A maps Range AL into the RangeA, therefore B = 0.

. . ..o 0
Conversely, if 4 is a two-by-two matrix [C on the space

Hy D Hsz, H; and H: are closed nontrivial subspaces, with C = L (H))
and U unitary on Hs. Then

e #*
A C*C C*U
u*c U*U
and

A*?A? —
UsUC U=

cC*U*UucC C*U*UZ:‘
implies A*24% = A* A4, H> = Range A.

Theorem 2 enables us to construct an example of an operator sa-
tisfying (6) but not (1). Take A 2[2‘ 3] on H P H, where U is uni-

tary. Then we have

* *[ T2
Arqz_[CU CUR [0 0],
' c U c 0

in general. It is enough to take for example C=% 0 and U unitary.
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PE3UMME
3A ONEPATOPCKUTE PABEHKM A*A2=A4 y A% A2 — A*A

Hosax MBAHOBCKMH

Bo 0BOj Tpyn ce nokaxysa pgeka OrPaHMYEHUOT NMHEapeH oneparop A
B0 Xwunbeptosuor npocrop H KOj ja 3apoBoJyBa penaunnga A*A® = A e cyma
OX HyJla OnepaTop, YHUTAPEH ONEepaTop M ornepaTop KOj € YHUTAapHO eKBi-
BaNCHTEH CO OMNepaTopCKO TEXKMHCKU WMT CO COCUMATHN TeKIHM.

Mceto Taka e gageHa AEKOMIIO3MUIjaTa HAa OrPaHMYEHUOT JAMHCAPEH ore-
pPaTop kO] ja 3aoBONYBa paBeHKaTa A* A2 — A*A.
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