THE OPERATOR EQUATIONS $A^*A^2 = A$ AND $A^{*2}A^2 = A^*A$

Novak IVANOVSKI

The object of this paper is to prove the following two theorems.

Theorem 1. Let A be a bounded linear operator on a Hilbert space H, with the property that

$$A^*A^2 = A$$

then A is a direct sum of a zero operator, a unitary operator and an operator which is unitarily equivalent to the operator valued weighted shift with weights $\{P, I, I, \ldots,\}$ where $P = (A^*A_\circ)^{1/2}$, $M = (AH)^{\perp}$, and A_\circ is the operator A from M into AM.

Theorem 2. Let A be a bounded linear operator on a Hilbert space H, with the property that $A^{*2}A^2 = A^*A$, then A has the representation $\begin{bmatrix} O & O \\ C & U \end{bmatrix}$ where U is an isometry.

Throughout this paper H will be a separable Hilbert space over the field of complex numbers. If S is a subset of H, then the orthogonal complement of S within H will be denoted by S^{\perp} .

For a given set M in H, the closure of M is denoted by M. For a definition of operator valued weighted shifts see [3] and [4].

In order to prove theorem 1 we need the following lemmas.

Lemma 1. KerA reduces A*.

Proof: Let $x \in KerA$, $x \neq 0$, then $x \notin AH$, because A is an isometry on AH. Therefore, $x \in \overline{AH}^{\perp} = KerA^*$, which implies that KerA is invariant under A^* .

In the sequel, we make the assumption that $KerA = \{O\}$. Set $M = H \ominus \overline{AH}$.

Lemma 2. $\{A^nM\}$ is a pairwise orthogonal family of linear manifolds.

Proof. By linear manifold we mean a subspace but not necessarily a closed subspace. The fact $M \perp A^n M$ for $n \ge 1$ is true from the very definition of M. However,

$$(Am, A^2m') = (m, A^*A^2m') = (m, Am') = 0,$$

for all m, m' in M. In order to show that $A^pM \perp A^qM$, for $p \neq q$, we need the following relation $A^{*n}A^n = A^*A$ which is true for n = 1, 2 and using the simple mathematical induction we can prove that it is true for every natural n.

Using this fact, we see that for p < q

$$(A^{p}m, A^{q}m') = (A^{*p}A^{p}mA^{q-p}m') = (A^{*}Am, A^{q-p}m') = (m, A^{q-p}m') = 0.$$

For notational convenience we set $L_n = \overline{A^n}M$, n = 0, 1, 2, ...

Then lemma 2 implies that $L_n \perp L_m$ for $n \neq m$, so $\{L_n\}$ is a family of pairwise orthogonal subspaces. Denote

$$M^{(1)} = \bigoplus_{n=0}^{\infty} L_n = \bigvee_{n=0}^{\infty} L_n.$$

Now we envoke techniques developed by Halmos [2] for an isometry. Using continuity of A, we get

$$A(L_n) = A(\overline{A^n M}) \subseteq \overline{A(A^n M)} = L_{n+1},$$

which implies that $M^{(1)}$ is an invariant subspace for A and the restriction of A to $M^{(1)}$ is denoted by U. Write $H = X \oplus M^{(1)}$, where

$$X = (\bigoplus_{n=0}^{\infty} \overline{A^n M})^{\perp} = (\bigvee_{n=0}^{\infty} \overline{A^n M})^{\perp}.$$

Set $X = H(-) M^{(1)}$.

Lemma 3.

$$X = H \bigoplus M^{(1)} = (\bigvee_{n=0}^{\infty} \widehat{A^n M}) = \bigcap_{n=0}^{\infty} \widehat{A^n H}$$

Proof: From the definition of M we have $H = \overline{AH} \oplus M$. Suppose that $h \in (\stackrel{\circ}{V} \stackrel{\circ}{A^n M})^{\perp}$. In particular $h \in M^{\perp}$ which implies that $h \in \overline{AH}$.

Applying operator A we obtain

$$(2) AH = A(AH) + AM$$

Let $x \in A(\overline{AH})$, $y \in AM$, then $x = \lim_{n} A(Ax_n)$, y = Am, $m \in M$, $(x, y) = \lim_{n} (A^2x_n, Am) = \lim_{n} (A^*A^2x_n, m) = \lim_{n} (Ax_n, m) = 0$, so the sum (2) is orthogonal.

Since AH is a closed subspace and $A \mid AH$ is an isometry, the immage $A(\widehat{AH})$ is closed. Since the space $A(\widehat{AH})$ is closed and the sum in (2) is orthogonal, from (2) we get

$$(3) AH = A(AH) \oplus AM$$

From (3) we find that $h \in \overline{AM}^{\perp}$ implies that $h \in A(\overline{AH})$.

The following formula is true

$$(4) A(AH) = A^2(H)$$

Notice $A(\overline{AH})$ is closed as has been pointed out above. Since $A^2(H) \subseteq (AH)$ it is clear that $A^2H \subseteq A(AH)$

Using the continuity of operator A we have $A(AH) \subset A^2H$. So formula (4) is proved.

By induction one can show the following generalization; of (4).

(5)
$$A(A^nH) = \overline{A^{n+1}(H)}, \text{ and } A(\overline{A^nM}) = (\overline{A^{n+1}M})$$

Applying operator A to the formula (3) we get

 $A(\overline{AH}) = A(A^2H) \oplus A(\overline{AM})$, and using (5) we get $A^2H = A^3H \oplus (A^2M)$. Since $h \in \overline{A^2H}$ and $h \in (A^2M)^{\perp}$ implies $h \in \overline{A^3H}$. By the induction we have that $h \in X$ implies $h \in \bigcap_{n=0}^{\infty} \overline{A^nH}$, so $X \subseteq \bigcap_{n=0}^{\infty} A^nH$.

Now assume $g \in \bigcap_{n=0}^{\infty} \overline{A^n H}$. If $g \in A^{n+1}H$, then $g \in \lim_k A^{n+1}x_k$. By use of $A^{*n}A^n = A^{*2}A^2 = A^*A$ we find $(g, A^n m) = \lim_k (Ax_k, m) = 0$ for every $m \in M$, due to $M \perp AH$. Therefore $g \perp A^n M$ which implies $g \in A^n M^{\perp}$. Since n was arbitrary we obtain $g \in X$.

Lemma 4. $X = \bigcap_{n=0}^{\infty} A^n H$ is an invariant subspace for A; moreover $A \mid X$ is a unitary operator.

Proof: The invariance of X follows from the fact that $A(A^nH) = A^{n+1}H$. The last equality implies AX = X, therefore $A \setminus X$ is unitary.

Lemma 5. For $n \ge 1$ operator A is mapping isometrically the space A^nM onto the space $A^{n+1}M$.

Proof: For $m \in M$, we have $A(Am)^2 = (A^2m, A^2m) = (A^*A^2m, Am) = (Am, Am) = Am^2$, and in general $A(A^nm)^2 = (A(A^nm), A(A^nm)) = (A^*A^2A^{n-1}m, A^nm) = (A^nm, A^nm) = A^nm^2$.

Therefore we can extend these isometries to A^nM , and $A(\overline{A^nM}) \subseteq \overline{A^{n+1}M}$. But does equality sign hold in the last inclusion for $n \ge 1$? $A^{n+1}(M) = A(A^nM) \subseteq A(\overline{A^nM})$, and the set $A(\overline{A^nM})$ is closed because $A(\overline{A^nM})$ is an isometry, and we have $\overline{A^{n+1}(M)} \subseteq A(\overline{A^nM})$.

Lemma 6. The operator $U = A M^{(1)}$ has the following matrix:

$$\left[
 \begin{array}{ccccc}
 0 & 0 & 0 & 0 \\
 A_0 & 0 & 0 & 0 \\
 0 & A_1 & 0 & 0 \\
 & & A_2 & . \\
 & & & .
 \end{array}
 \right]$$

where $A_i: \overline{A^iM} \to \overline{A^{i+1}M}$ are isometries for $i \ge 1$, and moreover the above matrix is unitarily equivalent to the matrix

$$\left\{
 \begin{array}{ccccc}
 0 & 0 & 0 & 0 \\
 P_0 & 0 & 0 & 0 \\
 0 & I & 0 & 0 \\
 & & I & .
 \end{array}
\right.$$

with respect to $M \oplus M \oplus \dots$, where $P_0 = (A_0^* A_0)^{1/2}$.

Proof: Write $A = U_o P_o$ where $P_o = (A_o^* A_o)^{1/2}$ and U_o is a partial isometry from $P_o M$ onto \overline{AM} . But, $\overline{P_o M} = M$. For, if not then there exists $m \neq 0$, $m \in M$. and $m \in P_o \overline{M}^{\perp} = Ker P_o^* = Ker P_o$, which implies $m \in Ker A_o \subseteq Ker A_o$ but this contradicts the assumption that $Ker A = \{0\}$ stated after lemma 1. Thus U_o is an isometry from M onto \overline{AM} .

Set

$$V = \begin{bmatrix} 0 & 0 & 0 & & \\ U_{\circ} & 0 & 0 & & \\ 0 & A_{1} & 0 & & \\ & & A_{2} & . \end{bmatrix} \quad P = \begin{bmatrix} P_{\circ} & 0 & 0 & & \\ 0 & I_{1} & 0 & & \\ & & I_{2} & & \\ & & & . \end{bmatrix}$$

on $M^{(1)}$, where I_i 's are the identities on L_i for $i \geqslant 1$.

Then we have U = VP.

Using operators U_o , A_i , $i \ge 1$ we can define an isomorphism from $M \oplus M \oplus \ldots$ onto $M^{(1)}$ as follows: Set $W_o = I$, $W_1 = U_o$, $W_2 = A_1 U_o$ and in general, $W_n = A_{n-1} W_{n-1}$ for $n \ge 2$. Then $W_n : M \to L_n$ is an isomorphism.

Set

$$W = \sum_{n=0}^{\infty} \bigoplus W_n : M \bigoplus M \bigoplus M \bigoplus \ldots \longrightarrow M^{(1)}$$

A direct computation shows that $W^{-1}VW$ has the matrix

$$\begin{bmatrix} 0 & 0 & 0 & \\ I & 0 & 0 & \\ 0 & I & 0 & \\ & & \cdot & \cdot \end{bmatrix}$$

on $M \oplus M \oplus \dots$

However, $W^{-1}UW = (W^{-1}VW)(W^{-1}PW)$ has the matrix

$$\begin{bmatrix} 0 & 0 & 0 & & \\ P_{\circ} & 0 & 0 & & \\ 0 & I & 0 & & \\ & & I & . & \\ & & & . & \\ \end{bmatrix}$$

on $M \oplus M \oplus \ldots$: This completes the proof.

Proof of theorem 1. Lemma 4 implies that the matrix representation of operator A on $H = X \oplus M^{(1)}$ is of the following form

$$\left[\begin{smallmatrix} C & O \\ O & U \end{smallmatrix} \right]$$

where C is a unitary operator on X. Using lemma 6 we can write down the matrix of operator A with the respect to $X \oplus M \oplus \overline{AM} \oplus \ldots$ as following

$$\begin{bmatrix}
C & 0 & 0 & & & \\
0 & 0 & 0 & 0 & & \\
0 & A_{\circ} & 0 & 0 & & \\
0 & 0 & A_{1} & 0 & & \\
& & & & & & \\
\end{bmatrix}$$

or equivalently to the matrix

$$\begin{bmatrix} C & 0 & 0 & & & \\ 0 & 0 & 0 & & & \\ 0 & P_{\circ} & 0 & & \\ 0 & 0 & I & . & & \\ & & & . & . & . \end{bmatrix}$$

on $X \oplus M \oplus M \oplus \dots$

The proof of theorem 1 is completed.

Remark: Now, we will show that the converse of theorem 1 is true i. e. if A is a direct sum of a zero operator, unitary, and an operator valued weighted shift with weights $\{P, I, I, \ldots\}$ where P is Hermitean, then operator A satisfies equation (1).

The only thing to be cheked is to show that the operator with the matrix

satisfies equation (1), which is obvious.

Corollary: Every operator satisfying equation (1) has a non-trivial invariant closed subspace.

Proof: If $AH \neq H$, we are done, because $A(\overline{AH}) \subseteq AH \neq H$.

If AH = H, we have $(A*A - I)\overline{AH} = \{0\}$; A*A - I = 0, which implies A is an isometry.

Space AH is closed, and we have AH = AH = H so A is unitary and has a nontrivial invariant closed subspace by the spectral theorem.

Proof of theorem 2. Let A be an operator satisfying the equation

(6)
$$A^{*2}A^2 = A^*A.$$

Operator A will be decomposed as a two-by-two matrix as follows:

$$A = \begin{bmatrix} B & D \\ C & U \end{bmatrix}$$

where $U: Range A \rightarrow Range A$; $D: Range A \rightarrow Range A^{\perp}$; $B: Range A \rightarrow Range A^{\perp}$ and $C: Range A^{\perp} \rightarrow Range A^{\perp}$. Since Range A is invariant under A we have D=0. If y=Ax, using (6), we have $Ay^2=(AAx,AAx)=(A^{*2}A^2x,x)=y^2$, U=A Range A is an isometry. Hence A maps $Range A^{\perp}$ into the Range A, therefore B=0.

Conversely, if A is a two-by-two matrix $\begin{bmatrix} 0 & 0 \\ C & U \end{bmatrix}$ on the space $H_1 \oplus H_2$, H_1 and H_2 are closed nontrivial subspaces, with $C \in L(H_1)$ and U unitary on H_2 . Then

$$A*A = \begin{bmatrix} C*C & C*U \\ U*C & U*U \end{bmatrix}$$

and

$$A^{*2}A^2 = \begin{bmatrix} C^*U^*UC & C^*U^*U^2 \\ U^{*2}UC & U^{*2}U^2 \end{bmatrix},$$

implies $A^{*2}A^2 = A^*A$, $H_2 = Range A$.

Theorem 2 enables us to construct an example of an operator satisfying (6) but not (1). Take $A = \begin{bmatrix} 0 & 0 \\ C & U \end{bmatrix}$ on $H \oplus H$, where U is unitary. Then we have

$$A^*A^2 = \begin{bmatrix} C^*U & C^*U^2 \\ C & U \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ C & 0 \end{bmatrix} = A$$

in general. It is enough to take for example $C \neq 0$ and U unitary.

ACKNOWLEDGEMENT:

I would like to thank Prof. Joseph G. Stampfli for suggesting the problem and for numerous valuable suggestions.

РЕЗИМЕ ЗА ОПЕРАТОРСКИТЕ РАВЕНКИ $A*A^2 = A$ и $A*^2 A^2 = A*A$

Новак ИВАНОВСКИ

Во овој труд се покажува дека ограничениот линеарен оператор A во Хилбертовиот простор H кој ја задоволува релацијата $A*A^2=A$ е сума од нула оператор, унитарен оператор и оператор кој е унитарно еквивалентен со операторско тежински шифт со специјални тежини.

Исто така е дадена декомпозицијата на ограничениот линсарен оператор кој ја задоволува равенката $A^{*2}A^2=A^*A$.

REFERENCES

- [1] Mary R. Embry, The Operator Equation $A = A*A^2$ (to appear).
- [2] P. R. Halmos, Shifts on Hilbert Spaces, J. Reine, Angew. Math., 208 (1961), 102-112.
- [3] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand Co., Princeton 1967.
- [4] A. Lambert, Unitary Equivalence and Reducibility of Invertible Weighted Shifts, Bull. Austral. Math. Soc., vol. 5 (1971), 151—172.

£

Faculty of Electrotechnical and Mechanical Engineering, Skopje.