Novak Ivanovski

ON BERBERIAN'S REPRESENTATION

(Received June 19, 1975)

In this paper we shall show some new properties on the faithful star representation introduced by Berberian [2].

Throughout the paper H will be a separable Hilbert Space. We denote the algebra of bounded linear operators on H by B(H).

Definition 1. Let m be the Banach space of all bounded complex sequences (sup norm). If $s = \{\lambda_n\} \in m$, let $s^+ = \{\lambda_{n+1}\}$. Also let $1 \in m$ be the sequence consisting of ones. Then a generalized limit (for short) g \lim is a linear functional on m such that

- (a) L(1)=1
- (b) $L(s) = L(s^+)$ for all $s \in m$, (translation invariance)
- (c) $L(\{a_n\}) > 0$ if $a_n > 0$; for n > 0.

Banach [1] showed that generalized limits exist. Moreover if $\{a_n\} \in m$ is a real sequence, it is easy to show that

$$\lim_{n} \inf a_{n} \leqslant g \lim (\{a_{n}\}) \leqslant \lim_{n} \sup a_{n}$$

and if $\lim \lambda_n = \alpha$, then $g \lim (\{\lambda_n\}) = \alpha$. The following result is taken from Berberian [2].

Teorem A. Let H be a separable Hilbert space. Then there exists a Hilbert space K and a faithful star representation $\varphi: B(H) \rightarrow B(K)$ with the following properties:

- (1) $\varphi(S+T) = \varphi(S) + \varphi(T)$
- (2) $\varphi(S \cdot T) = \varphi(S) \cdot \varphi(T)$
- (3) $\varphi(T^*) = \varphi(T)^*$
- (4) $\|\varphi(T)\| = \|T\|$
- (5) $\varphi(I) = identity \ on \ K$.
- (6) $\sigma(\varphi(T)) = \sigma(T)$
- (7) $a(T) = a(\varphi(T)) = \sigma_p(\varphi(T))$
- (8) for any bounded in norm sequence $\{x_n\}$ in H there exists a vector $u \in K$, such that

$$\|\varphi(T)u\|=g\lim_n\|Tx_n\|$$
 for all $T\in B(H)$.

Using theorem A (7) Berberian gave a very elementary proof of the fact that every normal operator has an approximate point value λ , such that $|\lambda| = ||T||$. The representation $T \to \varphi(T)$ has very nice properties.

Theorem 1. Let T be normal, quasi-normal, subnormal, hyponormal, paranormal, normaloid operator, then $\varphi(T)$ is normal, quasi-normal, subnormal, hyponormal, paranormal and normaloid operator respectively.

Remark: Before proving this theorem we give some notations from Berberian [2]..

B denotes the set of all sequences $s = \{x_n\}$ with $x_n \in H$ and $\{||x_n||\}$ bounded. If $s = \{x_n\}$ and $t = \{y_n\}$ are elements of B then formula $\psi(s, t) = g \lim_{n \to \infty} (x_n, y_n)$ defines a positive symmetric bilinear form on B. By N, we denote the set $\{s \in B$; such that $\psi(s, s) = 0\}$. The quotient space B/N is denoted by P, in which the scalar product is defined by $(s', t') = \psi(s, t)$, where s' = s + N and t' = t + N. The completion of P is a Hilbert space K.

Proof: The properties of being normal and quasi-normal are preserved because of properties (2) and (3) of theorem A. For subnormality we will use Halmos-Bram characterization, (see Halmos [4] and Bram [3]. For notational convenience we set $\varphi(T) = T^{\circ}$. For every finite family of vectors $u^{(0)}$, $u^{(1)}$, ... $u^{(n)}$ in K we have to prove that

$$\lambda = \sum_{i, i=0}^{n} (T^{oj} u^{(i)}, T^{oi} u^{(j)}) \ge 0$$

Suppose not, then there exists a positive real number $\varepsilon > 0$ such that

$$S(\lambda, \varepsilon) \cap R^+ = \emptyset$$

where $S(\lambda, \varepsilon) = \{\mu \in C\}$, such that $|\mu - \lambda| < \varepsilon\}$ and R^+ is the set of nonnegative real numbers. Without loss of generality we may assume that $\varepsilon < m$, where $m = \max ||u^{(k)}||$.

$$0 \leqslant k \leqslant n$$

Since the set P is dense in K; there exists a finite set of vectors

$$x^{(0)}, x^{(1)}, \ldots, x^{(n)}$$

in P, such that

$$||u^{(k)}-x^{(k)}|| < \frac{\varepsilon}{3 m ||T||^{2n} (n+1)^2}, \ k=0, 1, 2, \ldots n.$$

Then we have

$$|\lambda - \sum_{i,j=0}^{n} (T^{0j} x^{(i)}, T^{0i} x^{(j)})| = |\sum_{i,j=0}^{n} (T^{0j} u^{(i)}, T^{0i} u^{(j)}) - (T^{0j} x^{(i)}, T^{0i} x^{(j)})|$$

$$\leq \sum_{i,j=0}^{n} (||T^{0j}|| \cdot ||u^{(i)} - x^{(i)}|| \cdot ||T^{0i} u^{(j)}|| + ||T^{0j} x^{(i)}|| \cdot ||T^{0i}|| \cdot ||u^{(j)} - x^{(j)}||)$$

$$\leq \sum_{i,j=0}^{n} (||T||^{2n} m ||u^{(i)} - x^{(i)}|| + ||T||^{2n} \cdot 2m. ||u^{(j)} - x^{(j)}||) \leq$$

$$< ||T||^{2n} 3 m \cdot (n+1)^{2} \cdot \frac{\varepsilon}{3 m ||T||^{2n} (n+1)^{2}} = \varepsilon,$$

But, $x^{(i)} = {}^{\prime} \{y_n^{(i)}\} + N$, where ${}^{\prime} \{ ||y_n^{(k)}|| \}$ is bounded and $T^{0j} x^{(i)} = \{T^j y_n^{(i)}\} + N$.

From the definition of scalar product we see

$$(T^{0j}, x^{(i)}, T^{0i} x^{(j)}) = g \lim_{n \to \infty} (T^j y_n^{(i)}, T^i y_n^{(j)})$$

Applying the linearity of g lim, we obtain

$$\sum_{i,j=0}^{n} (T^{0j} x^{(i)}, T^{0i} x^{(j)}) = g \lim_{n} \sum_{i,j=0}^{n} (T^{i} y_{n}^{(i)}, T^{i} y_{n}^{(j)}))$$

and the last summation is positive by the Halmos-Bram theorem; which is a contradiction to the fact that $S(\lambda, \varepsilon) \cap R^+ = \emptyset$.

If T is a hyponormal, then $T^*T-TT^*=S^2$, where S is positive. Then for $u \in K$ we have

$$(\varphi(T)^* \varphi(T) - \varphi(T) \varphi(T)^*) u, u) = (\varphi(S^2) u, u)$$

= $(\varphi(S) \cdot \varphi(S) u, u) = ||\varphi(S) u||^2 \ge 0$

So $\varphi(T)$ is hyponormal.

If T is paranormal, i.e. $||T^2x|| > ||Tx||^2$, for ||x|| = 1 then using the following lemma of T. Andő. (see [6] Lectures Notes in Mathematics no. 247, pp. 547). T is paranormal if and only if

$$T^{*2}T^2 - 2\lambda T^*T + \lambda^2 I \ge 0$$
 for positive λ .

Paranormality of $\varphi(T)$ follows from 2) and 3) of theorem A, and the property c) of g lim and the above mentioned lemma of T. Andö.

If T is normaloid, i.e. $||T|| = \sup\{|\lambda|, \lambda \in \sigma(T)\}$ then by 4) of Theorem A we have

$$||\varphi(T)|| = ||T|| = \sup\{|\lambda|, \lambda \in \sigma(T)\} = \sup\{|\lambda|; \lambda \in \sigma(\varphi(T))\}.$$

All the properties of the operator T, are not preserved under the representation $T \rightarrow \varphi(T)$. We have the following:

Theorem 2. If T is compact operator then $\varphi(T)$ is not necessarily compact.

Proof: We will construct an operator with finite dimensional range (namely one dimensional range) such that $\varphi(T)$ is not compact. Let $\{e_n\}_{n=1}^{\infty}$ be the orthonormal basis of H. Set $Te_1 = e_1$; $Te_k = 0$, for k > 1. T is the projection from H onto one dimensional space spanned by e_1 . We define a sequence of vectors in K, such that every vector of that sequence is an eigenvector for $\varphi(T)$ corresponding to 1, and moreover this sequence is an orthonormal and infinite.

Set
$$\hat{x}_{2(0)} = \{e_1, e_1, e_1, e_1, \dots\}$$

 $\hat{x}_{2(1)} = \{e_1, e_1, -e_1, -e_1, e_1, e_1, \dots\}$
 $\hat{x}_{2(i)} = \{e_1, \dots, e_1, -e_1, \dots -e_1, e_1, \dots e_1, \dots\}$

Twe vectors $\hat{x}_{2(i)}$ have first $2^{(i)'}s$ coordinates e_1 , second $2^{i'}s$ coordinates $-e_1$, and so on alternatively.

Two things are easy to check: First $\hat{x}_{2(i)}$ are unit vectors in K; since $\|\hat{x}_{2(i)}\|^2 = g \lim_{t \to \infty} (1) = 1$. Second $\varphi(T) \hat{x}_{2(i)} = \hat{x}_{2(i)}$; which follows from the fact that

$$\|\varphi(T)\hat{x}_{2(i)} - \hat{x}_{2(i)}\| = g \lim \|(\pm 1)(Te_1 - e_1)\| = g \lim 0 = 0.$$

Using two times translation invariance of g lim we have

$$(\hat{x}_{2(0)}, \hat{x}_{2(1)}) = g \lim (1, 1, -1, -1, \dots) =$$

= $g \lim (-1, -1, 1, 1, \dots) = (-1) g \lim (1, 1, -1, \dots).$

So
$$(\hat{x}_{2(0)}, \hat{x}_{2(1)}) = 0.$$

The proof of orthogonality of the family $\hat{x}_{2(i)}$ will be shown by induction. Suppose that $\hat{x}_{2(0)}, \ldots, \hat{x}_{2(n)}$ is an orthogonal family. We want to show that the family of vectors $\{\hat{x}_{2(0)}, \ldots, \hat{x}_{2(n)}, \hat{x}_{2(n+1)}\}$ is orthogonal, too. It is sufficient to show that $(\hat{x}_{2(1)}, \hat{x}_{2(n+1)}) = 0$

$$\forall i \in \{0, 1, 2 \dots n\}$$

$$(\hat{x}_{2(0)}, \hat{x}_{2(n+1)} = g \lim (1, \ldots, 1, -1, \ldots, -1, 1, \ldots) =$$

$$= g \lim (-1, \ldots, -1, 1, \ldots, 1, \ldots) = (-1) g \lim, (1, \ldots, 1-1, \ldots, 1, \ldots)$$

 $(\hat{x}_{2(0)}, \hat{x}_{2(n+1)}) = 0$. Translation invariance of g lim had been used 2^{n+1} times. Let 1 < i < n; $2^{n+1} = 2^i \cdot 2^{n+1-i}$.

For short set a = (1, 1, ..., 1, -1, ..., 1, ..., 1, ..., -1) a row of length 2^{n+1} where the first 2^i are ones, and then alternatively.

Then we have

$$(\hat{x}_{2(1)}, \, \hat{x}_{2(n+1)}) = g \lim (a, \, -a, \, a, \, \dots)$$

$$= g \lim (-a, \, a, \, \dots) = (-1) g \lim (a, \, -a, \, a, \, \dots)$$

$$(x_{2(1)}, \, x_{2(n+1)}) = 0.$$

Translation invariance of g lim had been applied 2^{n+1} times.

Therefore $\lambda = 1$ is an eigenvalue for $\varphi(T)$ with infinite multiplicity which shows that $\varphi(T)$ is not compact.

The construction in Theorem 2 enables us to prove following

Theorem 3. If T and $\varphi(T)$ are compact operators then T=0.

Proof: From the polar decomposition we can assume that T° is a positive compact operator, $\neq 0$ and moreover $||T^{\circ}|| = 1$.

Then $\hat{T} \in B(\hat{H})$ and \hat{T} is positive, compact operator. Then there exists a vector $e \neq 0$, such that Te = e; Set $e_0 = \frac{e}{\|e\|}$. Denote by P the projection onto the subspace spanned by e. Then PT

the subspace spanned by e_0 . Then PT = TP. It is easy to check that T - P > 0. However, Po is not compact by the same arguments used in Theorem 2. The last implies that T^0 is not compact which is a contradiction.

REFERENCES

[1] S. Banach, Theorie des opérations linéaires, 2 nd ed Chelsea, New York 1963. [2] S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), [3] J. Bram, Subnormal operators, Duke Math. Jour. 22 (1955), 75—94.
[4] P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil Math. 2 (1950), 125—134.

[5] P. R. Halmos, A Hilbert space problem book, Van Nostrand 1967, [6] Lectures Notes in Mathematics. N° 247, Lectures on Operator Algebras, Springer-Verlag, 1972.
[7] J. G. Stampfli, Compact perturbation, normal eigenvalues and a problem of

Salinas (preprint).