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In this paper we shall show some new properties on the faithful star
representation introduced by Berberian [2].

Throughout the paper H will be a separable Hilbert Space. We denote the
algebra of bounded linear operators on H by B(H).

Definition 1. Let m be the Banach space of all bounded complex
sequences (sup norm). If s={\}&m, let s* ={\,.,}. Also let 1 Em be the sequence
consisting of ones. Then a generalized limit (for short) g lim is a linear functional
on m such that

(@ L1)=1
(b) L(s)=L(s*) for all s&m, (translation invariance)
(¢) L{a,})>0 if a,>0; for n>0.

Banach [1] showed that generalized limits exist. Moreover if {a,}&m is a real
sequence, it is easy to show that

liminf a,<g lim ({a,})<limsup a,

and if imA,=a, then glim({A,})=«.
The following result is taken from Berberian [2].

Teorem A. Let H be a separable Hilbert space. Then there exists a
Hilbert space K and a faithful star representation ¢:B(H)—~B(K) with the
following properties:

1) ¢S+ =9(S)+9(T)

(2) ¢(S:T)=9(5)-¢(T)

(3) P(T*)=9(T)*

@ eI =T

(5) ¢ (I)=identity on K.

6) o(e(T)=0(D) g
(1) a(M@=a(e(T)=0,((T)

(8) for any bounded in norm sequence {x,} in H there exists a vector
u & K, such that

Hcp(T)u][=gli31HTx,,|| Jor all TE B(H).
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Using thsorem A (7) Berberian gave a very elementary proof of the fact
that every normal operator has an approximate point value 2, such that [A|= 7|
The representation T—>¢ (T) has very nice properties.

Theorem 1. Let T be normal, quasi-normal, subnormal, Fyponormal,
paranormal, normaloid operator, then ¢ (T) is normal, quasi-normal, subnormal,
hyponormal, paranormal and normaloid operator respectively.

Remark: Before proving this theorem we give some notations from
Berberian [2]..

B denotes the set of all sequences s={x,} with x, EH and {||x,|[} bounded.
If s={x,} and t={y,} are elements of B then formula { (s, #)=glim (x,, y,)
defines a positive symmetric bilinear form on B. By N, we denote the set
{s€B; such that { (s, s)=0}. The quotient space B|N is denoted by P, in
which the scalar product is defined by (s, #)=¢ (s, t), where s'=s+N and
t'=t+ N. The completion of P is a Hilbert space K.

Proof: The properties of being normal and quasi-normal are preserved
because of properties (2) and (3) of theorem A. For subnormality we will use
Halmos-Bram characterization, (see Halmos [4] and Bram [3]. For notational
convenience we set @ (T)=T"°. For every finite family of vectors u©®, u®, ... u®™
in K we have to prove that

A= S (T9ud, Toud)>0
i, j=0

Suppose not, then there exists a positive real number ¢>0 such that
S, e)NR* =g,

where S(A, €)={x €C), such that [u—2|<ec} and R* is the set of nonnega-
tive real numbers. Without loss of generality we may assume that e<<m, where
m=max ||ju®|.

0<k<n
Since the set P is dense in K; there exists a finite set of vectors

xO, xO L x®
in P, such that

[ — x B <

Then we have

e e
3m||T|2" (n+ 1)

=0,1,2,...n

|A— f?, (T0 X0, T xD)|=| S (T u®, TO!uP)—(T% x, T0! xD)

},j=0 i, j=0
< 3 (Tl = =072 | [ 20 7 251

< S (IT[m [u® =5 + | 72" 2m. [~ 20])<
i, j=0

' 3. 2, ¢ -
| <|T|2"3m-(n+1) T

But, x0="{\"}+ N, where '{||y%|} is bounded and T° x®—{T/y}+N.
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From the definition of scalar product we see
(T0, x®, T0!xD) = glim (T/y, T'y)
n
Applying the linearity of g lim, we obtain

n n -
S (TUx0, T x0)=glim 5 (T'y, T'y))
, j=0 n o, j=0

12
and the last summation is positive by the Halmos-Bram theorem; which is a
contradiction to the fact that S(A, e) N R*= 2.
If T is a hyponormal, then T*T —TT*=S? where S is positive. Then
for uc K we have

@(D*o(T) -9 (Do (D)¥)u, u)=(¢(SH)u, u)
=@(S)-@(S)u, u)=|9(S)ul*>0
So @(T) is hyponormal.

If T is paranormal, i.e. |72 x||>||T]|?, for ||x||=1 then using the following
lemma of T. And8. (see [6] Lectures Notes in Mathematics no. 247, pp. 547).
T is paranormal if and only if

T*2T2_2\XT*T+2N2I>0 for positive A,

Paranormality of ¢ (T) follows from 2) and 3) of theorem A, and the property
¢) of glim and the above mentioned lemma of T. Andé.

If T is normaloid, i.e. ||T||=sub{{A, AEo(T)} then by 4) of Theorem
A we have

o (D) = | T = sub i, Ao (T)}=sup {; AEo (@ (T}

All the properties of the operator T, are not preserved under the repre-

sentation T—>¢ (7). We have the following:

Theorem 2. If T is compact operator then @(T) is not necessarily
compact.

Proof: We will construct an operator with finite dimensional ‘range
(namely one dimensional range) such that ¢(7) is not compact. Let {en}n=1be
the orthonormal basis of H. Set Te,=e; Te,=0, for k>1. T is the projection
from H onto one dimensional space spanned by e, We define a sequence of
vectors in K, such that every vector of that sequence is an eigenvector for
¢ (T) corresponding to 1, and moreover this sequence is an orthonormal and
infinite.

Set %,0=f{e,enene,-00}

£, ={e;, e, —e, —e e, €.}
Rap={€r s =€, ... —€, €, ... 8,...} ' ~

Twe vectors %,i) have first 20 s coordinates e, second 2¥ s coordinates —e,,
and so on alternatively. '

Two things are easy to check: First %, are unit vectors in K since
%, 0|2 =glim (1)=1. Second ¢(T)%,»==%,@; Which follows from the fact that

9 (T) %,6)— %,0|| =g lim ||(£ 1) (Te, —¢,)|| =glim0=0. -
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Using two times translation invariance of g lim we have
(562(0), 3‘:2(1))=glim(l, l, - 1, -—-1, e )=
=glim(—1, -1,1,1,...)=(-Dglim(1, 1, —1,...).

So (%, *,)=0.

The proof of orthogonality of the family X, will be shown by induction. Sup-
pose that X,q), ..., X, is an orthogonal family. We want to show that the
family of vectors {X,q), - - - » ¥,m»> X,m+n} is orthogonal, too. It is sufficient to
show that (X,(), 55,(»;+1))=0

vic{0,1,2...n}

(o0 Famen=glim(l. ..., 1, =1, 0., =1, L. 1, =
—glim(=1,..., =1,1,...1,...)=(=Dglim, (1, ..., 1=1, ... 1,...)

(%,> X,+1)=0. Translation invariance of glim had been used 2"*1 times.
Let l<i<n; 27+1=2}.2m+1-4
For shortset a=(1,1,... 1,—-1,...—1,..., 1, ... 1,—1,...,—Darowof
length 27+! where the tirst 2¢ are onmes, and then alternatively.
Then we have
(%0 X,wsn)=glim(a, —a,a,...)

=glim(—a,a,...)=(—1)glim(a, —a,a,...)
(%> *2(2+) =0.

Translation invariance of glim had been applied 2"+! times.
Therefore A=1 is an eigenvalue for ¢ (7T) with infinite multiplicity which shows

that ¢ (7) is not compact.
The construction in Theorem 2 enables us to prove following

Theorem 3. If T and ¢(T) are compact operators then T=0.

. Proof: From the polar decomposition we can assume that T isa
positive compact operator, 0 and moreover |T7|=1.
Then T B(H) and T is positive, compact operator. Then there exists a

e r
vector e£0, such that Te—e; Set e,=—. Denote by P the projection onto
: e

the subspace spanned by e, Then PT=-TP. It is easy to check that T— P>0.
However, PO is not compact by the same arguments used in Theorem 2. The
last implies that 70 is mot compact which is a contradiction.
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